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A theory developed by Toupin, Tiersten, Brown, and Melcher employing finite strains and
angular-momentum invariants is applied to the rare-earth metals of hcp structure. A Hamil-
tonian is written down which includes Heisenberg-exchange, crystal field, and magnetoelastic
terms and is invariant under combined rotations of the magnetic and elastic systems. When
the approximations of small-strain theory are subsequently carried out, there appear new
terms originating in the crystal field that are linear in the antisymmetric strains u~„and
correspond to rotations of the elastic medium. The coupling of transverse acoustic waves to
the magnetic system is studied and expressions are derived for the dependence of the elastic
constants c44 and c66 on an applied magnetic field in the ferromagnetic phase. The terms in-
volving the antisymmetric strains result in new effects similar to those found by Melcher in
MnF2, from which it should be possible to obtain in a direct manner the values of certain
magnetoelastic constants and anisotropy constants. Using available data on magnetic anisot-
ropy and magnetostriction, we have estimated the size of the effects that may be expected to
be found in Gd, Tb, Dy, Ho, and Er. Fractional changes in c44 and c66 as large as 10 are
predicted for Tb, Dy, Ho, and Er in a field of about 50 kOe, while the maximum change for
Gd is predicted to be about 10 4. Calculations have also been performed for the field-depen-
dent changes in cl& and c33 for longitudinal waves in the paramagnetic region. These changes
result from the fact that the finite strains E~ include terms of the form e2~. The resulting
changes in c&~ and c33 depend linearly on the magnetoelastic constants and vary as H in the
paramagnetic region. Estimates of certain combinations of these constants are made from
the experimental measurements of Moran and Luthi on Dy and Ho.

I. INTRODUCTION

A correct description of the physical properties
that depend on the coupling between magnetic spins
and the lattice in ordered magnetic crystals re-
quires that the Hamiltonian be invariant under a
rigid rotation of both the magnetic and elastic sys-
tems. This condition, which ensures that the
total angular momentum of the crystal is con-
served, may be satisfied by constructing the Ham-
iltonian out of certain invariant quantities. The
most convenient ones for a microscopic theory are
those used by Brown' and by Melcher, since they
preserve the angular-momentum commutation re-
lations. These are

(la)

1 BQ ~ BQp 1 BQ)„Bg)„
2 BX„BX 2 BX BX„' (1c)

where S; is the angular momentum of the ith atom
and R,

„

is an orthogonal tensor which describes
a finite rotation of the elastic medium. (For dis-
cussions of finite -strain theory, see Brown3 and
Melcher. ') The importance of requiring complete
rotational invariance has been clearly demonstrated
in the antiferromagnetic phase of MnF~ by Mel-

cher, who was able to account for differences inthe
elastic constant c44 measured as a function of ap-
plied magnetic field for transverse waves propa-
gating along the [001]and [110]directions.

In this paper the requirement of rotational in-
variance is applied to ferromagnetic phases of the
rare-earth metals of hcp structure. Expressions
are given for the change in elastic constants as a
function of applied field for impressed sound waves
propagating along different crystal axes. The the-
ory relating to transverse sound waves in the
ferromagnetic region is treated in Secs. II and Ill,
and the size of the fractional changes bc/c which
can be expected are estimated in Sec. IV for Gd,
Tb, Dy, Ho, and Er using the available data on
magnetoc rystalline anisotropy and magnetostric-
tion. Longitudinal sound waves in the paramag-
netic region are discussed in Sec. V.

It seems probable that the measurements of
changes in elastic constants proposed in this paper
are capable of yielding values for the various mag-
netoelastic constants and anisotropy constants that
are more reliable than those obtained by other
methods.

II. THEORY

%e take the Hamiltonian for the magnetic spin
system of the rare-earth metals of hcp structure
to have the form
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'R„=-Z 8;;S*;~ 8& +g p, aZ S*; ~ H"

+ BaZ Oa o(8) ) + B4Z 04 o( ~g) + BoZ o o(; )
~ao =~aBfa ~ ~so =~a Ba™a~

S*,„asrequired by rotational invariance. " The
coup'ing constants in (3) are related to those of
Callen and Callen by

+ BoZ[O«(S*,. )+ O, ,(S", )] . (2) ~a', =MB', ma, a=v —,
' B".

(6)

Following the usual custom in this field, S, repre-
sents the total (orbital plus spin) angular momen-
tum of ion i, and the 0, are the spin-operator
equivalents tabulated by Buckmaster. ~ The terms
involving 8» B4, and B~ describe a crystal field of
axial symmetry, while the terms involving I3~ de-
scribe a crystal field of hexagonal symmetry.

The single-ion magnetoelastic terms are

3..'.= ~, Z E"'o„(s",) -~"'ZE"'o (s*)
i i

Ma1~CE1[aoal(8')]+Ea[ a a1( ')]]

—M a a Z [Er Oa a(S & ) + Ea Oa a(s~t )]

—m,', Z [E",o', ,(s*, ) —E', o, ,(8";)], (3)
i

where terms corresponding to l = 6 as well as cer™
tain terms corresponding to l = 4 have been omitted
for the sake of simplicity. The operator equiva-
lents 0', are related to those of Buckmaster by

of =a(Os +Or )~- (4a)

The effect of two-ion magnetoelastic terms will
be discussed briefly in Sec. III.

Having ensured complete rotational invariance,
we can now carry out the transformation to the
usual spin operators S; and the functions

(Va)

2 8X„BX (vb)

+2 v 5 B4(of 2 (i 04')+2 & 5B4(ua Z(-io4i)

+ ~42 Boo &uf Z (i O;, ) + v42 Boo (ua Z (—i O„)

of small-strain theory. In addition to the usual
terms similar to (2) and (3) with S*, replaced by 8,
and E~„'replaced by &„„weobtain the following
terms linear in the ~~„.
&6 Ba vf Z (i Oa ~) + V 6 Ba va Z (—i Oa &)

o,„=(I/2i)(o,„-o,„). (4b)
—12Bo(ea Z Ooo+2 & 3 Bo (uf Z(i Ooa)

E ' = E(~+E„„+Egg, (5a)

EQaa E ~ EQa1
CC (5b)

E[= —,'(E E )

y=Ea=E(~ ~ (5d)

(5e)

Eg=E(g . (5f)

(As in our earlier papero we have dropped the fac-
tor —,

'
v 3 from Callen and Callen's definition of

e 'a. ) The single-ion magnetoelastic terms of Eq.
(3) are the same as in our earlier paper, ' except
that the usual symmetric strains c„„ofsmall-
strain theory have been replaced by the finite-
strain tensor E,„,and S;„hasbeen replaced by

In Etl. (3), the indices o, y, and e refer to certain
combinations of the E,„which transform accord-
ing to particular irreducible representations of the
point group 6/mmm. a Choosing a coordinate sys-
tem ($gg) coinciding with the a, 5, and c axes of
the crystal, we define

+29 3 B M oZa(zooa) (6)

These extra terms, which have not been included
in previous studies of the rare-earth metals, in-
volve rotations of the elastic medium and will be
found to have a different effect on shear waves
propagating in different directions.

Terms of second order in e,„and&~„canalso
be taken into account without difficulty. For trans-
verse waves propagating along one of the crystal
axes and polarized along another crystal axis (for
which only one of the derivatives su, /8X„or sz„/
BX~ is nonzero), these terms contribute to the ef-
fective elastic constants. However, provided the

g tensor is isotropic, as assumed in Eg. (2), these
contributions do not depend on the magnetic field
in the ferromagnetic phase and consequently do not
affect our final results, Egs. (14)-(16). On the
other hand, in the paramagnetic region quadratic
terms of the type za» give rise to field-dependent .

changes in the elastic constants for longitudinal
waves, resulting from the field-induced magnetiza-
tion in this region. This will be discussed in Sec.
V.

The (unperturbed) magnon energies can now be
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obtained by standard methods equivalent to the
Holstein-Primakoff transformations. It has been
found 0 ~4 that the magnon energies are well rep-
resented by a model in which the strains are fro-
zen at their equilibrium values —the so-called "fro-
zen-latter. ce approximation" of Turov and Shavrov.
The magnon energies have the usual form E;= (A;
—IB- I ), with A; and B- involving the equilibri-

q,

um strains q~„. The expressions for A.," and B-
given by Goodings and Southern for the frozen-
lattice approximatio~ remain correct in the pres-
ent formulation, since in this same approximation
&f v=0.

The acoustic phonons will be taken to have (un-
perturbed) energies k&u;„where X labels the pho-
non branch.

We now consider the coupling between the acous-
tic phonons and the magnons, which have two
branches in the hcp structure. Provided we con-
sider the coupling to long-wavelength phonons only,
this can be derived' by expressing the displace-
ments g~ in the strain functions in terms of phonon
creation and destruction operators p-~ and p-„.
Thus we are led to a Hamiltonian of the form

+16E,h(o",g~ V@~ ], (10)

where q gives the direction of propagation and A. the
branch or polarization of the impressed sound
wave. Where the unperturbed magnon and phonon
curves would have intersected, there are gaps of
magnitude 2l V,"&I. ' ao We shall be concerned only
with the behavior at long wavelengths where, as-
suming EOWO, we have 5&y«E;. The lower cou-
pled-mode energy in this limit is given by

Note added in proof. Chow and Keffer (to be pub-
lished} have obtained the same expression as Eq.
(10) for the energy of the coupled modes, and, in
the case of weak coupling between the magnons and
phonons, they obtain Eq. (11) for the lower coupled-
mode energy.

If we define an effective elastic constant c* by the
relation

K=K E- (6 6"+ 2) +K K(O" (p "g p "g+ g)

The detailed derivation of (9) yields no coupling
between the acoustic phonons of long wavelength
and the higher-energy magnon mode, and conse-
quently we have included in (9) only the lower mag-
non branch with creation and destruction operators
et and n;. The expressions for the V;~ are very
lengthy even for the incomplete Hamiltonian con-
sidered here. Allowing for differences in notation,
our results agree with those given by Nayyar and
Sherrington, o except that there are additional
terms involving the anisotropy constants which
come from Eq. (8). The full expressions are given
in the Appendix.

%e have not included in Eq. (9) terms of the type
considered by Jensen involving products of two
magnon operators and one phonon operator. These
will be unimportant at low temperatures but might
become appreciable close to T, . Equations of mo-
tion for the operators o.;, n „P",~, and P.;~ may
be written down using the Hamiltonian (9), and
since the eight equations are linear, the coupled-
mode frequencies are in general the roots of an
eighth-order equation. However, if we confine our
attention to the coupling between the lower magnon
branch and an impressed sound wave which has a
definite direction of propagation and a definite po-
larization along one of the crystal axes, then the
coupled-mode energies can be shown to be

where p is the density, then c~ may be derived for
various types of impressed sound waves and differ-
ent directions of the applied magnetic fieM. Since
the results for an arbitrary orientation of the ap-
plied field are complicated, we shall quote only the
results for H parallel to one of the crystal axes.
Expressions for the general case can be obtained
using the equations of the Appendix.

An important assumption of the results that fol-
low [Eqs. (14)-(16)J is that the magnetization has
been brought into the direction of the applied field,
and we denote by Ho a field large enough both to
overcome the effects of magnetocrystalline anisot-
ropy and to give nearly complete alignment of do-
mains. It appears from the recent paper by Pal-
mer and I.ee" on the elastic constants of Dy and
Ho that changes in the elastic constants due to do-
main effects can be of the order of 1% and conse-
quently can mask. the "intrinsic" field dependence
with which we are concerned. Another instance is
the dip in @33 as a function of temperature measured
by I.ong, Wazzan, and Stern in Gd near 220 K.
This has been interpreted by I,evinson and Shtrik-
man as essentially arising from the alignment of
domains below about 5 kQe. Thus it is important
that Ho be large enough to achieve complete satura-
tion of the magnetization in the direction of the ap-
plied field. The minimum value of Ho will also de-
pend on the demagnetizing fields in the sample.
For example, in a Gd crystal of rectangular cross
section, Moran and t.uthi found that the magnet-
ization did not saturate until H= 10 kQe.

Below we give our results for the changes in
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bp = N, Bp SS(2),

b4 ——N, B4SS(2),

b =N, BpSS(—),

bp
——N, ip (231) Bp SS(2),

bp=N, (p)' Mp1SS(—,')= —,'c'H(0),

bp N, (p) ——M ppSS(—,') = 2c' C (0),

b4 N, (Pp)—— M 44SS (p) = —2c'A (0),

S(n) = (S --,') (S -1) (S -n),

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

(13g)'

(13h)

A, =N, g p~HS, (13i)

hp=N, g p~HpS . (13')

The constants H(0), C (0), and A (0) occurring in
(13e)-(13g) are the n1agnetostriction constants of
Mason ' at T=0. Also, c'=4c44 and c"=4c«.

Case 1. HPaxallel to c axis. In this case, c»,
c33 and c«are not affe cted by the applied field in
the ferromagnetic region. For the field depen-
dence of c44, we find

where

( ) ~ ( )
m(b /lp) (bpm +f1)
4(f, + mhp)(f, + mb)

(14a)

elastic constants as a function of magnetic field
based on Eels. (11) and (12) and the preceding the-
ory. The case in which the field is applied along
the c axis and the case in which it is applied along
either an a or b axis will be considered separately.
It is convenient to introduce the following defini-
tions, with N, the number of atoms per unit vol-
ume:

ergy of the molecular field is at least 100 times
larger than the anisotropy energy, it follows that
Freyne's predictions are approximately 100 times
smaller than ours. (Note, however, that his esti-
mates become multiplied at a later stage by a fac-
tor of 200, which represents approximately the
number of terms appearing in his expression for
the internal energy. )

Case 2. H parallel to a ox b axis. In this case,
c» and c33 are not affected by the applied field in
the ferromagnetic region. The behavior of c« is
given by

where

m(b —hp) [bpm vfp(-,'p')]" ' 4[f(-.') b,][f,(-:) b] '

(15a)

y (-'~)-3b m'- —"b m" +'" b m"

—Gbp cos6gm '+ (4c") [2(bq m )

+ (b4 m' ) + 3(bq m ) (b4 m ) cos6&] .
(15b)

Here y is zero for H II a and —,'v for H II b. The up-
per sign in (15a) is the result for a sound wave
propagating along the c axis and polarized along the
direction of H. The lower sign is for propagate. '.on

along the direction of H and polarized along the c
axis. Again the small-strain theory gives the same
result for both types of wave, the last factor in the
numerator of (15a) being simply (bp m ) .

For transverse waves propagating in the a or b
directions and polarized in the basal plane, we find
the result

f1 = —3bp m —10b4 m —21bp m (14b) where

Here m = M(T)/M(0) is the reduced magnetization.
The upper sign in (14a) is the result for a wave
propagating along the c axis and polarized along
either the a or b direction, while the lower sign is
for propagation along either the a or b axis and
polarized in the c direction. The usual small-
strain theory yields the same result for both types
of wave, the last factor in the numerator of (14a)
being simply (b, m ) .

It may be appropriate to mention at this point
that an expression for the magnetoelastic contribu-
tion to c44 has been obtained by Freyne within the
framework of molecular -field theory. His result
varies as (bp)P divided by the energy of the molec-
ular field, in contrast to the present work in which
we obtain (bp)4 divided by the anisotropy energy in
the form of (14b). Since in the case of Gd the en-

fp(-,'v) = —36bp cos6gm '+ (4c") '
[4(bp~mP)

+4(b" m' ) +10(b"m ) (b,'m' ) cos6$],
(16b)

(16c)b,"(-,'41) = bp m' cos2$ —b4 m cos4$ .
The upper sign in (16a) is the result for propagation
along the a direction while polarized in the b direc-
tion, and the lower sign is for propagation along
the b direction while polarized in the a direction.
p is zero for H II a and 2m for H II b. Small-strain
theory results in the same expression for both
types of wave, the last factor in the numerator of
(16a) being simply [b",(—,'v)] for either orientation
of the applied field.

Although we have obtained these results from the
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Hamiltonian in the form of Eq. (9), we have ver&-
fied for case 1 that the same results are obtained
by solving the macroscopic equations for the trans-
verse components of magnetization and the elastic
displacements, having first rewritten the Hamilto-
nian of Eqs. (2) and (3) together with the elastic en-
ergy in terms of macroscopic quantities. In this
case, in which the spins are aligned along the g
axis, the calculation for the present two-sublat-
tice ferromagnet is only slightly different from
that carried out by Melcher'6 for the two-sublat-
tice uniaxial antiferromagnet.

III. EFFECT OF TWO-ION MAGNETOELASTIC
INTERACTIONS

In addition to the one-ion magnetoelastic terms
of Eg. (3) there occur two-ion magnetoelastic
terms which come primarily from the strain de-
pendence of the exchange interactions. In this sec-
tion we examine briefly how the inclusion of these
terms affects the results of Sec. II (and the Ap-
pendix).

To second order in the angular-momentum in-
variants S~~ and first order in the finite strains

8, 9E,„,the two-ion terms are '

(1Va)

P W wE ' S¹ S*-D E ' (—'v 3)(SP¹Stq¹ —pS¹ S,*) -Da, ,)Eme ~~) jl +11&g ~
'

y 13 f'g 2

-D' E"' -'~3j(S'¹S,'¹ ——,S*, ~ S,*) D', [-E,'-,'(S PS¹,' ¹ S;" S¹," )¹+E",,'(S PS¹,"—¹S+", S¹',. )¹]

—D') [E~ —,
'

(S",*Sq¹+S,*S'q¹)+Ea —,
' (Sf¹Sq¹+St¹Sq~¹)] . (1Vb)sg 12

(ISa)

The main way in which these affect the results of
Sec. II is to cause the following replacements
wherever they occur in Eius. (14)-(16) and in the
equations of the Appendix:

b" - b d"

using the expressions of Sec. III in order to obtain
accurate values of the various magnetoelastic con-
stants and, in favorable cases, of the anisotropy

b,'m'- b,'m'+ d' nz',
where

d"= ,'N, S Z D—";q,

(18b)

(19a)

[00

d'= aNpS Z Di) . (19b)

In the latter definitions the sum over j is over all
neighbors of i, not just those on one sublattice.

In practice it will be difficult to separate these
one- and two-ion magnetoelastic contributions,
since their temperature dependence is quite simi-
l In the calculations to be described in Sec. IVar. n

ef-we have regarded the two-ion terms as making e-
fective contributions to b&m and b&nz, thethe size of
which is unknown, However, since the strain de-
pendence of the Heisenberg exchange terms and the
simplest anisotropic exchange terms leads only to
terms of n symmetry in (1V), the two-ion terms
in d' and d' must have their origin in some higher-
order coupling between the angular momenta 8, and
8 and thus there is reason to believe that they

y 8will be much smaller than b2 and b~.
IV. ESTIMATES FOR Gd, Tb, Dy, Ho, AND Er

Measurements of the changes in elastic constants
as a function of the applied field can be analyzed
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along the a axis. Curves are shown for values of the re-
duced magnetization m ranging from 0.85 to 0.5.
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TABLEE I. Estimates of the aniso e anisotropy constant bs 2, b4, b, b 6, and the magnetic field ar
H=10 kOe

ic xe parameter h corres dpon xng to

Ho

N~

(
1022 atoms

cm

3.04
3.04

3.15
3.15
3.15

3.17
3.17
3.17

3.21
3.21

b2

106 xgs

-103
-0.55

+565
+ 550
+ 450

+ 550
+550
+490

+416
+63

b4

10' "g,'
+0.69
+0.64

+46

—54

b6

106 xmas

b6

6 ergs

—0.0064
—0.0064

+1.85
+ 2.42

—11
-7.6

+27
+0, 21

g.ef.

28, 29
30, 31

28
32
33

28
32
33

h for H=10 kOe

6 ergs

19.7
19.7
26.3
26.3
26.3

29.4
29.4
29.4

29.8
29.8

3.26 -180
Deduced fromrom analysis of H Eo r alloys.

-38' 27. 2
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TABLE II. Estimates of b2.

~44 Temp. of

1012 erg@ measurement
cm (K)

Gd 0.238 4
0.213 300

Tb 0.228 300

Dy 0.270 0
0.243 298

x'(0)
Ref. (1O-') Ref.

36 0.04 40
37 0.04 40

37 20 41

38 9.16 42
39 9.16 42

Ss2 =4c44''(0)

los ergs
cm

0.57
0.51

180

59.4
53.5

tion curves by Feron, Hug, and Pauthenet. Ta-
bles II and III give estimates of b&, b~, and b~

based on the available magnetostrictive data.

A. Gadolinium

Figure 1 shows the estimated fractional change
in the elastic constant c« for a magnetic field along
the a axis. The ordinate is [c44(H) —c44(Ho)]/c44
calculated from Eq. (15a), it being immaterial what
strength of H is used for cd in the denominator.
A value of II0=10 kOe was chosen, which is prob-
ably large enough to saturate the magnetization and
sufficient to mask the undesirable effect of nonuni-
form demagnetizing fields in nonellipsoidal sam-
ples. The solid curves are the results for trans-
verse waves propagating along the c axis and po-
larized in the a direction, while the dashed curves
are for waves propagating along the a axis and po-
larized in the c direction. Our calculations show
that as m decreases from 1.0 to 0. 3, Lc44/c44 de-
creases by about two orders of magnitude. Thus
the most accurate values of b2 will be obtained
from measurements at low temperatures. A de-
tailed study of the temperature dependence of the
results might also yield values of the anisotropy
constants bz and 54 contained in the function f~(—,'w).

Estimates of the fractional change in q66 based
on Eq. (16a) for a field H along the a axis are
shown in Fig. 2. The results for transverse waves
propagating along the a or b axis and polarized in

the plane are indistinguishable from each other as
a consequence of the weak hexagonal anisotropy.
To show the effect of choosing different values for
the minimum field Hp, curves have been plotted
for Hp = 5 and 10 kOe with m ranging from 1.0 to
0. 5. Again the greatest fractional change is ex-
pected at low temperatures.

It is worth noting that measurements of Ec66/c&6
for H Ilb when compared with the results for H II a
provide the possibility of obtaining independent
values for b& and b~4, as may be seen from Eqs.
(16), setting p = ~ w and p = 0 in the two cases.

B. Terbium and Dysprosium

Since the anisotropy constants and magneto-
elastic constants for Tb and Dy are about two or-
ders of magnitude larger than for Qd, the fraction-
al changes in elastic constants Lc/c are of order
10 —10 compared with about 10 -10 in the
case of Gd. ' Figures 3 and 4 show calculations
of bc44/c44 for Tb and Dy, respectively, based on

Eq. (15a). The magnetic field was taken to be
along the easy direction (b axis for Tb, a axis for
Dy) and Ho was chosen to be 10 koe in each case.
The solid curves are for waves propagating along
the c axis and polarized in the easy direction,
while the dashed curves are for waves propagating
along the easy direction and polarized in the z di-
rection. In comparison with Gd, these curves are
much more nearly linear because the anisotropy
terms dominate the effect of the field in the de-
nominator of Eq. (15a). For Tb the largest frac-
tional changes occur at low temperatures, while
for Dy the largest changes occur in the region of
m = 0. 85 as a result of a competition among the
various factors in the numerator and denominator
of Eq. (15a).

In Figures 5 and 6 we have plotted estimates of
hc66/cM for Tb and Dy, respectively, based on
Eq. (16a). The magnetic field was taken to be
along the easy direction in each case and Hp was

TABLE III. Estimates of b& and b"4.

Gd

Tb

Ho

Er

c66

1 0i2

0.229

0.22
0.22

0.283
0.243

0.308

0.303
0.279

Temp. of
measurement

(K)

0
298

63
298

Ref.

38
39

39
39

X"'(0)
= 2C(0)M,

(10 3)

0.10

8.7
8.5

8.5
8.5

2. 5

—5.4
—5.4

X"'(0)
= —2A(0)M

(10-')

-4.3
—5.0

Ref.

40

45
41

42
42

47
47

b~2=4c, p,~'(0)

0.92

96
82

—65
-60

b4=4cegP' (0)

(10 5)

Shear modulus measured in a polycrystalline sample.
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chosen to be 10 kOe. The solid curves are for
propagation along the a axis polarized in the b di-
rection, while the dashed curves have these two
directions interchanged. The small difference be-
tween these two sets of curves results from the
fact that the hexagonal anisotropy is at least 20
times smaller than b,(2v) near T =0. As f~(2v)
falls to zero with increasing temperature, the two
sets of curves become indistinguishable. It can be
seen from Figs. 5 and 6 that the maximum changes
in c«occur a,round m= 0. 75. The fact that the
largest changes do not occur at the lowest tem-
peratures is due to the denominator of Eq. (16a)
decreasing rapidly as m decreases from l. 0 until,
when m is about 0. 8, the function fs(-,'v) becomes
comparable with mho. The curvature of the curves
other than m= 1.0 is also due to the function

f3(—,'v) having fallen nearly to zero so that only the
magnetic field term is appreciable in the denomi-
nator of (16a). In the case of Tb the curve for
m= 1.0 is further depressed because the competi-
tion between b2 and b', produces a maximum in
b",(—,

'
m) near m = 0. 92.

C Holmium and Erbium

Since there are no magnetoelastic data from
which to estimate b2 for holmium and erbium, it is
not possible to predict the size of bc«/c« for these
metals. Measurements of appropriate sound ve-
locities should yield reliable estimates of this cou-
pling constant and perhaps of the anisotropy con-
stants as well. It may be seen in Table I that there
is a considerable difference between the values of
b2 and b4 for Ho obtained from the work of Feron
et al. 2 and from Bozorth et al. 4

In Fig. 7 we have plotted estimates of b,cs~/c88
for Ho based on Eq. (16a) using b6= 2V&&10 ergs/
cm, the value deduced by Feron et al. The solid
curves are for waves propagating along the a di-
rection and polarized in the b direction, while the
dashed curves have these two directions inter-
changed. The magnetic field was taken to be along
the easy direction (b axis) and Ho was chosen to be
10 kOe. As for Tb and Dy, the greatest change
occurs in the region m = 0. V5 as a result of fs(—,'v)
falling rapidly to zero with decreasing ng in Eq.
(16a). Rather similar results are obtained for Er
using the parameter values given in Tables I and
IQ, but the scale of the curves is increased by a
factor of about 3. 5. This is mainly due to the fact
that b2 is about twice as large for Er compared
with Ho.

If the very much smaller value of b66= 0.21' 10
ergs/cd for Ho due to Bozorth et af. is used in
the calculations, then the function fs(~v) in Eq.
(16a) is almost negligible and the denominator of
(16a) depends almost entirely on the magnetic field
terms mh and mho. The result is that the great-

b1 = N, M g 0 SS (2),

b, =X.M, SS(-,') .

(22a)

(22b)

In Eq. (21b) the upper sign is for propagation along
the a axis and the lower sign is for propagation
along the b axis. The thermal averages (0~0) are
to be taken with respect to the equilibrium spin
direction, which is specified by (8, p). In the fer-
romagnetic region at low temperatures (03O)/SS( —,')
reduces to nz in the usual way. However, in the
paramagnetic region when m(T, H) « I, one can use
the approximate relation '2

(0 ) = —', SS (—,') [m(T, H)]

Introducing the susceptibility X(T} through

M (T, H) =g(T)H,

we have

(0„)= —', SS(-,') [q(T)/M(T =0)]'H'.

(23)

(26}

This is to be substituted in Eqs. (21a) and (21b) to
obtain the changes hc33 and 2 c» in the paramag-
netic region.

The effect of two-ion magnetoelastic terms may
be included by considering the Hamiltonian in Eqs.
(1V) and retaining terms which arise from the

est fractional change in c«occurs for m=1. 0,
with a value about 3.5 times the maximum in Fig.
7. Thus the magnitude of the change is rather
sensitive to the value of b6. When b6 is small, it
is also sensitive to the choice of Ho.

V. LONGITUDINAL WAVES IN PARAMAGNETIC REGION

As discussed in Sec. II, the requirement of ro-
tational invariance and the use of the finite-strain
tensor led to additional magnetoelastic terms lin-
ear in the antisymmetric strains m~„. For the
case of longitudinal sound waves, there occur other
terms quadratic in the infinitesimal strains &»
which arise entirely from the definition of the finite
strains. From Eq. (1) we have for a pure longi-
tudinal wave

(20)

(The summation convention does not apply to this
equation. ) When these are retained in the single-
ion magnetoelastic Hamiltonian (3), with the term
in M~44 neglected, and thermal averages of spin
operators are taken, we obtain the following ex-
pressions for the changes in elastic constants:

hc31 = —(b1 + —,
'

bz ) Pz(cos8) ( 030)/SS(—,'), (21a)

+cll = —(b1 & bg ) Hg(COSH) ( 020)/SS(2)

+-,' b", sin'9 cos2P (0,0)/SS (-,'), (21b)

where b& and b2 are defined by
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quadratic terms in (20). The changes in elastic
constants become

coo ( 5 (bg + 3 b2 ) &o(cos8) —(d && + 3 d gg)

—(d, +-', d ao) P~(cos8)) [y(T)/M (7=0)]'If',
(26a)

~c11 [ 5(b1 3 bo) Po(COS8) —(d f$ 3 dye)

—(dfo —Sdoo) P', (cos8) +4(5b~~+d")

xsin 8 cos2&] [y(T)/M(T =0)] H, (26b)

where the following definitions have been used:

An alternative explanation for the longitudinal
elastic constants to that of Moran and Luthi was
proposed by Long pt al. They consider the mag-
netoelastic coupling as a perturbation carried to
second order, within the framework of the usual
small-strain formulation. This gives results that
depend on the square of the magnetoelastic con-
stants instead of linearly as in Eqs. (26).

From the data of Moran and Luthi for Dy and Ho
wt. can make a fairly accurate estimate of the
combination in curly brackets of Eq. (26a,) for
8= —,'g, assuming that the present explanation domi-
nates other mechanisms. Using the experimental
y(T) fitted by a Curie-Weiss law and making use
of the relation

e 21~ 0| (27a) &c/c = 2&u/vo, (26)

d2g=N, S 2~ D2 j;~ (2Vb)

31~ n
dg p=N, S 2~ D( ~])j

(27c)

d ooN, S 2+D2o, , ,
i

(2Vd)

and d" is defined in (19a). The summations in (27)
are over all neighbors of atom i.

The changes in elastic constants in a magnetic
field for longitudinal sound waves have been mea-
sured for Dy and Ho in the paramagnetic region
by Moran and Luthi. In both cases they found a
quadratic dependence on field outside the critical
region which they attributed to terms of second
order in the strains E» originating either in the
exchange coupling or in single-ion terms and
depending on a second derivative of the corre-
sponding coupling constant with respect to strain.
The results (26) obtained here from the require-
ment of finite strains likewise vary as H but de-
pend essentially on a first derivative with respect
to strain.

where vo is the sound velocity in zero field in the
paramagnetic region, we find the values 0. 20~10
ergs/cmo for Dy and 2. 2x10 ergs/cmo for Ho.
To obtain these results we used a value of c33
=0.787x 10' ergs/cm for Dy measured by Fisher
and Dever at 300 K and a value of g33 0. 755&&10

ergs/cmo for Ho from the data of Rosen44 at 300 K.
The value of the two-ion magnetoelastic coupling
constant quoted by Pollina and I.athi37 for Dy
(DSo=0. 2x10 ' ergs/cm ) is of the right order of
magnitude to account for the value deduced above,
but their value for Ho (DSo= 0. 14x 10~o ergs/cmo)
is more than an order of magnitude too small.

From Eqs. (26) it can be seen that it may be pos-
sible to deduce separate values for —,

' 5, +d, 2,
—,
' ba+d22t d j, g, dp„and —', ba+d" by carrying out
measurements for several different directions of
the applied field.
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APPEND1X

In this appendix expressions are given for I 7;, I in terms of the various magnetoelastic and anisotropy
constants defined in Eqs. (13) and (22). The direction of magnetization is specified by the angles 8 and p.
As is implied by the notation V;„and co;&, the first subscript gives the direction of propagation of the sound
wave while the second specifies its polarization:

E",Ibql f[6bf mo —2bo mo —b",(8)]sin28] [b,'(8)sin8]4pk&o„16N, Sm(Ao + Bo) 4 N~ Sm (Ao Bo)

E; I b qI ([6 ' m
—2 bo mo+ b",(8)]sin28) [b",(8) sin8]

4pk&u» 16N, Sm(Ao+ Bo) 4 N, Sm(Ao Bo)
(A2)

$

2 &;& Ii& ' N &F+ »F) m~ »i&I')4ph+„4N, Sm(Ao+ Bo)
(AS)
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a Z;lssia [bain'cos28+fa(8)]'cos'8 [bam'+fa(8)]'cos gain 8
)4ph(d 4N Sm(Ap+Bp) 4N Sm(Ap Bp)

(A4)

]a n; lsabl [bam cos28 -fa(8)] cos 8 [bam falg-)I cos gain 8
)4pS(d 4 N Sm(Ao+ Bo) 4N Sm(Ao Bo)

(A6)

Z,"Isaila [8( mascsog f a(8)a]' i sgna[bama+fa(g)]acosagcos 8)4pko), p 4N, Sm(Ap+ Bp) 4N, Sm(Ap Bp)
(A6)

n lsail [bam cos28-fa(8)] sin 8 [b]m -fa(8)] cos geon 8)
4ph(ub, 4N, Sm(Ap+ B()) 4 N, Sm(A() —B())

(Av)

[b".«)»n28]' [b".«)+f8(8)]'»n'8
4ph(u, 16N,Sm(A +B ) 4N, Sm(A —B )

E~I heal [b",(8}sin28] [b', (8) -fp(8)] sin 8 ']

4pN(u„16N, Sm(A() + B()) 4N, Sm(A() —B())

I'Or Sin8 40,

N, Sm(Ap+Bo) = —6bzm Pz (cosg) —20b4m P4 (cosg) —42bp m P p(cosg)

(bp m') cos 8 (6 sin 8 —1) (bp m ) sin 8 (3 sin g — )
C 2c

(b4 m o) sin 8 (6 sin 8 —4) (b~zmp) (b4 m o) cos6(t) sin 8 (13sinpg —10)
4c 4

h, m cos28, ,
2

h, m cos2g
+2~em COS

ising ' sing
(A10)

(bum ) cos 8 (born } sin 8 (bzm ) sin 8
88

N Sm Ap Bp = 36bp m sin 8 cos6 +
C

+
C

+ cy

6(bum }(b24m )cos6(II) sin 8 h, m, h, m
+

2c sing sin8

These two expressions serve to define fp(8) and fp(8). The other quantities appearing in these equations are

b, (8)= born cos2(t) —b4m osin gcos4(t), b",(8)= bzmpsin2$ —b4m osin 8sin4(t), (A12)

fg, =N, gu~H, S, h, = N, gufg (H, cos(t) +H, sing) S . (A13)

When sing=0, the expressions for fp(8) and fp(8) are not valid. Both functions must then be replaced by the
function f) 8

and Eqs. (A10) and (All) become

N Sm(Ap+Bp) 3bpm 10b4m 21bpm +h, m =f)+h, m ~ (A14)

*Work supported by the National Research Council of
Canada.

R. A. Toupin, J. Ratl. Mech. Anal. 5, 849 (1956).
H. F. Tiersten, J. Math. Phys. 5, 1298 (1964).

3W. F. Brown, Jr. , J. Appl. Phys. 36, 994 (1965);
~agnetoelastic 1nte~actions (Springer-Verlag, New York,
1966).

4R. L. Melcher, Phys. Rev. Letters 28, 165 (1972).
'R. L. Melcher, Lectures presented at the Enrico

Fermi Summer School, Varenna, Italy, 1971 (unpub-
lished).

6R. L. Melcher, Phys. Rev. Letters 25, 1201 (1970).

'H. A. Buckmaster, Can. J. Phys. ~40 1670 (1962).
E. Callen and H. B. Callen, Phys. Rev. 139, A455

(1965).
~D. A. Goodings and B. W. Southern, Can. J. Phys.

49, 1137 (1971).
~ B. R. Cooper, Phys. Rev. 169, 281 (1968).
~~H. Marsh and A. J. Sievers, J. Appl. Phys. 40,

1563 (1969).
M. S. S. Brooks, Phys. Rev. B 1, 2257 (1970).

~3M. Nielsen, H. B. Mufller, P. A. Lindgard, and A.
R. Mackintosh, Phys. Rev. Letters 25, 1451 (1970).

~ T. K. Wagner and J. L. Stanford, Phys. Rev. B 5,



ROTATIONALLY INVARIANT THEORY FOR THE EFFECT OF. . . 545

1876 (1972).
5E. A. Turov and V. G. Shavrov, Fiz. Tverd. Tela

7, 217 (1965) [Sov. Phys. Solid State 7, 166 (1965)].
C. Kittel, Phys. Rev. 110, 836 (1958).

'A. I. Akhiezer, V. G. Bar'yakhtar, and M. I. Kaga-
nov, Usp. Fiz. Nauk 71, 533 (1960) fSov. Phys. Usp. 3,
567 (1961)j.

J. Jensen, Intern. J. Magnetism ~1 271 (1971).
~9D. T. Vigren and S. H. Liu, Phys. Rev. B~5 2719

(1972).
A. H. Nayyar and D. Sherrington, J. Phys. F. 2,

(1972).
S. B. Palmer and E. W. Lee, Proc. Roy. Soc.

(London) A327, 519 (1972).
M. Long, A. R. Wazzan, and R. Stern, Phys. Rev.

178, 775 (1969).
23L. M. Levinson and S. Shtrikman, J. Phys. Chem.

Solids 32, 981 (1971).
24T. J. Moran and B. Luthi, J. Phys. Chem. Solids

31, 1735 (1970).
2~W. P. Mason, Phys. Rev. 96, 302 (1954).
26F. Freyne, Phys. Rev. P 5, 1327 (1972).
2TH. B. Callen and E. Callen, J. Phys. Chem. Solids

27, 1271 (1966).
J-L. Fercn, G. Hug, and R. Pauthenet, Les Ele-

ments des Temples Razes (Centre Nationale de la Re-
cherche Scientifique, 1970), Vol. 2, p. 19.

29C. D. Graham, Jr. , General Electric Report No.
66-C-218, 1966 (unpublished).

M. S. S. Brooks and D. A. Goodings, J. Phys. C 1,
1279 (1968).

C. D. Graham, Jr. , J. Appl. Phys. 38, 1375 (1967).

32J. J. Rhyne and A. E. Clark, J. Appl. Phys. ~38
1379 (1967).

33J. J. Rhyne, S. Foner, E. J. McNiff, Jr. , and R.
Doclo, J. Appl. Phys. ~39 892 (1968).

34R. M. Bozorth, A. E. Clark, and R. J. Gambino, in
Proceedings of the Eleventh International Conference on
g.ore-Temperature Physics, St. &ndheces (St. Andrews
Printing Dept. , St. Andrews, Scotland, 1968), p. 1106.

35R. M. Bozorth, A. E. Clark, and J. H. Van Vleck,
Intern. J. Magnetism 2, 19 (1972).

E. S. Fisher and D. Dever, in Proceedings of the
Oak Ridge Conference on Rare Earths, 1968 (unpublished),
p. 522.

R. J. Pollina and B. Liithi, Phys. Rev. 177, 841
(1969).

M. Rosen and H. Klimker, Phys. Rev. B 1, 3748
(1970).

39E. S. Fisher and D. Dever, Trans. Met. Soc. AIME
g39, 48 (1967).

J. Alstad and S. Legvold, J. Appl. Phys. 35, 1752
(1964).

4~P. de V. Du Plessis, Phil. Mag. ~18 145 (1968).
42A. E. Clark, B. F. DeSavage, and R. Bozorth, Phys.

Rev. 138, A216 (1965).
43B. R. Cooper, Phys. Rev. 169, 281 (1968).
4M. Rosen, Phys. Rev. Letters ~19 695 (1967).

4~J. J. Rhyne and S. Legvold, Phys. Rev. 138, A507
(1965).

"J. J. Rhyne, S. Legvold, and E. T. Rodine, Phys.
Rev. 154, 266 (1967).

4'J. J. Rhyne and S. Legvold, Phys. Rev. 140, A2143
(1965).

PHYSICA L REVIEW B VOLUME 7, NUMBER 1 1 JA NUAR Y 1973

Proposal for Notation at Tricritical Points*

Robert B. Griffiths
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

(Received 31 July 1972)

A notation for critical exponents at a tricritical point is proposed on the basis that the line
of critical points observed experimentally in metamagnets, NH4C1, or He -He mixtures de-
fines a special direction in the space of thermodynamic parameters. Scaling at a tricritical
point implies certain relations among the exponents which are summarized in a table.

I. INTRODUCTION

At the present time there is a well-developed
phenomenological description of ordinary ferro-
magnetic and liquid-vapor critical points in terms
of exponents and scaling, ' and this phenomenology
can be extended fairly easily '3 to lines and surfaces
of critical points (which arise, for example, in
antiferromagnets, fluid mixtures, and liquid He4)

wherever the ideas of "smoothness"3 or "univer-
sality" are applicable. Probably the simplest
situation at which smoothness and, hence, the con-
ventional description of critical points breaks down
is at a tricritical point, and consequently tricriti-

cal points have recently been the subject of several
experimental and theoretical investigations. 6

As might be expected a rather diverse notation
for tricritical exponents has been employed by
different authors. The purpose of this paper is to
suggest a notation which is a logical extension to
tricritical points of the notation for exponents which
is already in use at "ordinary" critical points and
at the same time maintains certain essential dis-
tinctions which arise at tricritical points and which
lead to confusion if ignored. More important, we
wish to suggest a point of view closely allied with
(and, in fact, an extension of) the geometrical
analysis set forth in an earlier paper. Scientists


