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Earlier measurements of the three-frequency microwave nonlinear susceptibility coefficient have been

extended to include all of the nonzero tensor components of d,,„(—co„co„co,) of LiNbO, and LiTaO, .
These results are interpreted, using the formalism developed by Lax and Nelson, to describe
nonlinearities associated with electronic and ionic modes of anisotropic crystalline materials. The linear

dispersion parameters for each material are first approximated by a single-electronic and a single-ionic
normal mode. Nonlinear elements are then added to this normal-mode model. A macroscopic-

bond-charge model is developed. Vhth some simplifying asumptions and knowledge of the

optical nonlinear coefficient d,,-'„and the electro-optic coefficient d,,~; a good fit with the measured
values of d, ,k can be obtained. The same parameters used to fit d,,k are used to calculate the
pyroelectric coefficients for LiNb03 and LiTaO '. In both cases, the correct signs and magnitudes within

a factor of 2 of experimental values are obtained.

I. INTRODUCTION

Nonlinear interactions of three fields, at least
two of which are at optical frequencies, have been
studied extensively in anisotropic dielectrics.
Second-harmonic generation, sum- and difference-
frequency generation, the Baman and electro-optic
effects, and optical rectification have been ob-
served and well characterized with the help of laser
sources for a variety of acentric crystals. Non-
iinearities in dielectrics, however, are by no
means limited to the optical region. In this paper
we deal primarily with nonlinear interactions of
three microwave (or radio-frequency) fields, and
show how these interactions are related to the
better-known phenomena involving optical frequen-
cies.

The application to an anisotropic dielectric of
two driving electric fields E&(~2) and E~(~z) at fre-
quencies» and wl gives rise to a nonlinear re-
sponse at frequency ~3 which can be described in
terms of a generated polarization wave of Fourier
amplitude S', (&oz). The tensor nonlinear suscep-
tibiHty coefficient d fox' the n1lxll1g of two fx'equen-
cies is defined in mks units ass*4

+)(&3)=2&odga( ~s~ &a~ &0&y(&d&a(&1) ~

(1.1)
where zo is the permittivity of free space. Sum-
mation over repeated indices is conventionally im-
plied. The angular frequencies &3, &3, and rgl
are arbitrary, except that conservation of energy
requires that w3 = &&+». For second-harmonic
generation, &3=» and the factor of 2 is then de-
leted from Eg. (l. 1) to make the definition of d„,
consistent with the definition for mixing.

The magnitude, and often the sign, of a compo-

nent d&z~ of the nonlinear coefficient are known to
change markedly as one or more of the frequencies
involved is varied from the optical region, through
the lattice resonance frequencies, to the micro-
wave region. When (d3, +3, and +l g/E are in the
optical region, defined here as the region between
the electronic-absorption-band edge and the lattice
absorption bands, but not too close to these reso-
nances, the nonlinear coefficient changes little
with frequency. We term this optical nonlinear co-
efficient d', and use it to describe optical mixing
ox' second-harmonic generation.

When the frequency of one of the applied fieMs
is in the microwave region and those of the other
applied fields are in the optical region, the elec-
tro-optic nonlinear coefficient d describes the in-
teraction. The microwave or modulating fieM is
taken to be Z~(a»), which makes the ordering of the
subscripts consistent with the usual electro-optic
convention. The components of d" are related
to the components of the more common electro-
optic coefficient z by 5

4 SgSg (1.2)

where n, and n, are refractive indices (and no sum-
mation of subscripts is imp1ied). The electro-op-
tic coefficient also describes optical rectification,
in which two optical frequencies are mixed to pro-
duce a microwave frequency.

When aQ three frequencies are in the microwave
region, the microwave linear susceptibility coeffi-
cient d describes the mixing process. This co-
efficient should vary little from frequencies just
below the lattice absorption bands, usually corre-
sponding to submiliimeter wavelengths, to the low
radio fx'equencies whex'8 piezoelectric effects can
no longer be neglected. As long as all frequencies



are kept sufficiently above the acoustic resonance
frequencies of the crystal so that piezoelectric con-
tributions to the susceptibility can be ignored, d
and d" will correspond to constant strain or
clamped nonlinear coefficients.

Measurements of d for a large number of polar
and nonpolar crystals have recently been re-
ported. s ~ For each crystal, both the magnitude'
and sign of one of the tensor components of the
clamped coefficient mere determined using hetero-
dyne techniques. Other measurements include the
determination, using microwave second-harmonic
generation, of )dz&2I for potassium dihydrogen
phosphate (KDP) by Volkova and Yashchin, ' and the
temperature dependence of the same component by
Tal'yanskii et a/. The unelamped coefficient cor-
responding to d»2 has been measured in LiÃb03 by
Ivanov and Morozov. e A limited number of other
measurements on acentric crystals had been re-
ported previously, but insufficient data had been
given for a direct comyarison with d .10 11

It has been observed that values of d may easily
exceed typical values of d' by several orders of
magnitude for some materials. It was found in
particular that materials with large values of lin-
ear microwave susceptibility

X=X +X =&/~o —I

have extremely large values of d .1 ~ 9 In Eq.
(l.3),

is the electronic linear susceptibility,

is the ionic linear susceptibility, and c/&s is the
relative dielectric constant.

The connection between large linear susceptibil-
ities and large values of the nonlinear coefficient
mas first recognized by Miller for d'. He shomed
that; d', » could be mritten empirically as the prod-
uct of the Ejnem. susceptibilities at the three fre-
quencies involved and a parameter 5:

d&gs( &s~ ~s~ ~1)=~&gaX&(&s)Xy(&s)Xs(&1) .
(I.6)

In the optical region, the linear susceptibility is
electronic in origin. The frequency dependence of
d', and to a great extent its variation from materi-
al to material, are accounted for by the variations
of the linear susceptibilities, leaving g a nearly
constant parameter. A qualitative explanation of
Eg. (l. 6) llas been found by Garrett and Robin-
son, 3 based on a classical one-dimensional anhar-
monic-oscillator model.

When one or more of the frequencies is in the
microwave region, ionic as mell as electronic con-
tributions to the nonlinear susceptibility are ex-

pected. Genkin et gl. , Garrett, 5 Lax and Nel-
son, and Flytzanis' have treated both ionic and
electronic contributions through semiyhenomeno-
logical theories. Garrett's model is an extension
of the one-dimensional anharmonic-oscillator ap-
proach to include ionic effects and the coupling be-
tween ionic and electronic motion. Four different
5-like parameters multiply combinations of X' and
X' to give d in this treatment.

In the theory of Lax and Nelson, which also gives
the form of the nonlinear coeff1c16Qt in terIIls of a
number of 5 coefficients, Garrett's mork is ex-
tended to three dimensions. Lax and Nelson also
derive the symmetry conditions that must be obeyed
by the 6 coefficients, and verify that d, as well
as d', must obey over-all permutation (i.e. , Klein-
man ) symmetry conditions when there is no dis-
persion between the frequencies involved.

The motivation for the present work, mhich ex-
tends earber measurements' to all the nonzero ele-
ments of d for two of the more interesting ma-
terials, is the comparison of these experimental
results mith the yredietion of theories based on
classical models. Because of their large mea-
sured values of d 3», the ferroelectric crystals
lithium niobate (LiNbOs) and lithium tantalate
(LiTaOs) were chosen for further experimental
study. Both belong to the Sm point group. The
nonzero elements of d are therefore d»3, d»2,
dz&&, and d11» mhere the axis 3 coincides with the
c axis and the axes 1 and 2 are normal
to jt. Over-all permutation symmetry requires
that ds11 and d 11s shouM be equal, as long as dis-
persion in the linear susceptibilities can be ignored
between w» w» and (d» which is a reasonable
assumption for our experimental conditions.

In Sec. II, we use the results of Lax and Nelson
to express d in terms of the coefficients of a gen-
eral expansion of the anharmonie potential. The
nonl1near coeff1c16Qt ls presented as a sum of
terms, each a product of a different 5 parameter
and three susceptibilities. Expressions are then
developed in terms of the 5's for the particular
forms of d', d", and d pertinent to the materials
of interest.

The measurements of d for LiNb03 and LiTaO3
are reported in Sec. III. Techniques are described
for measuring the magnitudes and signs of the four
nonzero tensor elements. The results are pre-
sented, and compared mith the limited data avail-
able in the literature.

In 'Sec. IV we discuss classical normal-mode
linear and nonlinear models. By making some
simplifying assumptions, the linear parameters for
LiNb03 and LiTa03 are obtained for a single elec-
tronic and a single ionic normal mode. The diffi-
culties involved in treating nonlinearities in the
normal-mode frame are also discussed.
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A macroscopic-bond-charge model, developed
in Sec. V, is used to relate the various 5 coeffi-
cients to each other and therefore to enable d
to be predicted from d' and d". The same model
is applied to the pyroelectric effect in Sec. VI.

II. RELATIONSHIP OF NONLINEAR COEFFICIENT TO
LINEAR MATERIAL PARAMETERS AND

ANHARMONIC POTENTIAL ENERGY

A. General Relations

For a collection of oscillators, the terms in the
anharmonic potential-energy density which give
rise to the nonlinear susceptibility of interest to us
are cubic in displacement y from equilibrium:

HAac yx ys yc (2. 1)
ABC

In Eq. (2. 1) we have specialized the results of Lax
and Nelson~6 to a principle-axis coordinate system
(A, 8, C) in which all second-rank tensor quantities
are diagonal. The superscripts X, p, v are
summed over the various electronic and ionic nor-
mal modes of the system, and the H's are param-
eters which characterize the material.

In Appendix A it is shown that the nonlinear-sus-
ceptibility coefficient can be written in terms of
the H's and linear susceptibilities as

~~' g Hll"xt( )8( )xl( l)
v v

Xhh v vC' 0'

(2.2)
where z, j, k are spatial coordinates which are not
meant to be summed over. The charge q" and sus-
ceptibility X"(a&) are associated with the normal
mode X. Lax and Nelson~6 have given a more gen-
eral derivation of Eq. (2.2) valid for nondiagonal-
ized systems, and including the treatment of acous-
tic modes. The neglect of these additional com-
plications is warranted for the materials and fre-
quency regions of interest here.

The empirical relation between the linear and
nonlinear susceptibilities in the optical region,
Eq. (l. 6), suggests that we define

e. Hl""/(q q q")— (2.2)

so that for any combination of frequencies,

dlya(~si &ai +1) ~ 5vl!XV~3)Xy (~a)Xa(~l) '

(2.4)
Again, j, j, P are coordinates which are not
summed. In Bef. 1, some of the terms in Eq.
(2.4) were ignored. The neglect of these terms is
corrected in Appendix 8 of this paper.

Although Eq. (2.4) describes the nonlinear sus-
ceptibility at any frequency, typical measurements
have been made away from resonances. As a
simplification we will approximate all of the elec-
tronic modes by a single mode (e) and all of the

H ~ssees ——D/ V, 3H'3'Sls ——C/ V,

2Hslsl;=a/V, H,«,» =~/V,
(2. 6)

where Vis the volume per molecule, that is, the
primitive cell, Garrett suggested an expansion
equivalent to Eq. (2.2). Using this relation,
Akitt et al. '~ calculate values of D, C, and B from
the dispersion of electro-optic data.

For three optical frequencies, Eq. (2.4) reduces
to

dsss(~s ~a ~l) =bsssXs(&s)Xs(&a)Xs(~l) .
When ~, is a microwave frequency, Xs(&ul) is no
longer negligible, and the electro-optic coefficient
is given by

d sss(~s i ~a i ~l) = 533$Xs(~s)Xs(~a) Xs(~l)

+ 5SSSXS(~s)XS(~a)XS(~i) ~

Note that dispersion of the linear susceptibilities
is retained in Eqs. (2.7) and (2.8).

For all three frequencies in the microwave re-
gion, none of the ionic terms in Eq. (2.4) can be
neglected. For frequencies very low compared
with the ionic resonance frequencies (indicated by
~- 0), ChsPersion between &us, &ua, and &ul can be
neglected and we obtain for the microwave mixing
coefficient

d $$3 5333 (Xs(O)l + 25333 [Xs(O)] Xs(O)

+ ~5ass [Xs(O)]'Xs(O)+ 5,"„'[X',(O)]' . (2.9)

The above relations for dsss, Eqs. (2. 5)-(2.9),
can be applied directly to d»3 by simply substitut-
ing the subscript 2 for 3 where it appears.

ionic modes by a single mode (i) for each coordi-
nate direction. Values of y for these equivalent
modes will be discussed later.

The expressions for d often can be simplified
by considering the symmetry properties of i5,~~.
These properties follow from the symmetry prop-
erties of H~» given in Appendix A. Thus 5~&~ re-
mains unchanged when the superscripts and sub-
scripts are interchanged in pairs. %'hen the super-
scripts are all identical we have, for example,
5',&'„=5&~, etc. %e shall use the notation 5'&', z» to
indicate that any permutation of subscripts leaves
this coefficient unchanged.

8. Application to d333 and d22&

The terms in the anharmonic potential which con-
tribute to d333 are

V.ass= Hsss(vs)'+2Hsss(ys) ys
e &

2H 3$3( ys) y 3 + H ss3( Js)
Starting with a potential of this form but with the

notation
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C. Application to d», and dl»

The terms in the anharmonic potential which
contribute to dii3 and d3ii are

Ve(811) 3+ ($11) y8(yl) + 6+~S1138 yl yt+ 3+1~18(yt) yS
„TOKLYSTRON

REFLECTOR

HETERODYNE
RECEIVER

P 8EC I SION
KLYSTRON VARIABLE METALL I Z IN G

ATTENUATOR
+ FM SIDEBANDS

///// Y//
Q t

////' // / / / / / / / / /'

+ 60811ys yl yl+ 3H 118(yl) ys+ 3+ (811) yS( yl)
(2. 10)

For three optical frequencies, Eq. (2. 4) reduces
in this case to

d 3u(+8 i &02 & +1) 5 (311)X3(&ds)X1(+2)X1(&cl)y

MATCHING
NETWORK

VARIABLE
LENGTH COAX I A L

LINE VAR I ABLE
ATTENUATOR

~ IOO MHz

RF
, VOLTMETER

(2. 11)

~3~i- ~ii3= ~C3i})
Hi (2. 15)

III. MEASUREMENTS OF d; FOR LiNbO AND I.iTaO

A. Experimental Methods

The four nonzero elements of d mere measured
for LiwbO3 and LiTa03 using techniques described
previously. '6 The magnitude of d,» was deter-
mined from intensity measurements of sidebands
produced when a carrier wave, generated by a
millimeter-wave klystron, was mixed with (or
modulated by) a radio-frequency modulating field.
The carrier frequency ~2/2v could be varied from
53 to 59 GHz and the modulation frequency a&1/2v
from about 80 to 120 MHE. Thus ~3, cda, and &i
are all in the region which lies between the crystal
acoustic resonances and the lattice-absorption

dus(+st +at +1) 5(811)X1(&cs)X1(&ca)X3((dl)i
(2. 12)

which are equal in the absence of dispersion in y'
betmeen &3, », and (di, as was pointed out by
Kleinman.

The electro-optic coefficients are given by

dsu(~3& ~2& ~1) 5$11X8(~s)X1(~2)X1(&1)

+ 531iXs(&3)Xl(&a)Xi(&al)

des(~8 ~ ~a ~ ~1)= 5811X&(~s)dl(~a)XS(~1)
eo eee e (2. 13)

+ 51)sX1(&()3)Xi(~2)Xs(&1) ~

These are unequal in general, even if dispersion
in g between N3 and (da is neglected.

In the micromave region, all terms are neces-
sary for d 3ii and d ii3. When dispersion can be
neglected in y' and y' between the three frequen-
cies, over-all permutation symmetry is again
obeyed and

d 811 d 113 5~(su) xs(0) [xl(0)] + 25$1ixs(0)xl(0)xl(0)

+ 511$ [Xl(0)] Xs(0) + 25 811X3(0)Xi(0)Xl(0)

5,";.[X'(0)]'X:(O)+5&3[1,X,'(0) [Xi(0)]',
(2. 14)

FIG. 1. Experimental arrangement for measuring the
ratio 9 of upper or lower sideband power to carrier
power, and the phase of the sidebands relative to the
phase of the modulating field.

bands'
The crystal samples mere mounted in an over-

size waveguide section (0.483 && 0.203 cm) con-
nected to a standard RG-98/U waveguide (0. 3V6
&&0. 188 cm) by means of tapered transitions. The
millimeter-wave field in the sa,mple was excited
by the TEio mode in the waveguide. The only side-
band fields that could propagate in the empty wave-
guide mere those in the same mode as the carrier.
Because +i«+2, ~3, the dispersion in refractive
index betmeen the carrier and sideband waves is
unimportant, and phase matching is essentially
perfect. Coupling to the outyut maveguide involves
the same loss, reflection, and geometrical factors
at both the carrier and sideband frequencies.
Therefore, mhen measuring the ratio 8 of upper or
lomer sideband power at ~3 to carrier pomer at cd3,
a detailed knowledge of these coupling factors is
not required. The power ratio 8 mas measured
with the aid of adjustable precision attenuators and
a narrowband heterodyne receiver tunable mith

equal sensitivity to the carrier or sideband fre-
quency. Figure 1 shows schematically the experi-
mental arrangement.

The field at +i mas introduced by applying the
modulating voltage V(a&1) cosa&lt to silver-paste
electrodes on two opposing faces of the crystal
through a small hole in the wide wall of the mave-
guide sample section. The modulating field E((d,),
which can be applied either pgygllel to or pe+en-
&ticular to the waveguide fields E(+2) and E(~3), was
modeled using an electrostatic resistive 8heet,
analog. These model studies show that in the par-
allel case, E((d,) is essentially uniform and equal
to V((dl)/b, where t)is the crystal thichness along
E(&dl)» whereas in the perpendicular ease account
must be taken of field distortion (fringing). Aver-
aging over the model field for the crystal-loaded
waveguide, the effective modulating field is EV((dl)/t).
For either LiNbQ3 or I iTaQ3 in the peryendicu-
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lar case, E=0.88. In the parallel case, E=1.

When Eq. (l. 1) is written in terms of the Fourier
amplitudes of the applied microwave fields,

0/AVEGU IDE CRYSTAL GEOMETRY

PARALLEL G EO METR Y

&((u, ) = 2eod„,Z((u, )Z((u, ) . (3.1)

The effective nonlinear coefficient d,« is an ele-
ment or combination of elements d, z~ which de-
pends on crystal orientation.

The sideband-to-carrier power ratio for the
case of a lossless crystal matched to the wave-
guide is then'"

8) ~
i

3( aff)
i

[y( )]2F2
P((o2) g& c'e((o,)/eo (b

(3.2)
where I is the crystal length and c is the velocity
of light. The ratio of the propagation constant for
a plane wave in the dielectric to that for the wave
in the filled guide, kz/Q, is approximately equal
to unity for the cases we consider, The value of
the dielectric constant e(e~) that lies along the
waveguide-field direction is used in this expres-
sion. As described below, and in Appendix C, Eq.
(3.2) must be modified when double refraction is
present.

Figure 2 shows the sample geometries used for
the measurements, and gives d,« in terms of the
tensor components for each case. Crystal sam-
ples were typically 1 cm long. The elements d P„
and d»2 were measured directly in the parallel
geometry, with crystal heights 5=0. 19 cm and
widths about 0.376 cm [Figs. 2(a) and (b)].

To experimentally verify the fringing-field fac-
tor F, Fd»2 was measured in the perpendicular
geometry [Fig. 2(e)]. In this case, 5, now the
width, equals 0.44. cm. The sample height was re-
duced to about 0. 16 cm to keep E near unity. By
symmetry, d z»

————d 3, so that E could be deter-
mined. This value of E could then be used to ob-
tain d f/3 from a measurement of Ed»~, also in the
perpendicular geometry [Fig. 2(d)].

The element d»& was obtained by measuring the
combination coefficient d, for the geometry shown
in Fig. 2(c). In this case dQgf=v 2d, ——,'(de
+d )~3). Because the fields do not lie either along
or normal to the axis 3 of the crystal, account
must be taken of double refraction. In Eq. (3.2)
replace c(a&3) by e(&oz, P) cos p, where Q is the
angle between the axis 3 and the direction of the
Poynting vector, that is, the waveguide axis, and

p is the double-refraction angle. Appendix C gives
expressions for the general case, but for the ge-
ometry of Fig. 2(c), /=45' and c(&o~, P) cos p
= r~(&g+ &3)

The samples used in our experiments had yar-
allel input and output surfaces, leading to reso-
nant behavior of the sideband and transmitted car-
rier amplitudes. For the low-loss samples mea-

b~ (b) P b(

0 ~vs s p ~( i) z(~9=2@dpppEp(p) Fp(~i)
6((dp) = 6'p E'(CUp) = 6)

p(Q)~), (td m m m

d
2~2

dm dm
eff c

(c) b
+~s

P (4 p) = 2 6p def f E(m&) E(~~)
e (cu&) = (e~+ e&) /2

PERPENOICULAR GEOMETRY

(d)

(P, (~z) =2~od„zE,(cuz) Ez(m, )

6((dp) = 6(

2'~ b

P(((d~)=2eod)(~ EI(urp) p( ))

e(&u&) =e
~

FIG. 2. Sample geometries used to measure the tensor
components of d ~ Except for case (c), the fields and po-
larizations lie along principal axes. The effective value
of ~ depends on the orientation. The modulating field
E(co~) is applied across the b dimension.

sured, these resonances caused large variations in
9 as the carrier frequency was varied. An analy-
sis of this effect~' shows that the value of R that
would be obtained in the absence of resonance
equals the geometric mean of the experimental
power ratios at the resonator transmission maxima
and minima. For this reason, values of 8 were
measured as co& was varied from about 53 to 5S
0Hz to cover several free spectral ranges of the
crystal resonance.

The signs of the elements of d were measured
using the technique described by Pollack and
Turner. s Basically, the sign of d determines the
phases of the sidebands relative to the phase of the
modulating field. The phase of a sideband produced
in the crystal through d is measured by comparing
it with the phase of a frequency-modulation side-
band generated by modulating the reflector of the
klystron carrier source with a sample of Vz. The
comparison is made by adjusting the amylitude and
phase shift of the sample of V& coupled to the re-
flector for cancellation of the sideband components
from the two sources. The absolute sign of d is
then determined from the over-all phase shift.

B. Experimental Results

The LiNbO3 boule was obtained from Crystal
Technology, Inc. Two boules of LiTaO3 were sup-
plied by Ballman of Bell Laboratories. All sam-
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TABLE I. Experimental values of d&f {in units of 10 ~2

m/V). The values of e~ and ~3 used to reduce the data
are from H,ef. 22. The fringing-field reduction factor I'
is obtained from cPgg2 = —d 222e

Geometry

d 333

d222

dm
C

-5870+ 10%

-4470 + 20%

-10760+3'
-7800 + 13%

+3800 + 20%

LiTaO3

-18620+ 8%

-2760 + 15%

-14740 + 3.0%

—6000 + 9%

+2510 + 19%

ples were of single-crystal single-domain material.
Two or more samples of each material mere pre-
pared for each of the five geometries. Measure-
ments of 8 were made as a function of &, at least
twice for each sample.

Table I gives the values of d,«determined ex-
. perimentally for the five sample geometries. Val-
ues of &, and &3 are also given. Typically, a
peak-modulating voltage of 282 V, measured with
a Hewlett-Packard 43.08 rf voltmeter, mas used
for these measurements. The error limits given
in the table express the reproducibility of the mea-
surements. The absolute accuracy of d was
limited by dimensional (- l%%uo), voltmeter (+ 5%%uo),

RIld Rt'teIlllRtox' calibration (k 5/0) Rccllx'Rcies.
To obtain the values given in Table 1, the results

from all runs on a given sample mere first aver-
aged. Beproducibility was generally better than
+ 15% of this average value. Next, the averages
for each sample mere combined; it is these aver-
ages and their range of reproducibility that ap-
pears in the table. Lack of better reyrodueibility
can be ascribed to two factors: (i) excitation of
higher-order maveguide modes in the sample, and

(ll) lloll-IlegllglMe transmission of cal'I'181' Rl'01111d

the sample. Experimental efforts to minimize
these effects mere only partially successful for
some of the samples.

Because of the rather large error limits, the
differences between the experimental values of the
correction factor E for the two materials is not
particularly significant. Therefore the average
value, 0.88, was used to correct Edgg3 to give dying.

This value is coincidentally equal to the predicted
value described above.

The four nonzexo elements of d are given in
TaMe II, along mith the much smaller values of d'

'

and d" obtained from the hterature. ' The val-
ue of d~zz has been extracted from d„d333,and

In sec. II, the nonlinear coefficients d', d",
and d mere given in terms of equivalent single-

TABLE II. d&&& in unite of 10" m/V for LiNb03 and
LiTa03.

Material

LiNbO3

LiTa03 333
222
311
113
{311)

-40.2
+3.15

-5.82

—19~ 5
+2.1

—181
-23.5

—178
-59.3

—171.4
-2.8

—112~ 6
-39.2

-5870
-4470
-V840'
-ssso'
-8360

—18620
-2760-812O'
-6830

7475e

'See H,ef. 23.
'Bee H,ef. 24 and Eq. {1.2).
btained from demjg =W2 d,"—y {dyes+ d333)-
Obtained using E=0.88.

'Value taken as $(dIII+dIII).

We observe that d &&3
= d~z& to within the error

limits of the original data. As over-aQ permuta-
tion- (i.e. , Kleinman) symmetry conditions reIluire
tllis eguallty 'tile valldlty of oui' expel'1111811'tR1 tecil-
nique appears to be established. The average value
—,'(dlla+daII) =d Iall& will be used in the following
sections.

The only other reported clamyed values of d
for these materials axe those given in Ref. 1 for
Idea, I: 6700&&10 ' m/V for LiNbOa and 16000
x 10 I' m/V for LiTROa. The present results are
an improvement over those measurements. A dc
measurement of the unclamyed d &32 coefficient has
also been reported for LiNb03. After adjustment
of that data for the value of &a use/ here, the un-
clamped value Id a»I = 6210x10 m/V is obtained.
This is reasonably close to our clamped value of
Id a» I =44VO x 10 a m/V given in Table II.

The signs and magnitudes of d qq3 for Liwb03 and
LiTa03 have been predicted by Pollack and Turner.
For Liwb03, they relate the variations of the di-
electric constant and the spontaneous polarization
mith temperature to yredict that both d333 and d &&3

are negative and approximately equal in magnitude.
From Table II me see that these two components
differ by only 18%%uo. The prediction for LiTROs,
based on Jerphagnon's 5 relationship between the
5 coefficients and the spontaneous polarization, is
that d Ila = —8700X10 'a m/V. This value compares
favorably with the experimental value of —IF'475

&10 la m/V given in Table lI. Although these sim-
ple arguments will not be pursued further here,
it is interesting to note how mell they predict the
relationships between the d,» coefficients.

IV. CLASSKAL NORMAL-MODE MODELS
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Li.Nb03 LiTa03

TABLE III. Normal-mode linear parameters for
LiNb03 and LiTa03. Masses and charges are normaliied
to the mass m~ and charge e -of a free electron and V is
the volume of the primitive cell.

quency

{yL/ X)1j3 (4. l)

and a linear susceptibility I(", (&o) (see Appendix A)
which, as (d approaches zero, becomes

xg@~

(df/27fC

xf(oI

(d l/2'ec

X3«&

3/2M'

x/((0

co)/2wc

54 041 cm"

39.42

189.8 cm

3.544

567S3 cm

23.36

60252 cm

38.12

167.4 cm

60171 cm

38.30

224.7 cm"

~x(0) (qk)3/yxs (4.2)

The values of yz(0), &oz, yz(0), and &us obtained
from a computer least-squares fit of the linear op-
tical-dispersion data for LiNbO& 6 and LiTa03 ~

are given in Table III.
The corresponding ionic parameters are obtained

by approximating the ionic linear susceptibility at
its low-frequency limit. If Sz and && are the
strengths and angular frequencies of the jth ionic
modey

(m'/m, ) V

(m'/m, ) V

I qe/e I V

Iq~/e IV

I q'/q' I

a',

a»

u',

a,»

53.0 x 10+0 ms

6.74

0.85

16.2 x 1O" N/m'

1.32 x1O" I/m'

17.9 x 10"N/m4

3.19 x 1030 N/m

52.8x 10+0 m

7.46

S.27

0.902

21.5 x 1O" N/m'

1.33x10~ N/m

21~ 5 x 10 N/m

2.32 x 1C" I/m'

A. Linear Normal-Mode Parameters

First let us consider the equivalent single nor-
mal-mode parameters. The classical electronic
oscillator is completely described by charge den-
sity q', mass density m', and spring-constant den-
sity O'. The quantities q', m', and 0' describe the
ionic oscillator. We shaO assume that the oscil-
lators along the axes I = 1, 3 have the same charge
and mass densities, and differ only in spring con-
stant.

Each oscillator (A. = e or i) has a resonant fre-

mode linear electronic and ionic susceptibilities
and a number of 5 coefficients. Although 5"' and
and 5"» can be extracted directly from d' and d"
[through Eqs. (2.7) and (2.8), for example], the
additional measurement of d can only yield a com-
bination of 3'" and (I"'. A model relating the four
5'e &could enable us to either (a) separate (I'" and
3"'from the measured value of d or {b)Predict
d from measured values of d' and d". Because
there are four 5 coefficients, such a model must
have four nonlinear parameters, unless we can re-
duce this number by means of physically reason-
able assumptions.

g4

l —(~/~,')'

X'1.-0 =~~g+~
( &')a

~' = y'(0) [l+ (~/~')'] ~

(4.4)
where

(4.5){~')'=X'(0) ~
( ~'e ~

(('dg)

The values of I('(0) = e/ea —I('(0) —1 given in Table
IG were computed from the dielectxic constants of
Table l. The summations in Eqs. (4.S)-(4.5)
were taken over the infrared-active modes mea-
sured by Barker eg g).38 with the addition of a
mode at +,- ~, which is needed to make I('(0)
match g Sz calculated from the infrared data. Val-
ues of ap' obtained from Eq. (4. 5) in this way are
given in Table IG. Similar results have also been
obtained using the mode frequencies and strengths
determined by Johnston, s

In order to avoid the historical problem of having
to determine the three oscillator parameters q",
m", and k" from the two measured quantities &u"

and &p(0), we shall make two simplifying assump-
tions. The first is that the charge-to-mass ratio
for the electronic oscillator, I q'/m'I, is equal to
the ratio for a free electron, I e/m, !. This as-
sumption allows the separation of Iq'I, m', and
k'. For the ionic oscillator, we assume that m'
equals the reduced mass of a Nb or Ta ion vibrat-
ing against a I i03 combination, which permits the
separation of Iq»I, m», and k». The use of a re-
duced mass in the normal-mode frame for the
ionic normal-mode mass is justified in Sec. V.
The values of these normal-mode linear param-
eters are given in Table IH. The charges given
in the table wer'e obtained by averaging the values
of (q~&) and (q3') from Eq. (4.2), as we have as-
sumed'~ a single charge for the oscillators along
the axes 1 and 3.



5352 G. D. BOYD AND M. A. POLLACK

me qe

OOOO

k 6

frequencies, we can show that

d "/d'- 1+G

d /d'=(1+C)8,

(4. 11)

FIG. 3. Normal-mode model of single electronic and
single ionic oscillators, including nonlinear springs G
and G~, and a nonlinear coupling spring G@.

B. Classical Model of Normal-Mode Nonlinearities

It is difficult to attach a classical meaning to the
normal-mode nonlinearities which were introduced
in Sec. D through a, power series with II&&„"coef-
ficients. A somewhat different approach has been
taken by Barker Rnd Loudon, s who considered an
electronic and an ionic linear oscillator coupled
directly by a single nonlinear spring. Jn our no-
tation, their anharmonic potential energy could be
written G"(y' —y')8. In Fig. 3 we have general-
ized their model by adding the nonlinear springs
G' and G' to the ionic and electronic oscillators,
and by allowing the nonlinear coupling spring G"
to be compressed by an amount yy' —y'. The fac-
tor y allows for the possibility that the normal-
mode displacements y' and y' are not equa, lly ef-
fective in contributing to a nonlinarity dependent
on their relative displacement. The anhax monic
pRl't of 'tile poteIItlR1-81181'gy density whlcll colltl'lb-
utes to dsss, for example, is then

~.888
= —Gsss(38)'+ Ghs(38)'+ Gsss(yys -38)' ~

(4.6)
When EII. (4. 6) is expanded and compared with EII.
(2. 5) one obtains

8888 ~ 888 ~888 y

Bsss = y&sss

&sss= —"I' &sss y

Sate g 4e

(4. 'I)

(4.8)

(4.9)

+SSS ~888+ F ~888 ~
3 ke

This form of V,sss is not unique. We have chosen
it as a simple extension of the Barker-Loudon
model which contRUls the foux' x'equix'ed nonlinear
parameters and describes the ionic-electx'onic cou-
pllIlg in R general wRy,

Barker and Loudon used their model (G' = G'=0,
y=+ 1) to derive electro-optic coefficients and
Baman-scattering cross sections. When the same
simplifications are apphed to obtain d as well,
we find from EIIs. (4. 7)-(4.10) that all the H's
are equal in magnitude. Then d always has the
same sign as d", for jf we neglect the small dis-
persion in g' between the optical and microwave

(4. 13)

Although d and d" do have the same signs in
LiNb08 and LiTa08 (Table II), this is not the case
for many other materials (such as GRP and
GaAs). '8 In addition, G, which is the ratio of the
ionic to electronic contributions to the electro-oy-
tic coefficient, "also forces a value of q'/q', inde-
pendent of linear parameters, through the use of
this model. The charge ratios calculated in this
way depend on the tensor element of d, in contrast
to our assumption of a common charge for the os-
cillators along the axes 1 Rnd 3. It is interesting
to note that although the Barker-Loudon model
cannot meaningfully be extended to predict d &zlz&,

it does predict values of dsss only a factor of 2
sma. lier than the experimental values for LiNbOS
Rnd LiTRQS,

While a single nonlinear para, meter cannot prop-
erly relate d', d", and d, neither can we obtain
four nonlinear parameters from these three pieces
of experimental data. It is possible to arbitrarily
fix R VR1118 of OI18 of tile parametersq (sllcll Rs y= 1
or G' = 0) in order to fit the experimental results
Instead, we have found it useful to construct the
macroscopic-bond-charge model described in
Sec. V. In our opinion, the simplifications and ap-
proximations in that model are more physically
meaningful than those possible with the normal-
mode model. It should be emphasized, however,
that the two models are fully equivalent, and it is
possible to connect the various coordinates and an-
harmonic parameters with nonlinear transforma-
tion eIIuations [see EIIs. (4.V)-(4. 10) and (5.15)-
(5. 18), and also Ref. 15].

V. MACROSCOPIC-BOND-CHARGE MODEL

Consider a one-dimensional crystal that consists
of a rigid lattice of g ions moving against a rigid
lattice of 5 ions. The two lattices are coupled by
appropriate springs, which represent RQ of the in-
teractions between them. Figure 4 shows the
mechanical equivalent circuit representing our one-
dimensional system. Between the lattices is a
"bond" charge of mass density m and charge densi-
ty s. The ions of mass density M, and M, and

charge density Z, and Z, are coupled to the bond
charge by linear springs 0, and k„and to each
other by the linear spring k, . The displacements
from equilibrium of the ions Rnd electrons are @„
I» and g. Each spring has a nonlinear part G
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E

kc'c
lfNfY'

Mb

r=k /(k, +k ) (5. 6)

(5.V)
Zd

Ud

'%Nfl/

kd

Ga

0000

kb

Gb

Zb

Ub

In terms of the model parameters, the linear
normal-mode parameters then are given by

(5.8)
FIG. 4. Mechanical equivalent circuit for the one-

dimensional macroscopic-bond-charge model. Rigid-ion
lattice "a" of mass density M~, charge density S~, and
displacement u, moves against rigid-ion lattice "b." Bond
charges of mass density m, charge density z, and dis-
placement v lie betw'een them. The lattices and bond
charge are coupled by linear springs k and nonlinear
springs G.

and

m m j

k'= k, +kb,

q'=(1 —r)Z, —rZ, ,
m' = ~,~, /(~. + m, ),
k'=k. +k.k, /(k, +k, ) .

(5.9)

(5. 10)

(5. 11)

(5. 12)

(5. 13)

V, = G, (u, —v)' + G, (v —u, )' + G, (u, —u, )' . (5.3)

The electronic and ionic nodal-mode coordi-
nates y' and y' can be obtained from Eqs. (5.1)-
(5. 3) by means of the transformation's

v u~=y +ry
+b uc +3 + 3

(5.4)
(5. 5)

where

which gives rise to the anharmonic terms V, in the
potential energy. Since G, represents nonlinear
coupling between distant ions we shall eventually
neglect it.

Our model is a macroscopic one, with the
charged lattices acted on directly by the external
field E, and not by an effective field which includes
local-field contributions. The springs describe all
the interactions, including Coulomb terms. John-
ston, Cowley, ss Lax and Nelson, ' and others have
pointed out that the inclusion of local-field contri-
butions does not change the form of the potential-
energy terms, and that these contributions are all
automatically included when the energy expansion
parameters are fitted against experiment. Gar-
rett's 5 model, in contrast, is a microscopic model
which includes a local-field term. It also differs
from ours in that it includes neither a linear spring
k, nor a nonlinear spring G, between the ion lat-
tices.

A. Equations of Motions

The kinetic-energy density and the harmonic and
anharmonic parts of the potential energy density
are given by

T= ,'M, ( )us'+M,—( )us'+m(v)', (5.1)

Vs = sk~(u~ —v) + sks(us —v) + st(us —u~)

-(Z,u, +Z,u, +zv)E, (5.2)

+ass = —Gdsss+ Gbsss y

&ssss = rsG~sss —(1 rs)Gssss &

&sss = —rsG, sss+ (1 —rs) Gbsss ~
ife 2

(5. 15)

(5. 16)

(5. 17)

Hsss rsG sss (1 —rs) Gssss G~sss (5 18)

The terms of Eg. (5. 14) which contribute to dsss
give relations of the same form as Eqs. (5. 15)-
(5. 18), but with the subscript 3 replaced by 2 where
it appears.

The anharmonic potential V, described by Eq.
(5.14) has been derived from a one-dimensional
model. To treat the (311) coefficient, we shall
make an ad hoc assumption concerning the form of
V, (sz~, as a function of the ionic and electronic dis-
placements along the axes 1 and 3 for a three-di-
mensional model. From Eq. (2. 10) the terms in
V, &s»& must be products of the form ysy~ y&. We
choose the simple representation analogous to Eq.

Note that a reduced mass is appropriate for the
ionic normal mode.

Because m'/m' is small compared to 1, ~A1 «1
and the transformed anharmonic potential becomes

V. = —G.(y'+ y')'+G, [y'-(I- )y']'-G, (y')'.
(5. 14)

Our model requires the knowledge of three nonlin-
ear parameters, G„G„andG„aswell as the
linear parameter y. To determine r from Eq.
(5.6), we must know k, and k, . Unfortunately, k, ,
kb, and k, cannot be determined separately from
knowledge of k' and k' through Eqs. (5. 10) and
(5. 13). In the following we will therefore present
results using y as an adjustable parameter.

B. Nonlinear Parameters

When the terms of Eg. (5. 14) are rearranged and
compared with those of Eq. (2. 5) for application to
dsss, we obtain
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(5. 14):

Va&$11) Ge&sll&(yS+rs yS) (y1+ r1yl)

+ Gb &811&[ys —(1 —rs) ys1 [yl —(1 —r1)y11'

+G (811& ys(yl) (5 19)

TABLE IV. Comparison of experimental values and
the range of calculated values of d~&&& (in units of 10
m/V). The last column is the result for ~q =+3=1. The
second column from the right was obtained using values
of y~ and x3 which give the greatest disagreement with ex-
periment.

3H (312) Gtf (s11) + Gb(311) y

2H$11 r1G (811) (1 r1)Gb(811) i

2H11$ rSG ($11) ( rs)Gb(811) t

(5.20)

(5. 21)

(5.22)

which again requires only three nonlinear springs.
Hearranging Eg. (5. 19) and comparing with E(I.
(2. 10), we obtain

Material

LiNb03

LiTa03

ijk

333
222
(311)

333
222
(311)

dm (expt)

—5870
—4470
—8360

-18620-2760
—7475

d (cale)

-1094 -6352
—329 —2289
+400 ~-7620

-3263 ~-17100
+60 ~-551

+ 358 ~-8456

3Hs1~1= rsr&Ga($11)+(1-rs)(1 —r1)G, &$11&

(5. aa)

(5.24)2H11$ rlGo($11&+ (1 r1) Gb(811)

2H'(811& = —rsr 1G (811) (1 —rs)

x (1 r1) -G, &$11&
—G, ($11) (5.25)

It should be noted that Eq. (5.19) is by no means a
unique description of the anharmonic potential in
three dimensions. However, a more general form
would involve more parameters than could be
evaluated from experimental data.

C. Comparison of the Bond-Charge Theory with Experiment

Up to this point, only absolute values of the
charges q and q' have been determined. We now

arbitrarily choose both of these quantities to be
negative. Deter mination of d requires the ratio
q'/q'& which we have taken as positive. With this
choice of sign, the bond charge z = q' is negative.
Had we chosen the reverse sign for q', the results
would be unchanged, except for an interchange of
r and (1 —r), and Z, and Z„according to E(I.
(5. 11).

As described in Sec. V A, we will treat r& and rs
as adjustable parameters when comparing the val-
ues of d predicted using the bond-charge model
with those obtained experimentally. First, 5"' and
5"' are calculated from d' and d" (Table II) and

the linear susceptibilities (Table III). Together
with q' and q' (Table III), this permits the evalua-
tion of H"' and H"' from E(I. (2. 2) and then G,
and G, from Eqs. (5. 15) and (5. 16), or (5.20) and

either of (5.21) or (5.22). Use of the d811 data and

E(l. (5.21) will generally give different values of

G, &$11& and Gs&$11& than will d)1$ and E(I. (5.22).
This difference is a measure of the approximation
in using E(I. (5. 19) to describe V, &81». The aver-
age of G„3ff) and G„3~&)from the two sets of data
was used to obtain d off). Results using d ~&& or
d z&~ data separately generally differed from this
value by no more than 50%.

The nonlinear spring G, represents direct cou-
pling between the distant ions. We shall make the

approximation that this nonlinear coupliog is small, ,
and set G, = 0. It is possible, of course, to trans-
form from the macroscopic bond-charge param-
eters to the normal-mode nonlinear parameters
of Sec. IVB. However, no single parameter in the
normal-mode model has as simple a physical sig-
nificance as G,. It is the more physical interpre-
tation of the parameters that makes the macro-
scopic-bond-charge model the more useful one to
us,

Observe in Eqs. (5. 16) and (5.25) that G, con-
tributes only to H"' and not to O'". We can now

evaluate H'" and H"' using the relations of Sec.
V B, and then evaluate 5'" and 5"' using Eq.
(2. 3). Finally, d can be calculated from the re-
lations of Sec. II.

Table IV is a comparison of the experimental
values of d and the range of calculated values as
r~ and r3 are allowed to vary between their limits
of 0 and 1. For d333 and d»» the poorest agree-
ment occurs for r3 or r& midway between the limits,
while for d (3&z) the poorest agreement is for r&=0
and r3 = 1. The best agreement in general occurs
for r& =r3= 1. It is interesting to note that r= 1 in
the macroscopic-bond-charge model corresponds
to y=-1 in the normal-mode model of Sec. IVB.
Values of d calculated for rq= r3=1 are shown in
the last column of the table. Agreement is excel-
lent for d333 and d,~z», while it is poorest for
d»» especially in LiTaO&.

Note that whatever the values of r, or r3, that is,
no matter how the linear springs @re distributed,
this model gives order-of-magnitude agreement
with experiment. Perfect agreement with experi-
ment can always be obtained by choosing not to as-
sume that G, =O.

8'e have shou+, hoavever, that a model saith only
theo nonlinear elements can reasonably describe
d', d", and d if one assumes that the bond

charge is linearly couPled to a single lattice (r1
= rs= 1) but nonlinearly coupled to both lattices.

In Table V are given the values of 5'" and 5"'
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TABLE V. 51&s in units of 10 m/V for LiNbos and

LiTa03.

Material i' gssg a gffs b

obtain

t =4&.hi%)I'I. ~i,
o) 5sl+Cs) .

EX3«

Liwb03 333
222
311
113

-0.761
+0.0444
—0.0914
-0.0914

—0.421
—0.03V3
—0.267
—0.12V

—0.358
-0.0317
—0.16V
—0.16V

—0.304
—0.0269
—0.142
—0.142

The heat capacity of the single ionic normal mode
in the primitive cell of volume V (see Table III)
will be assumed to be given by

LiTa03 333
222
311
113

-0.393
+0.043
—0.026
-0.026

—0.280
—0.0092
—0.208
—0.0707

—0.253
—0.0083
-0.126
—0.126

—0.228
—0.0075
—0.113
—0.113

Obtained from experimental values of d' and cP'.
"Computed from model uaing g~ = re=1.

it'&ys&=-»sss&(ys)'& .
The average thermal energy per unit volume is re-
lated to the heat capacity per unit volume by

c = —
I
~ ((y')')).d I'k'

"dTI2
The pyroelectric coefficient, defined as

calculated for gz= F3 = 1, as well as the experimen-
tal values of 5'" and 5"' obtained from d' and d".
Except for 5223, all the 5's are negative. For each
coefficient, the four 5's are generally comparable
in magnitude.

VI. APPLICATIONS OF MODEL AND CONCLUSIONS

A. Pyroelectric Effect

Garrett 5 has pointed out that one-dimensional
crystal models which possess a polar axis and lack
a center of symmetry should allow the pr ediction
of the pyroelectric coefficient. This notion has
been pursued by soref."

Consider the single electronic and ionic modes in
the polaz (3-axis) direction. In the absence of a
driving field, the sum of the harmonic and anhar-
monic potential-energy densities is given, from
Eqs. (2. 5) and (A2) as

Vsss = '
&s( ys)' + '

les( ys)' + V.sss .
The minimum in potential energy is obtained by
settillg 8 Vsss/Sys = 0 = 8 Vsss/Bys. Following Gal-
rett, if we assume kT =Az' «Sw', then the average
electronic and ionic displacements are given by

~'&ys&=-»sss«ys)'&

where ks is Boltzmann's constant and 8 = also/Qs T.
Table VI lists the values of the pyroelectric co-

efficient calculated using the values of gz&3 and g&~3&

from Table V, along with measured values taken
from the literature. 3 ' 6 The negative sign of p is
predicted for both materials, and the measured
and calculated magnitudes agree within a factor
of about 2 for LiNbO3 and LiTaO3.

B. Other Apphcations of Model

The bond-charge model developed in Sec. V al-
lows only for 4 = 0 optical phonons. It does not in-
clude the possibility of acoustic phonons. How-

ever, if we assume that the same linear spring
constants and nonhnearities are involved in acous-
tic modes as in optical modes, then the thermal-
expansion coefficient may be estimated. 37 38 This
connection to the thermal-expansion coefficient
has been discussed by Kleinman3 for the case of
GaP. Kleinman also discusses the relation of lat-
tice anharmonicities to the strength and tempera-
ture shift of the infrared combination bands.

Another possible application of these model pa-
rameters is to the calculation of the variation of
d' in spontaneous parametric emission experi-
ments3 41 in LiNb03 as the lower frequency de-
creases and moves into the lattice absorption re-
gion. Inclusion of the term 5"' and perhaps even
5"' and 5'" then becomes necessary. Under such
circumstances loss must be included in the linear
tonic-susceptibility representation.

C. Conclusions

The measurements we have presented completely
specify the microwave nonlinear susceptibility ten-
sor d,» for LiNbO3 and LiTaO3. Values of d are

TABLE VI. Comparison of calculated and experimen-
tal values of the pyroelectric coefficient for LiNb03 and
LiTaos. C„is in units of J/m 'K. p is in units of
C/ms 'K.

can then be written as

(,
4C ' &u'

(~l)s
&

&e
&

sss+ sss ~ (6.6)

Colllblnlng Ell. (6 6) with Egs. (2. 3) and (4 2) we

p(calc)

'See Ref. 35.

LiwbO,

0.221 x 106

-0.83 x 10~'
-1.73 x 10~

LiTa03

0.236 x 10~

-1.9x10~"
—3.48 x 10
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much larger than the corresponding values of d'
and d". The differences can be explained satis-
factorily by differences in linear susceptibilities
at the various frequencies, for it has been shown
that the 5 coefficients are comparable for elec-
tronic and ionic contributions to d.

The nonlinear coefficients have been written in
terms of the parameters of both a normal-mode
model and a macroscopic-bond-charge model. By
assuming G, = 0 in the latter model, a good fit has
been obtained with measured values of g for yj
=x3 =1. In the limit of g& = z3= 1, the bond charge
is linearly coupled to a single lattice, but nonlin-
early to both lattices. Transformation to the nor-
mal-mode model for this case shows that G' =0
and y= —1, but this could not be assumed initially.
It was the somewhat more physical picture of the
macroscopic-bond-charge model that led to the
assumption G, = 0.

The nonlinear parameters 5333 and 5333 obtained
with g&= y3=1 have also been used to predict the
pyroelectric coefficients for LiNb03 and LiTa03.
Agreement with measured values in both cases is
within a factor of 2, further demonstrating the
utility of the macroscopic-bond-charge model.

The microwave nonlinear susceptibility coeffi-
cient d, z~ discussed in this and previous papers is
in our view a fundamental macroscopic parameter
of acentric materials and deserving of further
study.
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APPENDIX A: DERIVATION OF d~iI, FROM THE
ANHARMONIC POTENTIAL ENERGY

In this appendix we develop the form of the non-
linear-susceptibility coefficient d, j~(co&, &oz, ~,) of
a material in terms of its linear properties and the
expansion coefficients of the anharmonic terms in
the potential energy. Consider a system of elec-
trons and ions in a center-of-mass frame. Let
y~, y~, and y~ be a set of normal-mode displace-
rnents from equilibrium which we assume to be along
the principle-axis coordinates A, B, and C. The
superscripts c., P, y stand for either electronic (e)
or ionic (i) quantities. Associated with the elec-
tron lattice is a volume charge density q' and mass
density rn', and with the ion lattice a volume charge

density of q' and mass density nz'.
The kinetic-energy density associated with a par-

ticular mode X (either electronic or ionic) is

&= zm'((yg)'+(ys)'+(yc)'] . (Al)

The potential-energy density Vis the sum of the
harmonic part V„and the anharmonic part V„
where

where

BZ Bg
8 ')i, gy)t r (A3)

z= T-(v+ v) . (A4)

Substituting for T and V„from Eqs. (Al) and (A2)
into Eq. (A3),

(As)

where

(kx/~x)1/2 (Ae)

is the resonant frequency of the electron or ion
mode along the l axis. We consider first the lin-
ear properties of the system by setting V, =0 in
Eq. (AS). Now an applied field E, = E, cos&uf pro-
duces a displacement y~= y', cost. Then, from Eq.
(As),

g( ) ~ E((&)
[( xp a]

(A f)

The peak polarization density

s",(~) = q'j', (~) = &, (~)x', (~),
so that

(Aa)

4"(~) = &0E~Xl(~)/q'

where

(q')'/m'a,
x~(~) =

t( ~p 2]

(A9)

(AlO)

is the partial linear susceptibility.
The nonlinear excitation at (d3 due to driving

fields at ~& and» can now be written, from Eq.
(AS), as

vh 2 [kA(SA) + kB(3B) + kc( 3 C) ]

~'(E~ Sa+ Ea Sa+ &c Sc) (A2)

The applied macroscopic electric field with compo-
nents E~, E~, and Ec supplies the driving force
for the system, and the restoring forces are mea-
sured by the linear spring constants per unit vol-
ume k'„, kl, and kc.

Let us examine a displa. cement y', along a par-
ticular coordinate l. The Lagrangian equation of
motion is
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-1 eV
yr ((Cs) COB%st krr lAS Si

&oxr(ars)
(qk) 2 syk

(All)

The most general form of the anharmonic poten-
tial, following lax and Nelson, ~ is

~e ~ H ABc yA yrr yc (A12)
ABC

S 1
—6~Hrmnymyn .

83'» t v
(A13)

Writing y„"=y (ars) cosalst and y„"=y„"(a»)cosar, t, the
component of Eq. (A13) at' ars = ar2+ arl is

Because the subscripts and superscripts on the ex-
pansion coefficients H„~~are arbitrary, it is clear
that the symmetry of H is such that it remains un-
changed on simultaneous interchange of pairs of
them. Thus H„B'~=HBA'c = H ~B» etc. There are
three different kinds of terms in the sum (A12). In
case 1, each of the y's is different, either because
of different superscripts or subscripts, or both.
In case 2, two of the y's are identical; and in
case 3, all three are identical.

Consider the contributions of the case 1 terms
to Eq. (All). Permitting cr, P, and y to each take
on the specific values A., p,, and v, and A, B, and
C to each take on the values l, m, and n, we ob-
tain the terms of the form

)tp v )t u v w)tv tt )t v ~H lmn 3 l 3m 3n+ Hmln 3m 3 l 3n+ ' ' '

There are six of these permutations, all equal by
the symmetry of H, so that the contribution of
case 1 terms is 6$,„„Hkln„"y'ryn y„". Note that there
is no summation over the subscripts. Then

form, so that we can write for the general case of
any ly sly sp

= 3 Z H", "y„"(ars)y„"(ar,) cosarst . (A16)
3 l 403 tt v

Substituting into Eq. (All), and making use of
Eq. (A9),

3&oxr(ars) g Hr nx~(rds)xn(all) E E

(A19)
From Eq. (1.1), the nonlinear polarization

2kodrgk(alsr rdsr rdl)EJEk=Z q'y(ars) . (A20)

Substituting Eq. (A19) into Eq. (A20),

-3&o' g H'~ "xl( )x". ( )x".( )
]yy(+3p (day g)

)ty, v vQ 9'

(A21)

APPENDIX B

In Ref. 1 the distinguishable frequency permu-
tations illustrated in Eq. (2. 7) were ignored. Con-
sequently, Eqs. (3) and (4) of Ref. 1 must be re-
vised as follows. In the notation of that payer,
Eq. (3) for the general one-dimensional mixing co-
efficient should be

d( arsr ar2r rdl) 5AX1X2X3 + 5rr(XlX2Xs+ X1X2Xs X1X2X3)

+ 5c(xlx2xs+ X1X2Xs X1X2X3) + 5rrxlxsxs '

(Bl)
Similarly, Eq. (4), which neglects dispersion,

becomes

d' = (x')'6

~~a

~l Q3

= 3 Z H",„'„"y„"(ars)y„"(ar1)cosarst . (A15)

Letting y, = y, (ass) cosarst and y„"=y"„(arr)cosar, t, the
terms 3Hk„~(ykr) y„'give

=3 + H„„"y,( )y„"( ) co
3 l tsar 3

)tv

(A16)

Finally we treat case 3, which contributes a
term Hkrlkkl(yrk) to V, . Letting y', =yr(ars) cosarst
+ yr(ar1) COSarltr

~o Q)t ~)t ~)i,—3Hrrr yr(ars)yr(rdl) adust .

The three cases al/ give the same ~esulti~g

(A17)

= 3 +Hl„"n„y~(rds)yn(arl) Cosrdst . (A14)
3 l tres trav

Now consider the three equal case 2 terms which
give a contribution 3H",„"„"ykl( y„") to V, . Letting

yn yn +1)COSMlt+yn(ars) Cosa 2t r Material

BaTi03
LiTa03
LiNb03
KH2PO4

NH482PO4
LiIO3
NaNO)
ZnO
CdS
CdTe
GaP
GaAs
Ag3AsS3

dm

—97 000
—18620

—5870
—1850
-970
-177

36
-176
-127
+36
-24
—51

+ 950

-0.55
—0.25
—0.29
—0.03
—0.007

1~ 7
+ 1.4
—0.5
—0.5
Ref. b
Ref. b
Ref. b

+ 0.1

Measured

d~gy

333
333
333
123
123
333
333
333
333
123
123
123
333

Revised values from this paper.
"The closeness in values of d, d ', d and their un-

certainties prevents a meaningful calculation of gAB in
this approximation of no dispersion.

TABLE VII. Revision of Table I of Ref. 1, corrected
according to Eq. (Bl). The signs of d are taken from
Ref. 6.
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deo do t(xe)25

d =d'-8(d--d')=(x')'(x'& +8x'&, )

-=(X')'(X'+ 8X')&~z,

where 5» is a defined parameter which equals
5g if 5p=5g.

A revision of Table I of Ref. 1 for the appro-
priate columns is given in Table VII. The signs
for d are taken from Pollack and Turner. s It is
interesting to note that for Liwb03 and LiTa03, 5~,
5~, and 5» are all nearly equal.

APPENDIX C: DOUBLE REFRACTION

Double refraction must be considered when the
waveguide fieM is polarized as an extraordinary
wave (the electric field lies in the plane containing
the optic or 3 axis and the direction of propaga-
tion). This is the case for the geometries shown in
Figs. 2(a), (c), and (e). Then in Eti. (8.2), ~((dz)
must be replaced by e(opz, Q) cos p, where Q is the
angle between the Poynting vector direction (the
waveguide axis) and the 8 axis. The double-re-
fraction angle p is measured between the direction
of the Poynting vector and the direction of the
plane-wave propagation vector and is given by

[I+(&s/e, ) tan P]
p [1+(&z/&, )'tan'@] (I+tan'y)

For an extraordinary ray,

( )
et+ esiRll f
&1+eztan Q

Combining Eels. (Cl) and (C2),

a((dz) cos p = z
e, + satan'Q

(C8)

For the geometry of Fig. 2(a), Q =90', cos p
= li Rnd e(tdz) = ez. Ill Flg. 2(e), Q = 0 ~ cos p= 1~

Rlld e(tdz) = et. Ill Flg. 2(c)~ Q = 45 Rnd e((dz)
= z(et+ e:z).

In the case of a near cubic crystal oriented so,
that the [ill] direction lies along the waveguide
field, Q =85.8', tan Q=-z', and

z (2&1+ &s)cos /=8(2 z z) (C4)

This expression was given for the special case
treated in footnote f, Table I of Ref. 1.

Note that for the geometries of Figs. 2(b) and

(d), the waveguide field is polarized as an ordirtrzry
wave, and e(tdz) = e,.
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The Hamiltonian is derived for a dynamical crystal lattice of discrete ions with given ion-ion

interaction, containing an excess-electron defect with nonharmonic lattice distortion. The electron-phonon

part of the Hamiltonian turns out to include both linear and quadratic terms in the phonon variables.

The contribution of the phonons to the energy of a defect such as an I' center in its ground state is

derived in terms of a variational electronic wave function, using simple perturbation theory, to illustrate
how this contribution can be incorporated in the lattice-statics analysis of such a defect. The large- and
small-polaron Hamiltonians arising in the model are also presented and brieAy discussed.

I. INTRODUCTION

The method of 1.attlce statics ' provides a
rigoxous and practical method of evaluating the
energy of a lattice defect in a crystal when the lat-
tice distortion field is harmonic and the dynamical
matrix of the perfect lattice is known, The method
can be extended to include defects that involve non-
harmonic lattice distortion, px'ovided that the in-
teratomic forces are known, and to deal varlatlon-
ally m'ith excess-electron defects. '~ As the name
lattice statics implies, the method ignores dynam-
ical lattice effects. However, these effects need
to be considered, because they invariably contrib-
ute a defect-dependent zero-point energy and-in
the ease of an excess-electron defect, they intro-
duce phonon renormalization and electron self-en-
ergy, and determine the extent to which the elec-
tron-lattice interaction is nonadiabatic.

An outstanding example of a defect problem whex'e

progress has been seriously inhibited by inadequate
treatment-of phonon effects is the relaxed excited
etate (RES) of the Il center in Nacl type alka-li
halides. It is known5'6 that the electronic state of
the RES in KC1 is a parity mixture induced by in-
teraction with the longitudinal-optical phonons. It
has been conjectured for a long time~ that the RES
is somewhat delocalized, but this has not yet been
settled experimentally in the ease of KCl. For

the ease of KI, the RES has been experimentall. y
found to be delocalized, but not a parity mixture. s

Theoretically, the static-lattice model has so far
failed to give a delocalized RES,4'9 but the analysis
by Kong and by%'ang et gl. , 6 which includes phonon
effects in a continuum mode1. of the lattice, does
give some delocallzatlon, Because this system ls
complicated, and apparently involves a delicate
balance among the various factors contributing to
the energy, the full theoretical analysis of both the
parity-mixing mechanism and the delocalization
property of the RES of the I' center should be ap-
proached through a model in which the electrical,
elastic, and dynamical properties of the lattice are
incorporated in a unified way. The object of the
present work is to provide a formulation within
which such an analysis can be perfox med, and to
emphasize that presently available techniques ren-
der feasible the analysis of a wide range of yhonon-
deyendent phenomena for a great vaxi. ety of elec-
tronic defects in ionic crystals.

Such analyses are of practical, as well a,s fun-
damental, importance, For example, in the areas
of applied yhotochromics and thermolumines-
cenee, 1~ accurate characterization of the defect
centers involved is a major outstanding problem
area. Lidiard'3 has emphasized the feasibility and
potential, value of detailed defect calculations in
"advancing the interpretation of experiments, " and


