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A theory of the Knight shift in degenerate multivalley semiconductors is presented which takes into

account the spin-orbit interaction and the relativistic effects on the hyperfine coupling. This theory

treats rigorously the spinor character of the wave function and the nontensorial nature of the g matrix.

We give a formula for the shift created by an arbitrary ellipsoidal valley. This formula involves a
simple linear combination of g factors and matrix elements of the hyperfine field. In most cases

(except that of a spherical valley) the Knight shift is not proportional to the Pauli paramagnetic

susceptibility.

I. INTRODUCTION

This paper presents a theory of the Knight shift
in multivalley semiconductors. In such materials,
the spin-orbit interaction has a profound effect on
the energy eigenstates. These states are mixed
spin and orbital states, i.e. , the Bloch wave func-
tions are spinors. The previous theories of the
Knight shift in semiconductors have not correctly
taken into account this spinor character of the
wave function. The first theory, given by Sapoval
in the case of PbTe, ignored this property'; the
expression given by Sapoval in the case of the con-
tact interaction was essentially correct but its
derivation was oversimplified. Bailey gave an ex-
pression of the contact Knight shift in PbTe, but
he ignored Yafet's treatment of the hyperfine cou-
pling showing that the hyperfine Hamiltonian does
not involve the effective g factors. ' He then ob-
tained a Knight-shift expression proportional to
the electronic paramagnetic susceptibility. This
is incorrect. Senturia and co-workers were the
first to use spinor wave functions and derived a
more comprehensive expression for the contact
Knight shift in PbTe. ' However, they overlooked
the difference between the fictitious spin and the
real electron spin, which leads to an ambiguity on
the final sign of the contact Knight shift. A similar
shortcoming is found in the work of Hewes, who

gave another expression for the contact Knight shift
due to s-like electrons and an expression for the
orbital shift created by p-like electrons. There
exists no theory of the dipolar shift in cubic crys-
tals.

It thus appears that there exists no rigorous the-
ory of the Knight shift in semiconductors. The
purpose of this paper is to give a rigorous deriva-
tion of the Knight shift when the spin-orbit inter-
action cannot be considered as a small perturba-
tion. This is the case in many semiconductors.

In many cases of multivalley semiconductors or

semimetals, the nuclei have a high atomic number

Z and the relativistic effects on the hyperfine cou-
pling are of major importance. The relativistic
corrections to the hyperfine interaction will be de-
scribed in Sec. II. In Sec. III we derive general
expressions for the Knight shift due to the carriers
in one valley, in the case of parabolic bands.

II. HYPERFINE INTERACTION

The Knight shift is the value of the magnetic field
created at the nuclear site by electrons partially
polarized in an external magnetic field. The elec-
tronic field depends first on crystalline factors
which are the density of states and the effective g
factors. The value of these quantitites is usually
evaluated in a two-component spinor formalism
which includes relativistic corrections to the Pauli
Hamiltonian. The other physical quantity enter-
ing the Knight shift is the hyperfine-coupling con-
stant in the solids, ' whose value is strongly af-
fected by relativistic effects as shown below.

The hyperfine-coupling constant in the solid de-
pends on the behavior of the electronic wave func-
tion very near to the nucleus, in a region where the
electrostatic energy of the electron in the nuclear
potential becomes comparable to the rest mass
energy mc . To calculate the hyperfine-coupling
constant the full relativistic Dirac Hamiltonian and
four-component wave functions should be used.
However, a four-component band theory does not
generally exist for semiconductors, because a two-
component approximation which includes relativist-
ic corrections is sufficient to describe the crys-
talline parameters (energy levels, effective masses,
and effective g factors). The situation is similar to
that of a heavy atom ': The energy eigenvalues can
be calculated reasonably well using a Pauli Hamil-
tonian but the evaluation of the hyperfine-coupling
constant requires the use of a four-component
Dirac Hamiltonian. To compare the hyperfine-
coupling constant in the solid with the experimental
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hyperfine-coupling constant in atoms, it is neces-
sary to match the two-component theory with the
four-coIQponen't theoryb This is done by using an
equivalent Hamiltonian ~f which has the same ex-
pectation value over the large component of the
Dirac wave function as the Dirac hyperfine Ham-
iltonian over the four-component Dirac wave func-
tion. "' This procedure is excellent, as long as
the total energy x'emains of the order of the rest
energy. ' The large component of the Dirac wave
function is then identified with the nonrelativistic
Bloch-function solutloQ of the two-component Ham-
iltonian which is used to evaluate the crystalline
parameters. This approximation consists in ne-
glecting the influence of the small component far
from the nuclei; this is a good approximation.
Whenever crystal wave functions are used to cal-
culate matrix elements of the hyperfine Hamiltonian,
these wave functions are considered to be the large
components of the Dirac wave function.

The equivalent hyperf inc Hamiltonian ~f can be
written

Nf Ntl+Wfs '

The operator ~„is the equivalent of the nonrela-
tivistic Fermi contact interaction':

2m'
me'+Z+ esp

ek p. xrx b 3 (oxv)(-etp) ~

4m c

where E is the total energy of the electron includ-
ing the rest energy me, p is the magnetic momen;
turn of the nucleus, y is the electrostatic potential,
—,
'

g is the spin of the electron, and r is the elec-
tron coordinate relative to the nucleus. The sec-
ond term +f3 represents the orbital and dipolar
interactions

32mc ifff ~ ~ ~ ~ I, if 1

J

where p~ is the Bohr magneton and 1 is the orbital
angular momentum of the electron. In the case
where the electrostatic potential q is the Coulomb
potential of a nucleus of charge Ze, the first Ham-
iltonian K „can be rewritten, neglecting E —mob
with respect to me:

Zgo 1
Nfl iB 2 P ( zZ )b

(o r)(p, r)x o' p — , , (I)~
~

where f"O=e /me is the classical radius of the
electron. The distance Zxo defines a "relativistic
region" around the nucleus. In the case of lead,
for instance, the value Zro is 2. 3@10"cm. In-

side this region, the electrostatic energy of the
electron is larger than mc and the crystal poten-
tial is negligibl. Furthermore, the distance Zxo
is smaller than the mean radius of the orbit of the
18 electrons so that the use of a pure Coulomb po-
tential, due only to the charge Ze of the nucleus,
18 well ]ustified

The Hamiltonian X„„corresponds to the classical
Fermi contact Hamiltonian and we name it the con-
tact hyperfine Hamiltonian. It contributes to the
shift mainly for an s-like wave function and, to a
lesser extent, for non-s-like wave functions. In
the case of a pure s-like wave function, a straight-
forward calculation shows that it reduces to

Nfl = & ' Hbbbf ~

H. f=-b &a&(f')o,

Zg0"'=2"("-Z.)
.

The operator H, represents the correct expres-
sion of the contact field created at the nucleus by
an s-like electron. The function h(r) replaces the
usual function ~4wii(r), 4 where 6(r) is the Dirac
function. In the nonrelativistic limit when c -~,
that is, when ~bZro-0, both functions h(r) and
4ffii(r) yield the same hyperfine interaction for s
electrons. Note that the contact interaction in-
volves not only the value of the electron wave func-
tion at the nuclear site but also its value over a
distance Zro. This leads to significant differences
for heavy nuclei. Within the same approximations,
the Hamiltonian ~fz can be written .

%f2 i ' (Hofb+ Hdfb)s

where

y t' o 3r(o' r)
++g go

The operators H„b and H«, represent, respective-
ly, the orbital and dipolar fields at the nuclear site,
and contribute to the hyperfine interaction only for
non-s electrons. It must be noted that the hyper-
fine Hamiltonians ~f, and +f3 involve the free-
electron g factor g, = 2 and not the g factors modi-
fied by the spin-orbit interaction and the crystalline
potential. This is due to the very short range of
the electron-nucleus interaction. The above ex-
pressions differ from the usual expressions for
orbital and dipolar hyperfine fields by the factor
f'j(f'+ ,' Zf 0). In pra—ctice this factor is very close
to unity in the effective range of x 3 and we can
keep the classical expx essions
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H„»= —2PB ~ 1/r

H«, = —p, B [3r ~ (o" r)/~' —o/r'].

(3a)

(3b)

g~i 0 0 ~
g= 0 gya 0

The expectation value of these quantities must be
evaluated with the large component of the Dirac
wave function.

It is interesting to compare the value of the hy-
perfine-coupling constant, in this approximate
two-component reduction, to the classical value and
to the fully relativistic value. In the case of atomic
lead, for instance, the calculated classical proba-
bility of presence at the nuclear site of the 6s elec-
trons is'5

l)2,(0)l =1.39x10 cm

The calculated classical expectation value of x 3 in
the 6p atomic-lead wave function is'

&r &22= 7.54x10 cm

The corresponding "two-component" and "four-
component" relativistic values can be deduced from
the fully relativistic values of the atomic-lead wave
functions computed by Desclaux. ' Desclaux per-
formed a restricted Hartree-Fock computation of
the Dirac wave functions and of the corresponding
hyperfine-coupling constants for Pb, Pb', and Pb",
taking into account the finite size of the nucleus.
For the 6s&~& states of Pb, the value of the rela-
tivistic equivalent of ~(2,(0}[ is 3.95x10 cm 2

using the two-component reduction and 4. 15' 10
cm using the four-component formalisms. For
the 6p&~2 states of Pb, the value of the relativistic
equivalent of &r )22 is, respectively, 2. 10x10 2and

2. 17' 10 cm, using the two-component and the
four-component formalisms. It is clear that the
"two-component" reduction of the hyperfine-struc-
ture Hamiltonian is a good approximation provided
the hyperfine-coupling constants are calculated
with the large component of the Dirac wave func-
tion. One also notes that, in the case of lead, the
relativistic effects enhance the hyperfine-coupling
constant by a factor of about 3.

In conclusion, the electron nucleus interaction
gives rise to a one-electron additional field II~
=H, +H„»+H«, given by Eqs. (2), (3a), and (3b).
This field, summed over all the electrons in the
crystal, gives rise to the Knight shift.

III. KNIGHT SHIFT ARISING FROM AN ELLIPSOIDAL
VALLEY

We now proceed to the calculation of the Knight
shift in the simple case where the symmetry at
the band edge is not lower than Dz„, with inver-
sion. ' ' The magnetic Hamiltonian of the elec-
tron in the external field Ho can be written

3'~= Pa S'eggHoy (4)

where S' is the fictitious spin and g is the g matrix'

&4„;&ls',l4„;e&=5~ ~x,g /2g, (6)

where S, is the a component of the fictitious spin
operator. The expectation value of the hyperfine
field is given by the matrix elements within the
states ~4 „„.e& of the axial vector operator H„, de-
fined in Sec. II. In the cases of symmetry con-
sidered above, there are always irreducible rep-
resentations I', whose basis functions are the com-
ponents g„,g» and g, of such an axial vector. '2

It can be verified that, if I'
z is the irreducible

representation to which the states I n„»& and I p, »&

belong, the tensorial product 1*„~&st';81" z con-
tains once the unit representation I'&. The ig-
ner —Eckart theorem shows then that the matrix
elements of the qth component of H„, and of the vec-
tor operator representing the magnetic momentP(I B8'1Sl ' i g 2 $2 OBg 2S2) are'propor-
tional in the 4„„-,manifold:

(7)
for all e and e'. The proportionality constant V, is
obtained by application of Eq. (7) to particular
states in the 4„»„, manifold; it is found that

~.= —(2/~Bg. i) &n »IIf»2..I p.»&

y, = —(22/4 g,2) &n.»lff»f„l p,»&, (6)

y, = —(2/p, ,g~) &n„„-lIf„,, l
n„;).,

Thus, from Eqs. (6)-(8), the expectation value of

To obtain a single diagonal g matrix, the g factors
are calculated in states I n„»& and I p„»& = JK I n, »&,

which are conjugates by space and time inversion
J and K, and which belong to the same complex
representation of the double group'; these states
satisfy the relatlom27

) =1m &n„»lg„l p„»&=0,
(5)

sgn &n »I o'
I
n 2&= sgn(Re&n"-In.

l p..-&)

= sgn(- Im&n„„-[o„[p„»&),

where g„.p„, and o, represent twice the compo-
nents of the spin operator.

Let ~4„»e& (e = + 1) be two conjugate eigenstates
of the magnetic Hamiltonian (4). Their magnetic
energies are —,

'
&g pBH2, where g = (X„g„,+&,g&

+ X2g2&)'I2, X„,X„, and X,being the direction cosines of
the magnetic field. '7 The states ~4„„"2&are linear
combinations of the states

~ n„»& and lP„»&. The
diagonalization of the Hamiltonian 3C„ is straight-
forward and it is easily shown that
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the field H„, is

+f~,g,a&n

+~agua &nnfTI IIhtesl n~a&K)&

I, J, and K being unit vectors along the Ox, Oy, and
Og directions. This one-electron contribution is
next summed over all the occupied electron states
to obtain the field ITcreated at the nuclei by the car-
riers in the valley. This is a standard calcula-
tion ' ' which gives, in degenerate statistics and
for an electronic Zeeman energy small as compared
to the Fermi energy E~,

H= —&a p(Ez)(~.g.i& .'IIf ~a..l p.f&I

+a~,g,a &n.flea~, .l pnf& J
+'.g„&n„„-la„,.l

p„f&K)e„
where p(E.) is the density of states at the Fermi
level for one-spin orientation, in the valley under
consideration. This expression is valid as long as
nonparabolic effects are negligible, that is, under
the assumption that the hyperf inc-coupling parame-
ters y, and the g factors are k independent. This is
the case for low carrier concentration: The values
at the band edge and at the Fermi level of all the
above quantities are then approximately equal.

The Knight shift of the valley 4H is the part of
this supplementary field which is parallel to Ho.'

»p(E.)("g &&n aIHhf, I
p a&

+a&,'g, a &nnalffai„l pnf)

+x',g~ (n„„-lP~,
I
n„„-))H~. (9)

The second term in Eq. (9) is real since the matrix
element (n„f IH„, , [P„„-) is purely ™ginary. This
can be seen in the following way: The real part of
this matrix element is written

2Re &n„flH„,., I p„f)

= &n rllfac, . p f&+&p f Hhf, In.f&.

From the Wigner-Eckart theorem, the following

relations hold:

&n„; a„„lp„;&=c&n„,l,, l
p„„-&,

where C is a constant. It follows that

Re(n„„"IH„, IP„a) =CRe &n„aln, lP„a&.

This last term is zero from E I. (5).
In the case where the g matrix is scalar and the

wave functions are not spinors, Eq. (9) gives the
usual expression of the Knight shift. '~'4 The usual
Knight shift is proportional to the paramagnetic
susceptibility. Although this is true in the case of
a scalar g matrix, it is wrong in general, since
expression (9) is proportional to a linear combina-
tion of the g factors whereas the paramagnetic
susceptibility is proportional to a quadratic com-
bination of the g factors.

To obtain the Knight shift in a specific case, one
has to sum the effects of the different valleys so
that the result depends on the specific band struc-
ture under consideration. This calculation is done
in the following paper in the particular case of the
lead salts. In the general case the three parts
of the hyperfine field (contact, orbital, and dipolar)
contribute to the shift. The dipolar shift is general-
ly considered to be zero in cubic crystals. This is
correct in the absence of spin-orbit coupling. It
must be emphasized that in the presence of spin-
orbit coupling the dipolar shift is nonzero in cubic
crystals. It can even be very large: For example,
in the N-type lead salts, the dipolar field is re-
sponsible for as much as half of the large observed
shift.
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We report a detailed experimental and theoretical investigation of the large Knight shifts of Pb' ' in

N- and P-type PbSe and PbTe at low temperature. The nuclear-resonance experiments are performed

on bulk single crystals using the technique of helicon-spin interaction. We give the first quantitative

account of the Knight shift of Pb' ' due to s-like holes, and we determine a value of the hyperfine

coupling constant that confirms the validity of augmented-plane-wave calculations for the lead salts. The

large shift created by the p-like conduction electrons is shown to be due to the large orbital and

dipolar hyperfine fields arising from p, &, states. In presence of spin-orbit interaction, the dipolar field

(which previous studies, invoking cubic symmetry, ignored) cannot be neglected: It is in fact responsible

for half of the shift. This study shows that a large Knight shift must not be interpreted as an

experimental evidence of an s-like symmetry of the wave function.

I. INTRODUCTION

This paper presents a detailed study of the
Knight shift of the Pb 0~ nuclei resonance in the
semiconducting IV-VI compounds PbSe and PbTe
at low temperature. Both PbSe and PbTe exhibit
very large Knight shifts of Pb~o~ in N- and P-type
materials (1% for 10 carriers) while the shift of
Te remains very small. The shi.fts of Pb are
among the largest shifts per electron known in
nontransition materials. The magnitude of this
shift in N-type material is surprisingly large since
the conduction-band wave function in these materi-
als is of p-like symmetry around lead and it is
generally believed that only s-like electrons give
rise to a large Knight shift. The observation of

. such large shifts in N-type PbSe and PbTe raises
the foQowing question: Should a large Knight shift
still be considered as experimental evidence of the
s-like symmetry of the wave function, or, is it
possible to obtain large Knight shifts with p-like
states' The answer to this question is of practical
importance because the former argument is com-
monly put forward to clarify the nature of the elec-
tronic levels in band-structure theoretical stud-

ies.
Various theoretical attempts have been made to

explain the large Knight shift in PbTe. In fact, the
origin of these shifts has not been quantitatively
understood, even in the case of the s-like valence
band.

The earlier nuclear-magnetic-resonance (NMR)
measurements in the lead salts are those of Wein-
berg and Callaway~ and Weinberg. These authors
studied the temperature dependence of the Pb 0~

NMR in powdered P-type PbTe between 260 and

450 'K. They i.nterpreted as a temperature depen-
dence of the Knight shift what was in fact a tem-
perature dependence of the chemical shift. A

theoretical interpretation of the Weinberg-Calla-
way measurements, mistaken for a Knight shift,
was given by Bailey in terms of relativistic aug-
mented plane waves. His theoretical expression
of Knight shift is incorrect because he ignored
Yafet's treatment~2 of the hyperfine coupling show-

ing that the contact interaction is not modified by
the crystal potential. Lee and co-workers 3 have
made NMR measurements on Pb~~ in PbSe. Their
results are discussed in Ref. 10, where it is
shown that their theoretical interpretation is


