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The Schottky, Davydov, Bardeen, and Heine theories of metal-semiconductor contacts are improved
and developed by using a new general expression for the junction capacitance and by accounting for
quantum-mechanical tunneling of free electrons from the metal into the semiconductors forbidden

energy gap. The Poisson equation for electric field and potential is first solved to obtain general
expressions for the junction capacitance, the built-in voltage on the junction capacitance, and the barrier
height. The electron wave function is then calculated using effective-mass and WKB approximations and
the continuity of probability density and current at the metal-semiconductor interface. Finally, the
density of states of electrons which tunnel from the metal into the semiconductor's forbidden energy

gap is deduced from the electron wave function. In practice, these calculations are intradependent and
cannot be completely separated. For metal-n-type semiconductor contacts, the most significant
differences between this theory and previous theories are the increases of both the energy barrier height
and the built-in voltage of the contact capacitance. For metal-p-type semiconductor contacts, tunneling
of electrons from the metal to the semiconductor reduces the barrier height and width and built-in

voltage of the contact capacitance. As a consequence, the hole-tunneling probability and reverse
current are both increased. The results agree with published experimental measurements of capacitance,
photoemission, and current.

I. INTRODUCTION

A well-known conclusion of the Schottky'~ and
Davydov theories of metal-semiconductor contacts
is that electrons in the metal must overcome an
energy barrier to enter an n-type semiconductor.
The barrier height psp is equal to the difference
between the metal work function y& and the semi-
conductor electron affinity X. It is equally well
known that experimental measurements of capaci-
tance, photoemission, and current 4 do not agree
with this result. In particular, photoemission ex-
periments on metal-n-type semiconductor junc-
tions (M-n contacts) measure a barrier height which
is larger than y» except for high-work-function
metals (Pt and Au). For metal-P-type semicon-
ductor junctions (M-P contacts), photoemission
measurements yield a barrier height smaller than
the theoretical one of E&—+~D, where E is the
semiconductor energy gap. Junction-capacitance
experiments yield barrier heights which are larger
(in both cases) than the height measured by photo-
emission or current experiments.

The Tamm" and Shockley theories of surface
states and the Bardeen interface model are also
not sufficient to explain all of the preceding ex-
periments. The Bardeen model may explain why
the actual barrier height is larger than pao when an
interfacial layer exists between the metal and
semiconductor. A model proposed by Heine' fur-
ther develops the Bardeen model and ascribes the
surface states to a tailing of the metallic-electron
wave functions. The Heine model is the most ac-
curate previous model, but it does not explain the

experimental results because of its simplified and
incomplete formulation of both the classical and
quantum-mechanical nature of the problem. '

In this paper, a model is presented which corn-
pletes the classical and quantum-mechanical for-
mulation of the Heine model. Quantum-mechanical
penetration of electrons from the metal into the
semiconductor energy gap is considered and the
Poisson equation is solved in an appropriate way.
The model is able to simply and completely explain
the experimental results.

In particular, the theory that is proposed here
consists firstly in solving Poisson's equationfor the
electric field and potential in order to obtain new
general relationships for the junction capacitance,
the energy barrier height, and so on, which take
into account the quantum space charge. The latter
is then evaluated directly from the electron wave
function tjt which is calculated by means of the effec-
tive-mass method and of the WEB approximation
using the continuity of |jI and of the probability cur-
rent as boundary conditions at the interface between
the two substances.

The analytical results so deduced seem to agree
well with the experimental values obtained by many
authors, especially in the case of contacts built by
evaporating the metal onto a vacuum-cleaved semi-
conductor sample. Such contacts are probably
better approximations to the model discussed here
and by Schottky, Davydov, and Heine. In particu-
lar, the theory applied in this paper (i) to contacts
between n-type CdS and Au, Cu, Ag, and Pt, (ii) to
contacts between n-type GaAs and Au, Cu, Sn, Al,
and Ag, and (iii) to contacts between P-type GaAs
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and Au and Al leads to numerical values which
match the experimental values obtained by Spitzer
and Mead.

II. JUNCTION CAPACITANCE AND ENERGY BARRIER

A. Metal-n-Type Semiconductor Contacts

When a metal [Fig. 1(a)] is brought into contact
with an I-type semiconductor [Fig. 1(b)], a region
of the latter to the right of the interface x~=0 is
depleted of its conduction-band electrons and at the
same time its forbidden energy gap becomes occu-
pied by electrons as a result of the quantum-me-
chanical tunneling from the conduction band of the
metal. The electric space charge so created by the
"quantum electrons" and the ionized donors may
give rise to electric potential and electron energy
diagrams of the type drawn in Figs. 1(c) and

1(d), respectively
In this section the properties of such a space-

charge region. will be analyzed, solving the Poisson
equation so as to evaluate the junction capacitance
C and the energy barrier height y„[Fig. 1(d)].

Let W be the "width" of the semiconductor de-
pletion layer and let x~= w (av & W) represent an ar-
bitrary abscissa in, the depletion layer where neither
electrons of the semiconductor conduction band
nor electrons from the metal band penetrate to any
appreciable extent [Figs. 1(c), 1(d), 2(c), and 2(d)].
Such a section exists (i) if w is much greater than
the mean length & of quantum penetration of the
metal electrons into the semiconductor and (li) if
at the same time e[v, v —v~(w—)]»AT, where k is
Boltzmann constant, T is the absolute temperature,
e is the charge of the electron, v is the voltage
applied externally to the contact [Figs. 1(b) and

2(b)], v~(w) is the electric potential at the abscissaI [Figs. 1(c) and 2(c)], v, = (Es —E„)/, is the "con.-
tact" potential difference [Figs. 1(a) and 2(a)], and

E& and Es are the Fermi levels of the metal and
semiconductor, respectively [Figs. 1(a) and 2(a)].
Both the preceding conditions may be satisfied in
general, since ) is of order of few A, '~' whereas
W may be of the order of 103 g.

Across the plane x; = gy there is only a displace-
ment current, so that the junction capaeitanee of
the contact may be expressed as

c-~ """'C =Ac s

where A is the contact-surface area [Figs. 1(b)
and 2(b)], sz is the semiconductor dielectric con-
stant, and E(m) is the electric field at the abscissa
so. The capacitance evaluation therefore reduces
to the calculation of E(m). To obtain the electric
field the Poisson equation is integrated with re-
spect to the electric potential v, for x, ~ gg (one-
dimensional case) on the assumption that the con-
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FIG. 1. (a) Energy-band diagrams for a metal and an
n-type semiconductor before being brought into contact;
(b) metal-g-type semiconductor contact (M-g contact);
(c) electric potential diagram; (d} energy-band diagram
for the two materials in contact.

centration NI, of the donor atoms be constant in
this region of the semiconductor. One finds that

u;(to) = —s8 F'(sv)/2 eNv + v, —u, —v,
where, for E~»E~ —Es»ur

v, = (&T/e) [a(l +c) —ln a],
and in the latter expression

a= (1+e "s-' "")-'
is the fraction of the donor atoms which are ionized
in the semiconductor bulk. The quantity o appear-
ing in (3) is given by

0.8929VV60 Se 10K kT '~' '~''= '(ur)
and is due to the electron quantum-penetration
from the conduction band into the forbidden energy
gap of the semiconductor [Fig. 1(d)]. In the pre-
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with vo= v, (0) the electric potential at the contact
surface [Figs. 1(c) and 2(c)] and qr(x, ) the total
density of the electric charge, due to any cause,
in the semiconductor.

By substituting the expression for E(s)) given by
(6) in Eq. (1) one obtains C in the general form

(10)
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which holds, not only for M-n contacts, but also
for every type of junction and for any charge den-
sity qz(x, ) between 0 and s) (in particular, qr could
be due to surface states at x, = 0 and to a noncon-.
stant doping between 0 and I)).

gf vo and v, do not depend on the voltage v ap-
plied externally to the contact, i.e. , if a range of
v exists in which Idv~/dv I «1, then in such an
interval the capacitance is given by the relation-
ship

e=~( " )"',

Ey+V

, VO=-ey0

w 'g

Vp
-~--- -.-

E +II
y 0

Ls

I

which differs from the Schottky expression'~ for
the classical and quantum correction terms vo and
v„respectively, of the built-in voltage v~. Such
terms, as shown in Sec. Vf, have a great impor-
tance with respect to the others appearing in Eq.
(7) and explain many experimental results.

From the previous analysis it also follows that
the electric field Eo=E(0') corresponding to x,
=0' is given by the equation

FIG. 2. Same as Fig. 1, for a metal —p-type semiconductor
contact (M-p contact).

ceding relationships E~ is the electron energy at
the bottom of the conduction band in the semicon-
ductor [Figs. 1(a) and 2(a)], Ev (Z„) is the energy
of the donor (acceptor) states in the n-type (I1)-

type) semiconductor [Figs. 1(a) and 2(a)], h=2vif
is the Planck constant, m,* and m f are the elec-
tron effective masses in the conduction and valence
bands, respectively, of the semiconductor.

By integrating the Poisson equation twice with
respect to x, in the interval 0, ge so as to obtain
v& as a function of x, and taking as boundary con-
ditions at x, = I) that the electric field E=E(s)) and
the potential v, = v;(s)), one obtains for x, = 0, on
eliminating v, (s)) with the aid of (2), a second-
degree equation in E(N)) which when solved gives

S/2

~s

where

(
( )d I( 2eeev(ve -v)) ' '

~S .0

which, useful for itself, may also be used to de-
termine the electric potential vo= v, (0) that appears
in (7). In fact, by integrating the Poisson equation
in the region x, ~ 0 with the boundary condition
s„E(0 ) =s~E(0'), where s„is the dielectric con-
stant of the metal, and by taking into account Eq.
(49), which gives the metal electron density m„c
=N„(1+8ev, /2E„), N„being given by (50), one
obtains the Thomas-Fermi relationship33'~4

which, together with Eqs. (7), (8), and (12), gives
an equation for vo.

When Eo as expressed by (12) is positive, the
electric potential v, (x,) [Fig. 1(c)] has a minimum
for xj =x& &0; by solving Poisson's equation and
using Eq. (12), x„may be shown to satisfy the con-
dition

Vy = V~ + Vq
—V~ —Vo q

v, = —(I/s~) f, x, q(x, )dx, ,

q(x, ) = qr(x, ) —eNv,

(7)

(8)

(9)

1
+D xN

"&N
( )

2sgNv(v, -v)xg—
8

(14)
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which holds for x„«N). The value 8s= e,(x„) may
then be expressed as a function of x~:

CO

eNg x@
&u = ~0 &q+ &V)»)&g) .

8 ~xg

(15)
When q(g, ) is given as a function of g, , one can
obtain g~ directly fxom the Poisson equation by
means of the relationship

g ssFO —J s q d'U)+8Na(8~ —80), (18)

FinaQy, the correct value p„of the height of the
energy barrier rvhich the electrons must overcome
to pass from the metal Fermi level into the semhi-

conductor [see Fig. 1(d)], from the definition of v,
and from (7), is given by

q)„=q)sn-&&s= [&(&y+&~)+Ec—Eg] —e{5~+vq no) -„

(I'I)

(18)q'n= q'Sn e~o= [e(")+ "e)+Ec Esl--e~~

2 ~$
&a&~

'p, = 0'we+ ~
g ! *Hi»)&»l

6g
N (20)

so that p„,&p„», in agreement edith the experi-
mental results. ' " From (18) and (19) it may be

seen that the latter condition, p„,&p~q, also holds
in the case that Eo & 0, provided that v, & 0.

Both (I'I) and (I), as a consequence of (19), lead
to the relationship

"q —Uo = (&no- q'sn)le ~
(21)

for Eo&0 and Eo&0, respectively. It follows that
in. the former case the contact could be rectifying,
i.e. , p„&0, even when the energy barrier height
+so= pz- X obtained from the Schottky-Davydov
theory (SDT) is negative, namely, when the contact
should be Ohmic accoxding to that theory. The
experimental results confirm this conclusion in
many cases; for instance, this happens in the sys-
tems CdS-Au, CdS-Cu, and CdS-Ag9'+ (Sec. IV).

In the Scbottky theory the barrier height )I))„, ob-
tained from the measures of the capacitance is
given by

O' Ne
= ~(U)+ "s)+Ec Es ~ (19)

~hereas the height p„» declucecI fx'om the expex'i-

mental values of the photocurrent, if the barrier
lowering due to the tunnel effect is neglected, coin-
cides with q)„. /The barrier-height correction due

to the image force" should be negligible and, in

any case, is difficult to calculate because the bar-
rier peak [Figs. 1(c) and 1(d)] is at an abscissa
xz where the number of mobile electrons, due to
the quantum penetration, is much greater than the
number of ionized atoms. } In the case of q(x,) & 0
and Eo&0, vrhich seems to be the most frequent
in practice, from Egs. (15), (I'I), and (19) it fol-
lovrs that

8. Metal-p-Type Semiconductor Contacts

The v~ distribution of Fig. 1(c) and, in particu-
lar, the existence of the minimum ~j) = ~„(x„)de-
pend on the sign and value of q(x&), which in turn,
as mill be seen in the following sections, depend
on Egr, $7@, tÃ~, tB)I', Eg, and Eg, that is, of
course, on the nature of the two substances in con-
tact and, in particular, through E~, on the type
and density of the semiconductor impurities. In
other vrords, as is vrell known, on changing the

h, E
E

sE

I

M it
~ ~ « ~

(b)

FIG. 3. Energy barrier for the chsrge carriers (a) in
M-p contact and e)) in M-I contact.

which can be used to verify the validity of the pre-
ceding analysis, especiaQy when, for Eo &0, v„ is
not known (see Sec. IV).

From (12), {M), and (17), on the assumption that
Iq(x, ) I is independent of & and much greater than

ePI) between 0 and x„[see also Figs. 1(d) and 8(d)],
it followers that the height q„of the barrier increases
and its tunnel transparency decreases when v in-
creases. Also, this theoretical result is verified
experimentally by the forward-current measure-
ments made by many authors on sevex'al types
of Metal-semiconductor systems.

. It js useful to note that the present analysis holds
independently of the sign of q) Sn and ~, [Figs. 1(a)
and 2(a)].



doping the Fermi level Ez may vary with continuity
from E8 &So to E~&E&, where E„is the electron
energy at the top of the valence band in the semi-
conductor [Figs. 1(a) and 2(a)]. As a consequence
the vq distribution can change, through intermedi-
ate conditions, from the shape of Fig. 1(c) to that
of Fig. 2(c), which will be discussed here.

The quantities of the metal-P-type semiconduc-
tor system of Fig. 2, which shall be labeled with
an asterisk, may be deduced in an analogous fash-
ion to that presented in Sec. IIA. The quantities
&*, a*, and vs are again given by (5), (4), and (3),
respectively, after the substitutions urn„* I -m,*
and Nz Nz in (5) andin(3), and Ez-Es Es-Ev
in (4), X„=const being the acceptor atom density
for x, ~ sv. The capacitance built-in voltage- be-
comes

g)f5+ g$5 — c q u e (22)

too = s(vo+ "o)+ Es-Ev ~ (24)

while the value p»& obtained from the photocurrent
measurements should be equal to y~, so that, from
(23) and (24), p~ should be lower than y»p. This
does not really happen experimentally, because
p»&& p~, for reasons which shall be seen later on.

From (23} and (24) one obtains the equation

Vo —Vf = [(Ea- &Sn) —Ppo]IS (25)

as the analog of (21).
The sum of the barrier heights of an I-n contact

and of an M-P contact, both built with the same
metal and the same semiconductor, from (1V), (18),
and (23),

' is given by

9'n + 9 o = Ec + 8 (v p vs) ~

where v,* is again given by (8) after replacing Nv
with -N~ in (9). With the substitution N„-Xv and
vs-vp, Eqs. (10)-(12) hold also for Co' and Ef
[the sign of the square root in Eq. (12) must also
be changed]. Finally, Eq. (13) gives vf after re-
placing Eo with E't.

From (22) and from the previous analysis it fol-
lows that, in the most frequent case of q(x~) & 0, the
built-in voltage v& on capacitance is lower than
that obtained in the Schottky theory.

From the definition of vo [see Fig. 2(a)] and
from (22), the height y& of the energy barrier [see
Fig. 2(d)] which the holes must overcome to go
from the metal Fermi level E& into the semicon-
ductor becomes

po = Ev —9'so+ eve = [s(vk+ "o)+Es Evj+ svo i
(23)

that is, p~ is lower than the barrier height E& —p»
obtained in SDT [vg «0 for q(x, ) & 0].

In the Schottky theory the barrier height yo, ob-
tained from the capacitance measurements is given
by

gn + g o = EG + 8 (v f —v 0)

respectively, for Eo &0 and Eo& 0 in the M-n contact,
Therefore the new value of p„+ p~ is different from
the value Es obtained in SDT. When Es- (psn+ Vp)
[see Figs. 1(d) and 2(d)] is a large fraction of Es,
the eonceotration of the metal electrons which
penetrate in a quantum way into the semiconductor
becomes much greater than the impurity density
and is practically independent of the semiconductor
Fermi level Es, so that Eo=Eg&0, vo=vg, v,
=v,*, and, in consequence, from (26) Rnd from
Fig. 1(c), y„+ po &Es. It is also useful to note
that the sum y„,+ po„which, from Eqs. (1V), (18),
(19) (23) Rnd (24) is given by

y„o+ Po, = E0+e(v, v,*)+—e(vf —vp), (2V)

reduces in this ease to E~. This happens, for in-
stance, for the Al-GaAs systems.

Since, in general, Ef is much greater than the
corresponding SDT value, the width I,o [Fig. 3(a}]

~of the M-p junction energy barrier relative to a
given &E is lower, often much lower, than the cor-

. responding Schottky-Davydov value I $ and, for
the same reason, is much lower than the width I
of the barrier of the M-n contact [Fig. 3(b)], so
that the electrons with energy E & Vo+Ez may
cross the barrier in virtue of the tunnel effect.
(That happens with greater difficulty in the case
of electrons with energy E & Vo+E& in the M-n con-
tact in which the barrier-tunnel transparency is
reduced just by the increased L value [Fig. 3(b)j.j
The consequences of this fact confirmed by the
experimental results ' are that the barrier-height
values p»& obtained from the photocurrent mea-
surements are not well defined and lower than y&
[Fig. 3(d)], the reverse current in the M-p con-
tacts is much higher than in the M-n ones, and the
forward current, for ev» kT, does not obey
the Richardson-Dushman law i =aloe'"~ ", with
0. & 3..

IH. WAVE FUNCTION AND DENSITY OF ELECTRONS WHICH
PENETRATE IN A QUANTUM WAY INTO SEMICONDUCTOR

A. Electron Wave Function

In order to develop the calculations proposed in
the previous general electrical analysis it is neces-
sary to know the extra charge q(x~) = qr(x~) —slav
[or q(x, ) = @r(x,)+eN&j which may be due to any
cause whatever.

Heine and the other authors' 2' do not deduce
the preceding general electrical properties of the
metal-semiconductor contacts. At the same time,
from considerations on the tails of the metal wave
functions they RSsume q(x, ) = —enoe s " and give
only a semiquantitative way to evaluate no and X.
In particular, Heine, in derivingq(x, ), treats the
valence and conduction states of the semiconductor
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and the conduction electrons of the metal as free-
electron gases, assumes the electron potential
energy as constant in the semiconductor and in the
metal, and refers his calculation to the case of
one- dimensional band structures.

In this section the contribution to q(xl) due to the
electrons which enter the semiconductor forbidden
energy gap in a quantum way from the metal will
be calculated, instead, taking into account the vari-
ous details and implications associated with the
electron wave function. The latter is calculated
by means of the effective-mass method and of the
WEB approximation imposing the continuity of the
probability density and current at the interface x1
=0.

In what follows the following additional symbols
will be adopted: j is the index of the Cartesian axes
(j = 1, 2, 3), m is a suffix which indicates the sub-
stance type (m =M in the metal, m = S in the semi-
conductor), b is another suffix that indicates the
band (b=C in the conduction band, b= Vin the
valence band), k„l are the Cartesian components of
the reduced wave number k„, Eb=E„„b (k ) is the
electron energy when no potential is applied to the
crystal, Bomb is the value of E~ b at the extremum
of &e band('osc=Esc=0 Eosc=Ec Eosv=Ev
[Figs. 1(a) and 2(a)]), V= —evL(x, ) and E are the
potential and total electron energy, respectively
[Figs. 1(d) and 2(d)], and („b(x„xs,xb) is the
electron wave function.

If the valence and conduction bands have non-

degenerate edges at the central point of the Bril-
louin reduced zone, and if the constant energy sur-
faces near the central point are ellipsoids, having

their axes coincident with the Cartesian ones, one
can express EI using the truncated McLaurin
series expansion

are appropriate real positive values of the Car-
tesian components of k (Fig. 4). It is important
to note, with the help of Fig. 4 sketched qualitative-
ly for the semiconductor, that for given values of
ksb, of k»&k)bb, and of E» (for instance, E',s) the
corresponding value lk'$1[ of k» is so high that the
associated values of the wave function become
negligible (see Appendix A) when compared with
those depending on 4'$', relative to the same state
except ksb& kgb, . Therefore the electron quantum
penetration into the forbidden energy gap of the
semiconductor is due essentially to the states with
transverse wave numbers which satisfy the rela-
tionship

ks'&kfbl, j=2, 3. (31)

Pub 4ub~x =o= Psblsb~x ~ 0
1 1

(33)

1 s(psbgsb)
Plbmsbl xl 1=0

s(psst sb)
Pfbmfbl xl @1=0

(34)

When (28) holds and the electron potential energy
V(x, ) varies slowly over an atomic distance, the
electron wave function" ("(xl, xb, xb) may be ob-
tained, in the ambit of the effective-mass theory,
by means of the pseudo-Hamiltonian (Schrodinger
like equation )

s(p b' b)
2 l=l sxl p*bm„*bl sxl

+ (V+E~b) P:'.b = EP.b'.b, (32)

in which it is required that P, g„b and the function
contained inside the large parentheses be continu-
ous; i.e. , in particular, the following relations
must be satisfied:

b
k~b'

Eb&b = E~b+
2

Z
)=1 ~mb)

where

1 1 ~Ebb
b~ rf ~m) hm~-0

(28)

(29)

"EIL$ ~ksz ~kgb)
+~0&ksI & kisbI

m*» being the principal component of the effective-
mass tensor of the electron. When the quantities

Pm/ ™mC j/™m V)
/ (30)

have the same value p for j = 1, 2, 3, then intro-
ducing the relation (see Fig. 4)

E @OmC EQm V
Bm 0mC 1 p

t
J

it may be seen that Eq. (28) holds for m = C

(namely, in the conduction band) when E» &Es„,
while it holds for m = V (i. e. , in valence band) when

«B ." I'inally, the truncated McLaurin series
expansion (28) holds for Ik„&I & k„*», where k„*»

I

I

I

I

I

I

(ksl)I

I

I

I

I

I

I
I

(kiss&&'

FIG. 4. Electron energy diagrams in the semiconductor
as function of k$& for some value of k$2 and k$3.
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Xm~~ =&~~~si~m~x~, &=2, 3 (35)

where the constants p„& are appropriate average
values of the Bloch functions introduced so as to
ensure the matching of the true wave functions.

Assuming that every well-behaved solution of
(32) may be.expanded as a linear combination of
the special solutions g„,=o&X„»(x&), on sepa-
rating the variables in (32) and assuming g ~=-0

outside the region occupied by the two materials
in contact [Figs. 1(b) and 2(b)] one obtains

which correspond to different intervals of the x,
axis must match one another at the extremities of
these intervals according to what was previously
said about g„~. In order to evaluate the density of
the metal free electrons one must calculate X&«
in the metal conduction band, that is, for —I., &x,
&0, A„c&0, and 8 ~0 (Fig. 5). Instead, to evalu-
ate the contribution to the extra charge q(x, ) due to
the electron quantum penetration into the forbidden
energy gap, one must determine X&» for

where, in virtue of (33), ~so &0 (40)

(37)

where

A„, = 2m'„[V(x, ) -a„,],
and from the separation of variables in (32),

S' ( k'„,
2 S ~m*~3 me*a,

(38)

(39)

For a given value of the parameters E, k2, and
43 and of the variable x& the component X~» of the
wave function, which must be deduced from (37),
concerns a particular band of one of the two ma-
terials in the forbidden or allowed part [Fig. 5(b)]
according to the sign of E —V(x) -Ee„, x~, and
A ~, respectively. Such various parts of X„»

k„~- k~~- k)- (v/L))n~, n)= I, 2, 3, . . . ,
2p 3 (36)'

and L„ I2, and Ls are the metal dimensions [Figs.
2(b) and 2(b)]. The function X„q,(x,) is the solu-
tion of the equation

that is, for instance, between 0 and x& in the case
E =Ez and k3= k~= 0 of Fig. 5(b). In fact, the
electrons in such states are in excess of those
which assure the semiconductor electrical neutrali-
ty by occupying the allowed states of the valence
band (A«& 0). The f~~ction X», corresponding to
(40) consists of the sum of two parts, Xz» and

Xs», which, respectively, decrease and increase
in modulus when x~ increases from 0 to x&, since
Az~(x', ) = 0. One may simplify the calculations by
evaluating separately X»„corresponding to the
electrons which enter the semiconductor forbidden
energy gap from the metal, and X»„relative to
the electrons that penetrate into the same energy
range from the valence band of the semiconductor
itself, on the assumption that IXz~q(0) I

» IXzq, (0) I

and IXgyl(x1) I « IXgyl(xl) I . In fact, in this case
the boundary conditions at x&= 0 and x&=x', concern
only X»& and Xz», respectively. The function
X», is not calculated here; nor is X», calculated
for xg + xg,

After the above remarks, Xz» relative to (40)
and the corresponding X&z& may be evaluated by

kg = k3=0

Ec+V

Ec+Vo

Eg

E~+Vp

v+Vo

ITl5vT(f v Vp)

SVT MCT

ET

Vp
s~cT [Ec+Vo)

(a)

H=Hgc

Ec+Vo
/———.--- -E -- —.—--—

N /
Es+Vo-'

Ev'Vo
I

I

I

E) I

1

I

I

I

I

I

I

&-Vp=-ev; (0)

X~

(b)

Ev+V

FIG. 5. (a) Existence
region, in theplane HE, of
the metal electrons which
enter the energy gap of the
semiconductor in a quantum
way; (b) energy-band dia-
gram for M-p contact.
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means of the WEB approximation, which holds for

(41)

and gives

X„cl=B„c,(- A„c) ' cos[V' J ' (- A„c) dx, + 8],
(42)

(48)Xsbl= Bsbl(Asb)
' exp[- I J" (Asb) dxl] .

Moreover, from the Wilson- Sommerf eld quantiza-
tion rule, in the case that (40) holds, k» is
given by

(2 m ic1Hsc)"
I 1 g is

1

n =1, 2, 3, ~ ~ ~
~ (44)

The constant B&=B&&iB&&2B&&3may be obtained
from the existence condition of the electron in the
metal, which turns out to be

dn„b = 2f i/„b i
', dkldksdkb, (48)

where f= (I+ exp[(E —Eb()/kT]) ' is the Fermi-
Dirac factor, and where all the quantities, because
of Eqs. (36), (39), and (44), may be expressed as
functions of both 0& and x& ~ The wave number of the
electron 0& corresponds to the metal conduction band
where V(xl) = 0; in deriving (48) the relations (36)
and (44), the Pauli exclusion principle, and the
electron spin have been taken into account.

By integrating (48) in the ranges 0 &ks &~,
0&kb«, and (2mic, V)l~s/h&k, «, by taking
account of (35), (38), (42), (44), and (45) and by
replacing the squared sines with their mean value
—,,

ssbs' one obtains the density n„c ef the electrons
belonging to the metal conduction band in the form

+wc Nz 1+ + 1+

Bll = 8 heal/L, LSLS . (45)
(49)

Instead, from (38) and (34) the quantities Bsb
=BsblBS»Bsbb and 8 are given for p» real by the
eq uations

Psc f &sb(0) r"'
B» =B)s p„ I, A (0) I

cos9, (46)

Pscmicl ~((' Asb (0)
Psb m*sbl { Asc(0)

+F()mibl 1 sspsbAsb(0) (47)
[h, „(0)]"' 2 2s„P„,A„,(0)

A„,(0) = 2m*bi(V, -H b),

which together with the other relationships allow

one to determine completely the wave functions

(sc) 4sv) and (I)sc.

B. Electron Density

The density dn b of the electrons in the interval

k&, k&+dk& (j = 1, 2, 3) belonging to the band 5 of the
material m is given by

where

16(v 2)h(miclmicsmicb)1~s
N

Also, the density dnsb of the electrons which pene-
trate into the semiconductor forbidden. energy gap
from the metal may be expressed as a function of

Nevertheless, in order to simplify the calcula-
tion of Sec. IV it is useful, under the condition that
m*» = m*» = m*», to make the variable substitu-
tions @=arcsin[k, /(kb+ks)' ]for 0&4 & —,'m,

Hsc I k Jmicl and E & tb [kl/micl+ (kb+kb)/
micr], with E ~ H, which follow from (44) and,
respectively, from (39) for m =M and 5 = C. More-
over, one must observe that in (47) the sum con-
tained in the large parentheses is in practice
near to 1, so that, if (41) is verified for x,=0, the
second member of (47) reduces itself to the f~~tor
outside the large square brackets. Finally, by
again replacing the squared sines with their mean
value s and by assuming P„c= Psb = 1 from (35),
(36), (38), (39), (43), and (45)-(48) one obtains

)8(ga)ym'c (ml i)"' (H-vs){v.+&M -&+(I" /"b ){'-")])"'
~Sb —

p 3 ++EQ$b E+ (micT/mibT) (E

exp(- (2/k) lb (2mibl [V+ EMb E+ (micr/mibT) (E —H)p dxl d d d& (51)
p'0+( imI/ Ci ml) [b~0+EOSb E+( iCT/ ibT) ( )]

which, because of the limitations (31) on the "trans-
verse" wave numbers kss and ksb, and of (36) and

(89), is valid when

I

for the validity of (51), fs.=urn (40), the following
condition must hold:

m)bl [V+E()sb —E+ (micr/mibT) (E -H)] 0 (53)
H «E «H+E»

where ETb = 5 (k'f(b, + kgb)/2mgcT. Moreover,

(52)
In Fig. 5(a) the closed line 2, 3, 10, 11, 2 fixes the
boundaries of the zone of the plane H, E in which,
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q(x~) = —e [no„(x,)+n oc(x~)] . (54)

In virtue of the previous hypothesis V(x~) = Vo, and
from (8), (12), (51), and (54), by assuming f= 1 for
E &E~ and f= 0 for E &E„, namely, by neglecting
the contribution due to the low fraction of the elec-
trons with energy greater than the Fermi level E„,
and by integrating with respect to 4 (between 0 and
2 v), x& (between 0 and ~), E and H {on the zone 2,
3, I, 8, 2 of the plane H, E [Fig. 5(a)]], one obtains
the relationships

em5cr Es —Vo
&/a

2(4) (

&o = o (E~- Vo) (5c+ 5v)
2e~5cr

eqh

s/a
2 eNc(vo —v)

Es

(55)

whose dimensionless quantities 6& and y& are cal-
culated and reported in Appendix B.

Another approximation may consist of using the
Heine equation q(x, )= —enoe "&, where, in our
case, no=no„(0)+noc(0) and the mean value of X can
be calculated, by means of an appropriate assump-
tion, from (51).

for x,=0 and Er„=Erc=Er, the relations (52) and

(53) are verified, and in which (51) holds. The
boundary between the valence and conduction bands
in Fig. 5(a) is atE=Es+V, .

A more general expression of dna& is reported in
Appendix A.

C. Calculation of v& and Fo

In order to determine from (51) the electron
densities soo(x~) on which the various quantities of
Sec. II depend, one should know the electron po-
tential energy V= —ev, (x~) that, in turn, depends
on noo(x, ). One may partly avoid the difficulties of
such a self-consistent calculation by making some
suitable approximations. For instance, by making
the assumption that V(xg) —Vo in (51), one can cal-
culate directly the quantum correction v, of the
capacitance built-in voltage and the electric field
J'o on the interface x&= 0 between the two materials.
Infact, sinceqr(x, ) = —e[& «(x&)+& oc(xq) —&&(x&)],
on the assumption that Nv(x, ) = const = No it follows
from (9) that

samples of n-type CdS and n- and P-type GaAs.
More exactly, the value of the transverse energy
E& which leads to values of vo and v, that satisfy
(21) [or (25)], where the second member is deduced
from the experimental data, is computed; that is,
E& is calculated in such a way as to fit the theo-
retical results with the experimental ones. The
validity of the theory appears to be confirmed by
the fact that E~ assumes practically the same val-
ue for different contacts built by means of the same
semiconductor (this is true especially for cadmium
sulfide) and that such an Er value agrees with the
one deducible from the literature.

The calculation comprises the following steps.
The Fermi level E& of the metal is computed by
means of (50), in which one makes mac&--mo
(=free-electron mass) (j =1, 2, 3), and N„=vN„,
N, & being the metal-atom density and v the electron
number per atom belonging to the conduction band.
From the calculus it follows that the values of v„
vo, J'0, and E& do not depend appreciably on v;
this is in agreement with the fact that the integra-
tion zone 2, 3, 7, 8, 2 and the quantities y&, y&,
5&, and 5& depend essentially on the position of
the metal Fermi level with respect to the semi-
conductor energy bands and not on the E„value.
In Table I the data obtained from the literature and
from the calculation for the metals used here are
summarized. The values 1, 2, and 2 of v for Al,
Pt, and Sn, respectively, are those which give the
best results for Er. For the metals e„= so= (vac-
uum dielectric constant).

In Table II are reported the data, required by the
calculation, for CdS and for GaAs (one assumes
m fc~ =m~ and mdiv& =mf for j = 1, 2, 3) relative to
the room temperature T = 300'K to which all the
experimental and theoretical results are here re-
ferred. In Table H, v, and vP deduced from (3)-(5)
for N&=N~=4~10' cm in the approximation a= 1,
namely, on the assumption that at room tempera-
ture all the impurities be ionized, are also indi-
cated.

In the preceding theory the Schottky-Davydov
energy barrier height y»= p~ —X must be calculat-
ed by means of the "inner" values of the metal

TABLE I. SummarJJ of data for some metals at room
temperature T=300 'K.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

A. Preliminaries ".ietal (x102 m )
Ess
(eV) (eV)

The numerical results deduced, by means of a
computer, from the preceding theory are compared
in this section with the experimental values ob-
tained by Spitzer and Mead on a series of metal-
semiconductor contacts built by evaporating, in the
vacuum, different metals onto "vacuum-cleaved"

Au

Ag
Cu
Al
Pt
Sn

1L
la
la
1
2
2

'See Ref. 37.

5.90
5 76
8.50
6.03

13.2
7.4

'See Ref. 38.

5.5
5 5
7'
5.58
9.43
6.41

4.70b

4.31b
4.52'
4.20"
5.32"
4.21

'See Ref. 39.
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TABLE II. Summaxy of data for CdS and GaAs at
T=300'K.

X
semiconduotox' (ev)

Cds 4.8
GaAs 4.07f

Reference 40.
'Reference 42.
Reference 9.
%eference 44.
'Reference 46.

y yQ

(eV) ms~/m0 —mg/m6 C8/r0 (mV) (IIIV)

2 42b {).5c {) 7 11 6 37 . 36
1 ~ 435g 0 ~ 072h 0 68h 11 1i 41 36

fReference 41.
Reference 43.
'Reference 45.
Reference 47.

work function y& and of the semiconductor electron
affinity X, i.e. , by means of their volume contri-
bution without the sux'fRce dipoles oD the fx'ee sux'-

faces. It is this which represents the difference in
the binding of an electron in the two materials at
contact. However, in, the following calculations the
measured values of p~ and of X reported in Tables
I and II will be used, since the contributions to
them due to the surface dipoles partly compensate
each other in the difference p& —X, and since they
Rx'e solRll RDd ln Rny CRse unknowD.

It should be observed that {|f)»could perhaps be
evaluated directly by means of a variational pro-
cedure of the type applied, for instance, by Bonch-
Bruyevich to the contact of two heavily doped
semiconductors. For this purpose one could use,
for example, the wave functions and the electric
potential deduced in the preceding analysis, taking
as a variational parameter the energy barrier
height {It)ID itself. Any attempt to make such a cal-
culation is beyond the scope of the present analysis.

8. Cadmium Sulfide

In columns 2, 3, and 5 of Table ID are reported
the experimental values of v~, E&-E &, and {I|)„»
= p„, respectively, obtained by Spitzer and Mead
on contacts built by evaporating, in the vacuum,
different metals onto "vacuum-cleaved" samples
of n-type CdS. In column 4 is reported the value
of y«deduced by means of (19). The density Ãz,
of the donors, required to calculate I'0 by means
of (I), is deduced from. the relationship Nv
=2(2smfkT) ~ e' & c'~ /ksonthe assumption
that N~ be equal to the free-electron concentration.
After all this the calculation is made by giving
tentative values to E~ and op from which initial
values of 5c, 5» (see Appendix B), and of Eo, for
v=0 [see (56)j, are obtained. Then, by means of
(13), a new value of vo is deduced which is used in

the following step. The calculation is repeated
until the difference between the new and the old

values of sp is lower, in modulus, than 3mV. The

0o value so obtained is employed to determine yz,
yv (see Appendix B), and, by means of (55), v, .
If vo and v, do not satisfy Eq. (21), whose second
member is obtained using the experimental values

of Tables I-III, the calculation is repeated for
another value of Er, and so on until (21) is fitted.
The values thus obtained for e„v0, Ez, and E0
are reported in columns V, 8, 9, and 10, respec-
tively, of Table ID.

The theory seems confirmed by the fact that the
transverse energy E& assumes practically the same
value in all the cases examined and the common
value so obtained E~= 0. 50+ 0. 04 eV is in agree-
ment with that which can be deduced from the lit-
eratuxe. ' In. fact, if one assumes roughly as an
Er value the value for which the function E„(k) has
a flex, then for Cds Ez lies between 0. 4 and 0. 6

50

The electric field I'0 at the interface between the
two substances, reported in column 10 of Table III,
is positive and much greater in modulus than that
(negative) deduced from the Schottky theory, which,
for instance, corresponding to the values of the
third row of Table III, is equal to —6. 5~10' V/m.
Nevertheless, Eo satisfies the condition (41) re-'

quired for validity of the WKB method. In fact,
from (41) and (38), for ( Vo-H„~ I

—0. 5 eV, it must
be Eo«3&&10 V/m.

In column 6 the Schottky-Davydov barrier height
PSD= P~- X is indicated. Its negative value im-
plies that the contacts, on the basis of the SOT,
should be Ohmic, which does not happen. The
present theory, instead, explains completely the
rectifying properties and the other characteristics
of the contacts.

In column 11 are reported the values of —v&
= (p~„- cpsn)/e. One observes the high values of

&q, —80, Rnd of —'U~.

C. n-Type Gallium Arsenide

Table IV, obtained in the same way as Table III,
summarizes the experimental and theoretical re-
sults for the contacts built, withthe same technique,
with n-type GaAs (Nv = 4 x 10' cm ).

The preceding conclusions also hoM in. this case;
only E& has a greater ra~ge of values. Its mean
value E~= 0. 56+ 0. 09 eV also agrees with the theo-
retical one comprised between 0. 4 and 0.6 eV
(see p. 522 of Ref. 50).

The preceding computational method, which leads
to v, —vp & 0, cannot be applied to the contact Pt-
(n) GaAs because, in this case, since p„,—pan
&0 (vs=0. 98 V, pea=0. 88 eV for Ec-E8=0),
Eq. (21) cannot be satisfied.

The failure of the theory in this case could de-
pend on having neglected the quantum penetration
of the valence-band electrons into the forbidden.
energy gap of the semiconductor which determines,
as one may deduce from the theory of Franz51 and

Keldysh, ' an electron concentration n„(x,)
~ lE(x&) I . In fact, in the case that Eo&0, which

may be true for metal having a high work function
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TABLE III. Summary of experimental and theoretical results for metal-n-type cadmium sulfide contacts.
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Metal

2
a

b

0.66
0.79
0.75
0.65
0.60

3
E -Eg

(eV)

0.09
0.08
0.10
0.12
0.16

9'nc
(eV)

0.787
0.907
0.887
0.807
0.797

5

@ncaa= ~n
(eV)

0.75
0.80
0.78
0.78
0.75

9sD 9N
(eV)

—0.10
—0.10
—0.10
—0.10
-0.10

7
V~

(V)

0.630
0.733
0.717
0.657
0.649

Vp

(V)

0.237
0.271
0.272
0.255
0.256

9
E~
(eV)

0.48
0.55
0.54
0.50
0.49

10
&p

(x10 V/m)

3.48
3.98
3.98
3.74
3.76

(v)

0.85
0.90
0.88
0.88
0.85

0.32

0.45
0.40

0.70
0.68

~H,eference 9.

0.05

0.16
0.16

0.16
0.16

0.407

0.647
0.597

0.897
0.877

0.36

0.54
0.55

0.84
0.88

-0.28

—0.49
-0.49

0.52
0.52

0.503 0.190

0.811 0.326
0.767 0.310

0.284 0.096
0.256 0.090

0.49

0.49
0.48

0.49
0.46

2.96

4.77
4.53

1.62
1.51

0.64

1.03
l.04

0.32
0.36

[see (12)], such an electron quantum penetration
cannot occur in the region x, ~ 0 near the interface,
because the semiconductor valence band from
which the electrons would have to be supplied does
not exist for x~ ~ 0. It is such a lack of n„(x~) for
I' 40 which may be considered as a positive charge
if one assumes, at least to a first approximation,
that the band bending does not induce an electric
space charge. It is this positive charge which may
make v, &0 and vo&0 [see (8), (9), (12), and (13)j
and may allow one to fit (21) also in this case of

D. p-Type Gallium Arsenide

Table V summarized the results for some metal-
P-type gallium arsenide contact. In this case Eq.
(25) is used. The mean value of Er is practically
equal to the one obtained for the n-type GaAs (ex-
cept for the contact with Au).

The theoretical values of y&, indicated in column
11, are much greater than the experimental values
p»I, of the energy barrier height obtained from the
photocurrent measurements. This is due to the
fact that the tunnel transparency

D =exp[- 2(2~m/ ~)' (&E) /3@eEO]

[see Fig. 3(a)j for the values of Eo reported in

column 10 of Table V is high. For instance, for
thedataof thethirdrow, Dhasthevalue 7&10", 1.7
& 10, 3. 85&&10 ', and 5. 6 &&10, respectively, in
correspondence with the values 0. 3, 0. 4, 0. 5, and
0. 6 eV of &E. The high value of D explains also the
large leakage current, the difficulty of obtaining
reliable photodata, and the nonlinearity of the
photoresponse curve obtained by Spitzer and Mead. '

It follows from the comparison of Tables IV and
V that for the contacts Al-oaAs, for which y+E
—p~= 1.305 eV is a large fraction of E = l. 43 eV,
Eo and Eg, vo and v f, vo and v,* have about the
same value, so that, in particular, [as may be
seen from (27)], y„,+ p~, =En, as has been found

by Spitzer and Mead.

V. CONCLUSIONS

The proposed electronic and quantum theory of
the metal-semiconductor contacts is very general,
leads to self-consistent calculations fitting the ex-
perimental results, gives exhaustive answers to
the problems unsolved by the Schottky, Davydov,
Bardeen, and Heine theories, and attains new
significant results. The most important of these
is the proof that the metal free electrons enter the
forbidden energy gap of the semiconductor in a
quantum way and create a space charge and an en-

TABLE IV. Summary of experimental and theoretical results for metal-n-type gallium arsenide contacts.

Metal

Au

Cu
Sn

Al

Ag

2

b

0.98
0.83
0.68
0.74
0.81
0.94

3
(E E&) E

(eV)

4
9'nc

(eV)

1.021
0.871
0.721
0.781
0.851
0.981

5

0'npa = 0'n

(ev)

0.90
0.78
0.67
0.63
0.80
0.88

9 sD 'PN X

(eV)

0.63
0.45
0.14
0.14
0.13
0.24

7
Vq

(v)

0.351
0.377
0.503
0.551
0.615
0.629

—Vp

(v)

0.040
0.047
0.077
0.089
0.105
0.110

9
E~
(v)

0.45
0.51
0.55
0.61
0.61
0.65

10

(x 108 V/m)

0.59
0.74
1.18
1.37
1.56
1.63

(v)

0.27
0.33
0.53
0.49
0.67
0.64

~Heference 9.
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TABLE V. Summary of experimental and theoretical results for metal-p-type gallium arsenide contacts.

0.34
0.44
0.47
0.52
0.50

0.13
0.13
0.13
0.13
0.13

0.506
0.606
0.636
0.686
0.666

0.46
0.45
0.44
0.54
0.52

0.80
1.30
1.30
1 ~ 30
1.30

(V)

0.263
0.673
0.547
0.513
0.530

0.046
0.121
0.114
0.105
0.110

0.32
0.60
0.59
0.51
0.56

10
yjQ

(x 108 @/m)

0.69
1.80
1.70
1.57
1.63

0.759
1.179
1.183
1.199
1.196

ergy barrier in the depletion. layer of the semi-
conductor which, alone, may make the contact
rectifying also when the metal work function is
lower than the semiconductox' electron affinity.
This happens, for instance, for several metal
cadmium sulfide systems.

Furthermore, the quantum space charge affects
the contact junction capacitance by changing appre-
ciably its built-in voltage; i.t produced a strong
electric fieM Fo at the interface between the two
substances directed (save for high-work-function
metals) towards the semiconductor, which, in
particular, by rendering the energy barrier of the
metal-p-type semiconductor contacts highly trans-
parent, makes their forward and reverse currents
"great"; in, the M-n contacts the quantum charge,
instead, makes the height and the transparency of
the energy barrier dependent on the voltage ex-
ternally applied to the diode. In both cases the
high value of Eo produces a non-negligible contact
potential difference vo in, the metal.

The quantum space charge also makes the
p5otobarrier lowex than. that deduced from the ca-
pacitance measurements and causes the sum of the
barrier heights of two contacts built with the same
metal and the same semiconductor, but of differ-
ent type, n and P, of the latter, to differ from the
semiconductor energy gap Ec,

Such new conclusions have been obtained by
means of the new general expressions of the junc-
tion capacitance and of the barrier height deduced
in the electric part of the theory. This holds for
a nonuniform electric charge; that is, it not only
allows one to account for the electrons penetrated

in a quantum way into the semieonduetor, - but may
also be applied when the doping is not constant in.

the semiconductor and/or there is a field-induced
space chax ge and when on the interface between the
two materials there are electric charges due to
any cause, e. g. , to surface states.

The quantum-mechanics part bases itself on the
assumption that the bands theory holds for a finite
crystal up to the lattice boundary an.d that the metal
free electrons with a transverse enex gy greater
than an appropriate value E& do not penetrate to
any appreciable extent into the semiconductor.
has been developed by means of the effective-mass
theory and of the %KB method in the case of non-
degenerate and nonwarped bands having edges at the
central point of the Brillouin reduced zone. The
theory may be extended to the case of degenerate
bands having extrema outside the central point of
the reduced zone and/or to the case in which the
contact surface between the two substances is not
perpendicular to a symmetry axis of each crystal.
Instead, a general calculation of the electron den-
sity by means of a dixect solution of the Schodinger
equation, which, moreover, takes into account the
electron interactions with each other, appears to
be an extremely difficult problem.

An impox'tant quantum part which remains to be
discussed and developed concerns the existence,
or not, of a field-induced space charge in the semi-
conductox' boundary regions.
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APPENMX A

One may give (51) a more general and compact form by using the variables k& (j = 1, 2, 3) and noting that

the various quantities of (51) itself derive from the equation

solved with respect to &„q(x~) by using the McLaurin series expansion (M). If one solves (Al) directly with

respect to )t„'~(x&) for given values of x~, k„2= k~, )t ~= As, and 0, (E = —2II g&,k&/m„c&), one obtains
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4fkgexp [2i fo k,'g(x, ) dx, ]dk, dksdk,
s ks g(xg) [k'„q(0)/ks)(0) —(m sex/ms») ks i(0)/k'si(0)] (A2)

where m g» = mos c, and m s» = m s„,for E & V(0)+Es and E & V(0)+E» respectively.
From (A2) it results that, if, for given values of ks, ks, E, and x~, Ik's, (x,) I is "too great" (Fig. 4),

the corresponding value of dn ~ is "strongly attenuated, " so that its contribution may be neglected. It is on
the basis of such considerations that the limitations (31) are assumed.

APPENDIX B

From (8), (51), (54), and (55), by assuming f= 1 and f=O for E&E„and K&E„, respectively, by putting
V(x) = Vo, and by integrating with respect to 4 (between 0 and —,'s) and x, (between 0 and ~), one obtains

1 (H Vo) ~ [E»+ Vo+ H/u»r (1+ I/u»r)z]
(Zs Vo)~~s Z»+ (1+u», ) Vo+ (1/u»r u», )H (1+ I/u»r)z (al)

where

bT I SbT I

™
NCT ub1 —

i sb1~ ~ ~@C1

(B2}

where, for ubz = ubq = ub,

the integration zone 2 of the plane H, E is the one bounded by the line 2, 8, 4, 5, 2 of Fig. 5(a). The calcu-
lation of the integral (Bl) can be simplified if, by noting that in practice u»~ & 1 and 1/u»r» u»~, the quanti-
ty u»q(vo H) is —added to the sum contained between the square brackets of (Bl) itself.

If r„' denotes the value obtained from (Bl) by making the integration on the zone 1, 2, 5, 6, 1 of the plane
H, E [Fig. 5(a)], it follows that

with

&P
1

[(1+u») R —vP][(I+u») ~ +1]
(1+u»)'" [(1+u»)" R+EP][(1+u„) -1]

R = (Es —Er)~~, P= E» —(1-1/u»)zr, N= (1+u»)zs —u„z», M = {u»[(1+ u„)zs —E»]+Er(1 —u»s)] ~

In an analogous way one has

5»= 5l»s=r-o5»l sr~ (B5)

(1+u„)(Z„-V) (/u»)(1-us»}+(I-us»)sis (
' " (N-M')"' 2)

(Eu») (1+u„)
+ (1+u„)"' (KP) [u„+(u, + u'„)'"]

rc=rcl; o r.l... --
5c = 5c I s,=o —5c I s,

uc uc f' v¹j—Rs(l —uc) i
(I-u )(Z —V)'" 1 — ' ' ' (1-u')"' l~

» Ar +R,(l-us)'~'

(gN ) ln
~+B RB( uc)

l

Ss (R» —s,) (R, + ss)
vNs+Rs(1 -uc)'~ j 1-uc (R +Ss) (Rs —Ss)

(av)

(BS)

5c=
( ( ) (~ ) (1 s) (RsMs —R»M~)+

(1 s)sps sl( (N Ms)xgs 2)

( M~ n M~ Mg—Nslarctan
( s)~&s -2 (1 }sls arctan

( s),&s
—arctan

( s)J/s p (810)
8 B uc uc F ™8
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E — u 0 p RF = (UF —Ep), Re = (E~ -E~), N~ = (1 —uc)U„+ucEc, Xe = (1 —uc)E~+ ucEc,

M~ = (uc[(uc —1)U~+ Ecj+ E~(1 —uc))'~', Me = {uc[(uc —l)E~+ Ec]+E~(l —uc))'~',

I.=E~(1 —uc)+ucEc, S„=[L/uc(1 —uc)j ~

The preceding relationships hold for E~+ Vp & E„&E~+ Vp If Ey+ Vp & E~ & E~+ Vp, it follows that 5c= 0 and

y~ = 0, whereas p~ and y~ must be calculated by replacing E~ with U~ = E„-Vp.
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