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The band structure of crystalline methane has been calculated in a linear-combination-of-
molecular-orbitals approximation. In this molecular tight-binding method the Bloch sums
are built up of Hartree-Pock orbitals of the free molecules. Interactions between the states
of different molecules are calculated directly from molecular integrals without reducing the
exchange interaction to an exchange potential. The approximations involved are shown to be
well justified for a crystal made of closed-shell units. The band structure is obtained by
solving secular equation in 400 points along the relevant symmetry lines. The calculated
bands are zelatively narrow, less than 2.5"eV wide, around the molecular levels. The band-
to-band gap in solid methane is 24. 8 eV. This value has the same order of magnitude as in
solid rare gases ~

I. INTRODUCTION

Molecular crystals are periodic structures built
up by stable and tightly bound units, linked to-
gether by forces of much weaker character. Their
one-electron electronic states, as soluti. ons of
the Hartree-Fock (HF) problem in a periodic lat-
tice, can be described in terms of a band struc-
ture. Owing to the dominant presence of exciton
effects, the spectroscopic data near the absorp-
tion edge are not directly interpretable as transi-
tions from valence to conduction bands, as in the
standard theory of optical properties of metals and
semiconductors. ' The usual approach for molec-
ular crystals is that of Prenkel excitons in the
Davydov-type model where the band structure is
approximated with the corresponding molecular
levels. Because of the weakness of the inter-
action between the individual moleeules in a molec-
ular crystal, in fact the energy bands are ex-
pected to be relatively narrow, centered on the HP
energies of the isolated moleeules.

In the past few years a lot of experimental work
has been done on moleculax solids, esyeciaQy in
view of their biological interest. The calcula-
tions of band structures and HF electronic states
are basic toward a better understanding of a num-
ber of physical properties and speci.fically the
optical ones. In fact molecular crystals are in
some respect similar to rare-gas solids and alkali
halides —they all are built uy of closed-shell units-
for which the band-structure approach has proved
to be a powerful tool for the interpretation of the opti-
cal spectra. Moreover, the valence-band struc-
ture describes the HP fundamental state of the
crystal and can be closely related to experimental
data. Very recently, for instance, much direct
information on the valence-band structure has been
obtained by electron-spectroscopy-for-chemical-
analysis (ESCA) and x-ray-photoemission-spectro-

scopy (XPS) experiments in solids.
Practical band-structure calculations in molecu-

lar solids by the usual methods are not expected
to give reliable results; the main difficulties that
arise can in fact be restated as followers, as has
been pointed out recently by Coulson': (a) The in-
teraction between atoms in the same molecule
must be treated differently from the interaction be-
tween molecules. Self-consistency is required at
least in the domain of each molecule. (b) The
directional forces that determine the crystal struc-
ture, as long as we do not consider nuclear-spin
interaction, are dominated by repulsive exchange
forces between atoms that are nearest neighbors
in adjacent moleeules, and the usual local-ex-
change approximations are unsuitable.

Some aspects of the possible advantages of a
molecular tight-binding apyroach with respect to
usual methods of calculation were briefly consid-
ered by Bassani, extending the early work of
Gubanov and Nran' Yan and of Coulson et gl.
Very recently Pastori-Parravicini and Besca' and
Bassani et aE. ' calculated the valence-band struc-
tures of cubic ice and solid hydrogen fluox ide by
a molecular tight-binding method. This method
was developed in close analogy to the usual tight-
binding "atomic" type method in solids, and the
Bloeh sums of atomic orbitals were in this case
substituted by Hloch sums built uy of molecular
orbitals. These molecular orbitals are solutions
of the HF problem in the isolated molecule, pos-
sibly obtainedby a self-consistent-fieM (SCF)cal-
culation, and thus condition (a) above is fulfilled.
This approximation of crystal wave functions as
linear combinations of molecular orbitals (LCMO)
is justified by the weakness of the interaction be-
tween diffex ent molecules in the solid. %e wish to
point out that for these same reasons atomic tight-
binding calculations have in the past given good re-
sults in rax'e-gas solids and alkali, halides, ' ' at
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least for the valence-band structure.
We show in this paper, following the early work

of Lowdin and Howland' on ionic crystals, that
the HF Hamiltonian of a crystal made up of closed-
shell molecules can be well approximated in terms
of the HF Hamiltonians of the isolated units, pro-
viding the exchange operator is used in its original
nonlocal form. The molecular tight-binding meth-.

od, as developed throughout this work, presents
in comparison with the usual "atomic" one some
computational complications, due essentially to the
lack of spherical symmetry of the molecular or-
bitals and potentials and to the fact that two-center
integrals in the molecular sense can involve com-
putationally a large number of four-center inte-
grals of an atomic type. The availability of high-
speed computers, together with the advancement of
molecular programs, makes possible nowadays the
evaluation of such a large number of intergrals.

We present in this paper the theory of the mo-
lecular tight-binding method, in the sense sketched
above, and a system of programs we have developed
at C.E.-C.A. M. to perform this type of molecular
tight-binding calculation. A detailed band-struc-
ture calculation is presented for the case of solid
methane in phase I. All the monoelectronic and
bielectronic integrals needed for the calculation,
actually several thousands, were generated by a
molecular program, originally written by Stevens
for SCF calculations. '

In Sec. II we develop the theory of the molecular
tight-binding method and in Sec. III we analyze the
structure of the matrix elements involved. Section
IV is devoted to a discussion of the crystallographic
structure of solid methane. In Sec. V we present
our band-structure calculation for solid methane
as given in phase I. In Sec. VI we discuss the re-
sults.

II. MOLECULAR TIGHT-BINDING METHOD

We extend the tight-binding method as described
by Howland' to the case of molecular crystals ex-
plicity including nonlocal exchange. For simplicity
in notation, we consider only the case of one mol-
ecule per unit cell, as in the structure we assume
for solid methane; the general case is not sub-
stantially different. The equations for the one-elec-
tron functions and energies in the LCMO approxi-
mation are obtained as follows. Let the crystal
contain N unit cells and 2M electrons; because of
translational symmetry we can write the HF LCMO
wave function for the ith band and wave vector k

bm(kv r) 1/8 ~ s +Mm(r Rg) (2)

and u„(r —R~) is the HF molecular orbital of quan-
tum number m centered on the molecule at lattice
site R~. The electronic Hamiltonian for the 2M-
electron crystal is

x=Z&, + Z G„,, (3)

where J"
&

is the one-electron operator for elec-
tron j (kinetic energy and Coulomb interaction with
nuclei), and G/&. is the two-electron operator for
electrons j,j (Coulomb repulsion). HF solutions
in the crystal satisfy the following, set of equations:

&&0)(k r)+2 f G&3(g(k, r&) p(ra rm)dva

—y Gggyg(k, rg) p(rs, rg)dvg

where E, (k) is the band-structure energy and

p(rs, r,) is given by

xu*„(r,-R,)u„(r, -R,.). (7)

This result is valid under the following hypoth-
esis: (i) The Bloch functions g, (k, r) are mutually
orthonormal. (ii) The functions u are linearly
independent. (iii) The number of occupied Bloch
functions g is the same as the number of starting
functions u. The third condition limits the ap-
plication of the theorem to valence-band structures
built up from closed-shell units; it has been used
in the literature for ionic crystals, ' ' but it is
applicable also for solid rare gases, and for the
present molecular tight-binding approach in solid
methane.

Substitution in (4) yields

According to a general result of Lowdin, ~ '

p(ra, rq) in our case can be written in a way which
does not involve the coefficients c, (k) of (I). In

fact if we indicate the M&&M matrix of all the mo-
lecular overlap integrals as

b(mR~, nR~.)= f u„(r —R)u„(r-R.)dv, (6)

Lowdin's theorem yields

p(r~, rq)= Z Z & '(mR„nR, .)
m, n gg'

as

g, (k, r)=&~ c, (k) b„(k, r),

F, g, (k, r)+ 5~ & ' (mR~, nR~. )
m, n,g,g'

where b (k, r) is the following Bloch sum:
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Gggfg(k, rg)u„{r~- R~.)u„(r, —R~)de~
~)

=E)(k) g){k,r, ). (8)

Owing to the smallness of the overlap between or-
bitals centered on different molecules, the matrix
4 is very close to the unit matrix

& (mR~, nR~.)= 5~„5~~., (9)

Rnd its inver'sloD CRD be done by R power-series
expansion.

In the zeroth-order approximation the molecular
tight-bindlDg Rypl'oRch is not self-consistent ovel
the crystal, and the crystal potential is written as
the sum of molecular potentials centered on lattice
sites. In this case we rewrite the one-electron
Hamiltonian of the left-hand side of (8) as

H= +~V [VN(r —R~)+28(r Rg) ——K(r —R )].
(10)

Here V~, J, and E are, respectively, the nuclear,
Coulombic, and exchange HF SCF potentials for the
single molecule; while V» and Pare local poten-
tials, E is a nonlocal operator. In terms of their
def inition,

J'(r, ) = ) G,~ 5
~
u„(r~) ~

~ de~,

E[y] (r,) = G,~y(r~) E u (r,)u*(r~)de~, (12)
ln

and the sum is done over all the occupied molecular
orbitals u

Now the eigenvalue problem

ay, $, r)=E,.{k)y, (k, r)

over the LCMO basis is easily reduced to a secular
equationp

i
&mk[H-E$)i k)/ = 0, (14)

where [nk) indicates the general Bloch sum. If we
symbolize with ~mls~) the molecular orbitals, we
can write using translational symmetry

&mk~nk)=S ""."~(mo, nR, ),

&mk(a(nk)=&~ e'"'"
& 0(H)nR, ).

Now using the fact that we have started from the
molecular orbitals which are solutions of the HF
equations in the isolated molecule, we can use the
equation

[p'/2m+ V„(r) + 2m(r) —Z(r)] Im0)
(17)

where E represents the eigenvalue of the molecu-
lar state. %'8 also obtain

»l&I~a= E ~"'" (~.~(mo, eR,)

+ 5 &moi [V„(r-R,,)+2m(r-R, .)

—K(F-"R )]ieR )). (18)

The second term in curly brackets contains two-
and three-center integrals, in the molecular sense;
in the following sections of this paper we neglect
the three-center' ones. Although this can be inade-
quate in a generical tight-binding calculation, '
in molecular crystals the approximation is partic-
ularly good, because of the smallness of the over-
lap integrals between different molecules. With
straightforward manipulation we arrive at the final
form

&mk~e~nk)= ~„~
w

+5 e"'"~&mo~e„+~„-p'/2m~nR, )
g iC

+3 &m0~ Vg(r —Rg)+28(r —R,)
ggQ

-E{r-R,)
~
no}. (19)

The three terms in the right-hand member can
be recognized, respectively, as (i) the isolated-
molecule Hamlltonian (diagonal on this basis) (ii)
the interaction matrix, and (iii) the crystal-field
matrix. The structure. of the matrix elements will
be investigated in Sec. IG; it is useful to note
here, that the interaction-matrix elements are built
uy only from monoelectronic integrals, while the
Coulombic and exchange parts in the crystal-field
matr'ix are built up from bielectronic integrals.
We note explicitly that in the calculation there is
Do Deed for R local-exchange Rpproximationp when
we are able to compute the monoelectronic and
bielectronic integrals involved.

The approximations made are then as follows:
(i) choice of a finite LCMO basis over which we ex-
pand the crystal wave functions; (ii) neglect of
three-center contributions in a molecular sense
(i.e. , of matrix elements involving three diffe-
rent molecules); (iii) self-consistency only over the
range of the molecules, and not over the whole crys-
tal. Self-consistency corrections for the whole
crystal can be evaluated by the Lowdin method. If
we write the molecular overlay matrix b, as

a= 1+8, (20)

the Lowdin correction can be shown to be of the or-
der of S . Also the three-center corrections are
of the order of 83, so we can say that ayproxima-
bons (ii) and (iii) arise. from an expansion of the
molecular overlap matrix up to the first order.



How good it is numerically clearly depends upon
the speeifical crystal. For solid methane the mo-
lecular overlap matrix is tabulated in Table II.
The largest matrix elements of 8 are actually about
10, and this shows the validity of the two-center
approximation.

III. COMPUTATION OF MATRIX ELEMENTS

The molecular orbitals of formula (2) are in
general well approximated as linear combinations
of atomic orbitals (LCAO), and the coefficients of
these combinations are the result of SCF calcula-
tions on the isolated molecule. So we can write

g„(r)=&j a, y, (r-d )1, (21)

where d& is the position of the atom inside the mol-
ecule and cp1 is the suitable atomic-type orbital.
The "atomic" index j describes the quantum num-
ber as well as the center. We actually use Slater-
type orbitals (STO's) for the atomic functions y1
and we obtain the coefficients az by the Stevens
program, "which also yields the orbital energies

of the isolated molecule. For the secular equa-
tion [E11. (14)] we need five different kinds of ma-
trix elements between molecular orbitals, as can
be easily seen from E1ls. (15) and (19).

In details, the matrix elements needed are as
follows:

(i) Overlap:

~(mo, nR, ) = &molnR, )

= F~ a,„a,„y,(r —d, ) y, (r —d, —R,)dv.

(ii) Kinetic:

&mol
~

lnR, &= 'G a,„a,„

x p1(r —d1)
2 y1(r —d, —R,) dv. (23)

(iii) Nuclear: We indicate with g(d~) the nuclear
charge present at the atomic site d„
&m0l vN(r —R ) ln0)= 8 ag„a1„

2

x "y,(r —d, ) y, (r-d1) Z - '- dv,
—e s(d,)

(24)
and the inner sum is obviously over the atomic sites
of a molecule.

(1v) Coulomblc:

& ol Z(r-R, )lno&= Za, „a,„

x 0;(r1 d1) p1(rl d1)T(rl Rg)dv1 ~

(25)
Substituting for the expression given by (11), and
using (21), we obtain

&p 0
I
~(r -Rr)

I
n0& = F~ a,.a,„F~a„a„

&& y;(r, -d, ) qr1(r, —d1) y„(rm —d„—Rg) y„(r~-d, -R,)dv, dva. (26)
+13

We note that h, k, i,j run over the atomic orbitals, but 8 runs over the molecular occupied orbitals.
(v) Exchange: They can be expressed as the matrix elements of the nonlocal-exchange operator, using

(12) and (21). We obtain

&molI1(r-R, )lno&= &~ a,„a,„&~ a a„

8x p, (r, —d, ) p„(r, —I,—R, ) y1 (ra —d, ) cp,(r, —d„-R,)d v, dv, . (2V)
+12

So we can see that the two-center matrix elements
between molecular orbitals involve in the general
case [and only for types (iv) and (v)] four-center in-
tegrals between atomic orbitals. In any case the
matrix elements are constructed from the mono-
eleetronie and bieleetronie integrals between atomic
orbitals familiar in molecular problems, but in-
volving always a pair of molecules. The number of
different geometries needed, (i.e. , the number of
none1luivalent R involved) depends obviously on the
symmetry present in the specific problem and on

the number of neighbors relevant in the interaction.
In solid methane we need only a geometry for each
order of neighbors. For the computation of the de-
scribed integrals we make a run of the Stevens
program for the system of two molecules. This
time, however, we are not interested in a SCF cal-
culation, and we only generate on a magnetic tape
unit all the monoelectronic and bielectronic inte-
grals of the system. Another program rearranges
these integrals and computes the sums needed for
the five types of matrix elements.
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FIG. 1. Orientation of the methane molecules with re-
spect to the crystallographic axes, as assumed throughout
this work.

Although the numerical values of the integrals,
as given by the Stevens program, can be very ac-
curate (one part in 10 ), we had to overcome some
numerical difficulties: In fact the nuclear poten-
tial and the electx onic Coulombic-matrix-ele-
ments one are not small, but they combine to give
a small potential (multipolar at large distances).
So cancellation of significant figures may be of im-
portance. This is specifically the ease for solid
methane: In fact the potential is only octupolar and
in our geometry the centers of the surrounding mol-
ecules are in the direction of the zero octupolar
field. Consequently, for some purposes it can be
better to substitute the matrix elements of VN+28
with the ones of a suitable multipole potential, in
order to reduce cancellation by a direct calcula-
tion.

Our program also does a Mulliken analysis of a
single molecule and so evaluates the matrix ele-
ments of V& + 2 J directly by the Mulliken charge
model for a multipolar potential. Whether the
matrix elements eomyuted by the Mulliken model
or those obtained by the standard method are more
appropriate will depend on the particular crystal.
For the reason explained before, in solid methane
the use of Mulliken analysis is compulsory, while
if the potential is only diyolar or the geometry is
not very symmetrical the results by the normal
may are more reliable. This mas checked with test
runs on solid hydrogen fluoride and cubic ice.

IV. SOLID-METHANE CRYSTAL STRUCTURE

The ordinary methane CH& crystaQizes at 89 K
in the fcc system. ' While the lattice position of
C atoms has been detected early to a very good ac-
curacy, the position of hydrogen cannot be detected
with great accuracy, even with neutron-diffraction

techniques. In addition, directional forces between
the different moleeules inthe crystal are very weak,
and rotations of molecules around theix centers are
yossible with an extremely smaQ energy differ-
ence. Much work has recently been developed on
solid methane and its deuterated forms CH4 „0
Phase transitions due to different orientations of
molecules appear in the crystal, and their behavior
strongly depends on the nuclear spins involved.
The orientations most probable in each phase have
been investigated theoretically on the basis of a
James-Keenan model and in other mays.
electronic spectrum of a solid film of methane in
the far ultraviolet up to 11 ev has been measured
by Lombos et aE. It does not appear very dif-
ferent from the spectrum of the gaseous phase. ex-
cept for a large bathocromic shift (about 4200 cm ').
Very accurate results of neutron crystallography on
CQ4 have been published by Press. From these
it appears that the higher-temperature phase (the
one best known) is characterized by nearly free
rotations of the single molecules around their cen-
ters. Strictly speaking, solid methane in phase I
is not a "true" crystal, because only the carbon
atoms have a periodic array. Gf course me must
fix the position of the nuclei, in order to preserve the
transational symmetry. In particular, me fix the
molecules in the position of maximum symmetry,
giving to the whole crystal the T„symmetry, the
same as the isolated molecule. %'ith this choice
the orientation of each molecule with respect to the
crystallographic axes of the fcc lattice is shomn in
Fig. 1. Other choices could be useful for solid
methane in Phase I only in view of more accurate
Born-Oppenheimer-type calculations. '

In thi. s payer we present only the calculation for
the T~ symmetry orientation, which is the more
similar to the reality for solid methane in phase I
The lattice parameter as used throughout the pres-
ent calculation is 5.90 A (one molecule per cell). '
The Brillouin zone is given in Fig. 2 mith the usual
symbols for the symmetry points. As noted before,
symmetry is the same for the whole crystal and for
the isolated molecule; so no splitting of the molecu-
lar levels is expected at the I' point of the Bril-
louin zone. In the fundamental state of the isolated
molecule the ten valence electrons completely fill
the tmo totally symmetric states I'& of degeneracy
1 and a state I',5 of degeneracy 3 (a, and f~,
respectively, in molecular notations). Symmetry
analysis and compatibility relations between the
states at I' and other points of the Brillouin zone
are the same in the zinc-blende structure and are
reported in the review article by Koster.

V. CALCULATION OF ELECTRONIC STATES

We use for the molecular wave function the mini-
mal basis set in STO's with the optimized exponents



PIELA, PIETRONERO, AND REST&

TABLE I. Results of SCF calculation on the methane molecule. Energies are in atomic units, C-H length is 2.0665 a.u.
Exponents given by Pitzer, Hef. 21.

Occupied 8TO
exponents

—0.004600
0.994732
0.025330
0

Total energy is -40.128128 a.u.

0.186801
—0.215501

0.606010
0

—0.920892

Molecular-orbital coefficients
0.318616 0.632214
0 0.241923
0 —1.594926
0.552731 0

Orbital energies (a.u. )
—0.535156 0.652771

—0.607253
0
0
1.098865

1.17
5.68
1.76
1.76

given by Pitzer, and we assume for the C-H dis-
tance the value 2. 0665 a.u. Results of the SCF
calculation obtained with the Stevens program, in-
cluding virtual levels, are given in Table I. In the
methane molecule the mlnlmal bRsls set ls R pRx'tlc-
ularly good one, because of the high symmetry. In

fact, the computed total energy turns out to be ac-
tually about 99. 'l% of the HP limit.

All matrix elements needed for the calculation of
the band structure were evaluated as described in
Sec. III. We report in Table II the overlap matrix
elements between molecular orbitals for first and
second neighbors. This shows the goodness of the
tight-binding approximation in this case and shows
why it is not necessary to go beyond the second-
neighbor interaction. Since the largest element of

the overlap matrix for the second neighbor is less
than 6 ~10", they always give a small contribution
and further neighbors can be neglected. Calcula-
tions were performed on the IBM SVO/165 instal-

lation available at C. E.C.A. M. in Orsay. Evalua-
tion of all the integrals by the Stevens pxogram
took about 21 min for each geometry. All the
other calculations needed fox the present work were
much faster. The secular equation of the molecu-
lar tight-binding method was solved in 400 points
of the Brillouin zone on the xelevant symmetry
directions. The resulting valence-band structure
is reported in Fig. 3. The scale is absolute and it
refers to the vacuum. All bands are, as expected,
very narrow around the corresponding molecular
level. The core band X', originating from the ls
stRte of cRx'bon ls not reported here~ since lt coin-
cides with the molecular level and its width is less
than 10 3 a.u. The two highest valence bands stick
together for symmetry reasons on the A and 6 line,
but they have a small splitting in other symmetry
directions. The total width of the highest valence
bands corresponding to the I",5 molecular state is
0.06 a.u. and the maximum is at l".

We also give the calculation of the conduction
band based on virtual molecular states. In this
case Lowdin's~ 16 theorem is not valid, and fur-
thermore the tight-binding approximation is not as

TABLE II. (a) Overlap matrix elements between
molecular orbitals. The ordering of states is 1gi, 2gi,
112„, 1t2~, and 1t2~. The first neighbor is in the position
yg(1, 1,0). (b) Overlap matrix elements between molecu-
lar orbitals. The ordering of states is 1gi, 2gi, lt2„,
1t», and 1t2,. The second neighbor is in the position
yg(2, 0, 0).

(R) First neighbor

—0.000005
0.000051
0.000095
0.000095
0.000081

0.000051
0.009003
0.010065
0.010065
0.006499

—0, 000095
0.010065

—0.010779
—0.012089
—0.008040

—0.000095
—0.010065
—0.012089
—0.010779
—0.008040

0.000081
0.006499
0.008040
0.008040
0.007138

FIG. 2. Brilloulg. zone of solid methane ln phase I. The
symbols are those given by Koster, Ref. 26.

0
—0.000002
—0.000001

0
0

—0, 000002
0.000310
0.000427
0
0

(b) Second neighbor

0.000001
—0.000427
—0.000582

0
0

0
0
0
0.000050
0

0
0
0
0
0.000050
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-0.90

-0.94

Xq )

the closed-shell calculation. According to the
theorem of Koopmans, they are a good approxima-
tion for the states of the negative molecular ion.
Unfortunately, the energies of these states are
strongly dependent on the choice of the basis. %e
compare in TaMe III the results obtained with our
minimal basis set and the ones of an extended-basis
calculation by Stevens. ~' %e see that while agree-
ment is very good fox the, occupied states, it is in-
deed very bad for virtual ones. Also, the order-
ing of the virtual levels is inverted. The conduc-
tion band we present is obtained in a mixed way,
perturbating the best values of the HF energies with
the interaction resulting from the minimal basis
set. The resulting conduction band is given in Fig.
4. The width of the lower conduction band is Q. Q4

a.u. and the minimum is at X. The energy values
for high-symmetry points are reported in Table IV
for all bands. The gap between the top valence
state 1"

&I and the bottom conduction state Xs is
24. 5 eV. The direct gap between the states at X is
24. 75 eV.

lq t'f'q

L K

FIG. 3. Valence-band structure of solid methane. The
HF levels for the isolated methane molecule are also
shown.

good as for the valence band. Our starting mo-
lecular states are thus not the true Hartree-Pock
excited states, but the virtual states resulting from

0.48

TABLE III. Hartree-F ock calculations on methane
molecule, STO's. Energies are in atomic units. {a)
Minimal basis set, optimized exponents given by Pitzer,
Ref. 21. {b) Extended basis set with 39 STO's; calculated
by Stevens, Ref. 22. In both cases C-H distance is
2.0665 a.u.

0 44 242

Occupied

Virtual

Minimal
basis set {a)

-11.20597
—0.92089
-0.53516

0.65277
0.65677

Total energy {ground state)

-40.12813

Extended
basis {b)

-11.20522
—0.93880
—0.54246

0.45534
0.44097

0.40

f X' N t„ t" K

FIG. 4. Conduction band of solid methane. The virtual
HF levels for the isolated methane molecule are also
shown+
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TABLE IV. Crystal energies. at high-symmetry points
(atomic units).

—11.2053

—0.9847

—0.5164

0.4203

0.5700

—11.2062

-0.9000

-0.5762
—0.5264

0.3848
0.4033

0.5016

—0.5646
—0.5202

0.4042
0.4108

VI. DISCUSSION AND CONCLUSION

The ab initio calculation of the electronic struc-
ture of a molecular solid presented in this paper
gives eigenvalues and eigenfunctions which are ex-
pected to be quite reliable as a picture of the HP
fundamental state. The I CMO approximation is in
fact very good for the valence bands and the neglect
of molecular three-center integrals and the lack of
self-consistency "in toto, " are shown to be a valid
approximation. The overlap matrix elements be-
tween molecular orbitals are in fact small as
shown in Table II. The band structure reported in
Fig. 3 could then be directly compared with even-
tual experiments of the ESCA' or XPSS type.

Quite a different situation exists for the conduc-
tion band because the STO's minimal basis set we
have chosenis not a very accurate representation of
the eigenstates of an extra electron in presence of
a closed-shell unit. In a physical case, in many
respects analogous to molecular solids (namely,
the solid rare gases), Knox and Bassani realized
early that an orthogonalized-plane-wave (OPW) cal-
culation is much more reliable for conduction-band
structure.

We also wish to point out that the conduction
band computated here represents the HP virtual
levels of the crystal, i.e. , the energies of an ex-
tra electron put in the crystal, according to the
theorem of Koopmans. This is not to be com-
pared directly with the excitation by optical Ineans,
because the interaction with the hole strongly low-
ers the energy of the configuration and therefore

the optical transition energy. This effect is yres-
ent in all closed-shell configurations and must be
accounted for very carefully in the interpretation
of the excitation spectrum. In molecular crys-
tals the electron-hole interaction is particularly
strong because both the hole and the electron are
localized in the unit cell so that the exciton can ap-
pear in the middle of the gap. An estimate of the
energy of the excited singlet configuration could
be obtained either by shifting the conduction band
by J„—2K„, where J„and K„,are the Coulombic
and exchange matrix elements between the valence
and conduction bands, or shifting the starting en-
ergy of the molecular excited level, as done by
PRsto11-PRl rRvlc1nl Rnd Resca.

As noted above, there is close analogy between
solid rare gases and molecular crystals. Both
theoretical and experimental ' '2 works have shown
that correlation effects beyond the HF scheme are
also important and lower the band-to-band gap.
We think that a similar situation occurs in molec-
ular crystals, and correlation could be accounted
for along lines similar to those of Refs. 4 and 5.

The HP gap of 24. 5 eV of this calculation in sol-
id methane is of the same order of magnitude as in
VR11ous HP CRlculRt1ons ln solid 1are gRses.
Another common feature is that the gap is larger
than the ionization energy of the isolated molecule
or atom.
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Equivalence of the Projection-Operator, Laplace-Transform, and Green's-Function
Approaches to Harmonic Lattices
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The recently derived projection-operator approach to lattice dynamics in the harmonic approximation is
compared with the Laplace-transform and Green's-function methods in such a manner as to obtain the
equivalence between the three approaches.

INTRODUCTION

In a recent publication Deutch and Silbey made
use of projection-operator techniques to obtain an
exact equation of motion for the momentum of a
specia1 (mass-defect) particle selected from a one-
dimensional harmonic-oscillator chain of equal-
mass particles. They found that the so-obtained
generalized Langevin equation, ~ involving the
"random" force E"(t), simplified greatly for this
harmonic system. The projection operator which
appears in the definition of the random force dis-
appears from the expression for the force on the
selected particle to yield just the force as calcu-
lated in some reference system. These results
were extended by Wada and Hori to apply to a
mass-disordered lattice. Here the reference
system is some arbitrary mass-disordered lattice
and one particle's mass is chosen to deviate from
this reference system.

Vfe wish to demonstrate the complete equivalence
between this recent projection-operator approach
and two previously derived approaches to harmonic-
oscillator dynamics. These are the Green's-func-

tion method set forth by Montroll and further
developed by Maradudin, and the Laplace-trans-
form method developed by Rubin in a series of
articles. %e present the equivalences between
these approaches in the simplest context of the one-
mass-defect, classical, one-dimensional, har-
monic chain since the generalizations to any cubic
Bravais lattice, the quantum-mechanical case,
and any "reference" system are immediate. In
addition, the fact that this discussion is in the
language of solids, and as such, phonons, is not
essential. As long as one deals with a Hamiltonian
which is quadratic in the generalized coordinates,
all the results will be applicable. Thus one could
discuss spin waves or certain radiation problems
with the same techniques.

%e first sketch the projection-operator develop-
ment and cast it in a form which is most suited for
comparison with the othex approaches.

FROJECTION-OPERATOR DERIVATION

Consider a one-dimensional chain of N+ 1 har-
monic oscillators of momenta P~, coordinates q~
(expressed as deviations from equilibrium) with


