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Complete measurements of the anisotropy of the central-orbit cyclotron effective masses by
Azbel'-Kaner cyclotron resonance have been taken at a frequency of 24.03 6Hz and a temperature of
1.15'K for the magnetic field in the three crystallographic planes of Bi, Deviations of up to 10% from
ellipsoidal behavior were observed for the electron-eA'ective-mass anisotropies. Except in one instance,
the various effective-mass anisotropies give a good fit to the Cohen nonellipsoidal nonparabolic (NENP)
model and the fit is clearly superior to the Lax ellipsoidal nonparabolic model Ait. The ratio of the
Fermi energy to the L-point band-gap energy, F. F/F. g, was determined from fitting the NENP model
and found to be 1.S+0.4, in good agreement with other measurements. The At to the NENP model
also indicated that m, /m, ' is approximately 1, implying that the L-point valence and conduction
bands have identical parameters. The cyclotron effective masses agree within 3% with the values
obtained by Edel'man and Khaikin, and disagree by as much as 30% with the values obtained by Kao.
Quantum oscillations of the microwave surface impedance similar in nature to de Haas —Schubnikov
oscillations have also been observed, but periods arising from the large cross-sectional areas could not
be detected and no conclusions regarding the NENP model could be made. Magnetoplasma oscillations
due to standing Alfven waves have also been observed. The mass-density values derived from these
measurements agree with the values obtained by other investigators. However, the carrier concentration
derived from the Alfven-wave periods differs by nearly 12% with the value derived from the
Azbel'-Kaner cyclotron-resonance measurements, This difference may be due to noneBipsoidal effects.

I. INTRODUCTION

In spite of a wealth of experimental measure-
ments on the electron Fermi surface of Bi, the
exact shape of the surface is still somewhat uncer-
tain. Two recent papers, for examyle, are at odds
with each other. Herrmann et uE. , ' from rf-size-
effect measurements, obtain data which supports
the Cohen nonellipsoidal nonparabolic (NENP)
modela of the electron Fermi surface, whereas
the magneto-optical results of Maltz and Dressel-
haus support the Lax ellipsoidal nonyarabolic
(ENP) model. In two earlier papers ~ 8 (hereafter
referred to as I and II, respectively), we analyzed
the Azbel'-Kaner cyclotron-resonance (AKCR) data
of Edel'man and Khaikin (hereafter, EK) and Kao
and, with a few exceptions, found reasonable agree-
ment with the NENP model. The various discrep-
ancies between experiments and the Fermi-sur-
face models for Bi have been reviewed in I and II.

In hopes of clarifying the situation, we undertook
further measurements of cyclotron resonance in
Bi. At the outset, we were motivated by our abili-
ty to observe quantum oscillations (QO) of the
microwave surface impedance similar in origin to

de Haas-Shubnikov oscillations and magnetoplasma
oscillations of the A1fven-wave type, in addition to
cyclotron resonance. All three phenomena were
observed during the same liquid-helium run, with
no basic change in measurement method required,
a circumstance which had the yotential to reveal
fine deviations of the Fermi surface from ellip-
soidality. For example, by forming the ratio of
the cyclotron effective mass m* and the extremal
cross-sectional area A„t (the parameter obtained
from the QO), the deviations expected for the
NENP model are about 20% instead of the 10% or
so expected in either m* or A,„,alone. The fact
that the phenomena were observable simultaneous-
ly meant that errors due to sample handling, mis-
alignment, temperature variations, and the like
would not be present, as they might be if data from
different investigators were combined.

Unfortunately, in spite of the fact that QO were
observable over a large angular range, it turned
out that at the crucial angles where the ratio might
be expected to Show up the deviations, the QO
disappeared, apparently because of a lack of suffi-
cient resolution in our ayparatus. Hence, our
original motivation for undertaking the present set
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of measurements did not completely work out.
However, by holding the AKCR errors to a maxi-
mum of about 4% and more typically 2/0, a con-
sistent deviation of the m* anisotroyy curves from
the ellipsoidal model was observed. Moreover,
a fairly good fit to the NENP model was obtained
in most cases. In this paper, we report the AKCR
results in detail, and summarize the QO and
Alfven-wave results.

H. THEORETICAL CONSIDERATIONS

A. Brief Review of Oscillatory-Surface-Impedance
Phenomena in Bi.

l. Azbel'-Kaner Cyclotron Resonance

Since Azbel' and Kaner's original paper pre-
dicting the effect, AKCR has been observed in
many metals. The conditions for observing the
effect as treated by them require that z, the radi-
us of a cyclotron orbit, and l, the mean free path,
be much larger than the skin depth 5. Then, when
the external magnetic field H is applied parallel
to the surface of the sample, the spiraling carriers
interact repeatedly with the microwave electric
field E „in the skin depth. At certain values of
the magnetic field H~, the orbital cyclotron fre-
quency will be an integral multiple of the frequency
of the microwave electric field, and resonant ab-
sorption of energy by the carriers will occur.
The values of II& are given by

1 Ne
Hg QjmW fag C

where ~ is the microwave frequency (in radians)
and m~ is the cyclotron effective mass. Hence,
AKCR allows one to measure the value of m* by
using Eq. (1).

The AKCR effect is strongest when E - „and H

are perpendicular to each other. For this orien. -
tation, the electron orbits whose cyclotron effec-
tive mass enters into Eq. (4) are extremal orbits,
i.e., orbits whose cyclotron effective mass satis-
fies Sm*/sk„=0, where k„=f 8/)H~. These
orbits, in the case of Bi and in general in the case
of any nonreentrant Fermi surface with a center
of inversion, lie in a plane which contains the cen-
ter of inversion and are called central orbits (CO).
The CO cyclotron effective mass can be related
to the geometry of the Fermi surface by the equa-
tion

BX~~ xt
2F eE

In this equation, A,~ is the extremal cross-sec-
tional area of the Fermi surface perpendicular to
H. We are able to use the definition 8A„, /8E in
Eq. (2) rather than the more general definition
(BA/BZ)„, (where A is not necessarily extremal)

because of the assumption of a centrosymmetric
nonreentrant Fermi surface. All of the AKCR
data reported here are CO data.

The two conditions for observing AKCR men-
tioned above (r, f » 6) are always true (for good
samples) for pure-metal single crystals at liquid-
helium temperatures, but in the case of Bi must
be examined more closely. Because of the lower
carrier concentration in Bi, E „penetrates further
into the crystal than in the ease of metals and the
condition that z» 5 may not always be satisfied in
Bi. In fact, a simple calculation shows that x= 5
for fieMs on the order of 500 G. The breakdown
of the condition x»5 shows up in the data in the
form of a distortion of the line shape from the
form predicted by the theory and in a shift of the
peak position from the value predicted by Eq. (1).
In the present work, the cyclotron-effective-mass
values were calculated from those peaks of a series
which occurred below 200 G, where possible. %'e

might add that frequently peaks of a series which
occurred above 200 6, including fundamentals
above 1000 G, fitted Eq. (1) quite well, even though
x~ 5. Kao has given a qualitative explanation of

. why AKCR is apparently still observable even
when g &Q.

2. Quantum Oscillations

The QO, when observable, commenced near
3.000 6 and continued to the highest fields used
(15 kG). The oscillations were analyzed on the
assumption that they are de Haas-Shubnikov-type
oscillations, which result from the passage of
Landau levels through the extremal areas of the
Fermi surface. The period b of the oscillations
in 1/H is related to the geometry of the Fermi
surface by the relation due to Onsager, '0

A„~ = 2veS'/cn, ,

where as before A,~ is the extremal cross-sec-
tional area of the Fermi surface perpendicular to
H. Area anisotroyies consistent with the AKCR
results were obtained when the oscillations were
analyzed in this manner, confirming that they are
de Haas-Shubnlkov-type osclllatlons.

3. Standing Alfven Saves

Treating the electxon and hole charge carriers
in pure Bi as a cold, compensated solid-state
plasma with an isotroyic relaxation time, Issae-
son and Williams" show that a dispersion relation
of the form

p Arm's)
g f(n„n, mg, Mg)

results. The quantity k is the wave number of the
magnetoplasma wave, ~ is the free-electron mass,
and f is the so-called mass density, a complicated
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function of the hole and electron concentrations,
the elements of the hole and electron effective-
mass tensors Rnd the ox'lentRtlon of H Rnd E ~

The inverse fieM dependence of wave number is
characteristic of Alfven-tyye waves. Because the
Alfven wavelength is a function of magnetic field,
at certain values of the magnetic fieM H~, an in-
tegral number of half-wavelengths, N, will be con™
tained in the sample thickness. When this happens,
a minimum occurs in the microwave surface im-
pedance. Magnetoplasma waves in the pure jgf-
ven mode were observed in the bvo samples whose
opposite faces were sufficiently parallel and
smooth to show this Fabry-Perot-type resonance.

The relationship between H~ and N for a sample
of thickness 4 is easily found to be

(&o „/HN)(4vmof)'~ d=Nv .
Assigning the lowest value of N to the yeak at the
highest field and numbexing the peaks in order, it
is seenby Eq. (5) that a plot of 1/HN versus Nis
a straight line whose slope is proportional to f.

Equation (4) is actually only approximately cor-
rect, and its derivation neglects such factors as
the magnetic field dependence of the Fermi ener-
gy. " An essentially linear plot of N versus 1/H„
results only if the values of B~ used are much less
than the value of the magnetic field which forces
the n= 1 Landau level thx"ough the extremal orbit
on the Fermi surface. For Bi, this value of 0
deyends on orientation and has R minimum value
of about 1$ kG. In all cases, the value of fwas
computed fx'om the low-field, linear part of the
N-versus-1/H& plot.

8. Anisotropy Equations

The NENP disyersion relation, given in the
Appendix, in its most general form allows the con-
duction and valence bands to have different values
for ma. In I we derived the NENP cyclotron-
effeetive-mass anisotropy assuming that ma= m&

(mz is the valence-band parameter). In order to
obtain the most information from the experimen-
tal data, for this work we have derived the appro-
priate equations for the ease m&e ma. The pro-
cedure is identical to the procedure used in I, but
the algebra involved is considerably longer and
more tedious. In the Appendix we have listed the
resulting equRtlon fol the Rnisotropy

III. EXPERIMENTAL ASPECTS

The samples used in this work are the same as
those used by Everett'3 in an earlier perpendicu-
lar-field cyclotron-resonance study in 1961. As
described in Ref. 13, the samples were made by
a Bridgman technique and the surface yrodueed
by spark cutting, followed by chemically lapping
the crystals on a cloth saturated with the standard

polishing solution for pure Bi. After their use in
1961, the samples were untouched until the present
investigation was begun in 1969. Over the inter-
vening eight years, the samples presumably were
annealing; the ideal annealing temperature of pure
Bi is roughly of the order of room temperature.
%6 attribute our RbQity to observe Rs many as 21
AKCR subharmonics at least in part to this long-
term annealing process. The inferior 5inary-
plane samples had to be cut and repolished for the
work reported here because it exceeded the in-
side dimensions of the liquid-helium Dewar. The
resulting surface obtained by the repolishing was
not as flat as the original surface. All three
samples were in the form of slabs with accurately
parallel sides and were about 5 mm thick.

The measurement techniques used in this ex-
periment wex'e fairly standard. An end- mounted
reflection-type cavity was employed in which the
sample formed one end of the cavity. The sam-
ple normal was vertical and pax'allel to the direc-
tion of propagation. A smaQ 40-Hz modulation
field was added on. top of the slowly varying. ap-
plied field and synchronous detection used at 40
Hz. A I/H sweep was used in conjunction with a
propoxtional modulation-width controller in order
to sweep large field intexvals, while not runni. ng
the risk of over- ox' undermodulation. The modu-
lation-width controller varied the modulation-sig-
nal amplitude, so that the ratio of modulation am-
plitude to applied fieM was essentially constant.

The klystron source was tuned to 24. 0 6Hz and
reflected power from the cavity monitored with a
circulator. All measurements were made at
1.15'K. The magnetic field was generated by an
iron-core magnet capable of producing a 23. 5-ko
field ln R 2-ln. gRp. The Q1Rgnetlc field wRs mea-
sured by a Rawson-Lush rotating-coil gaussmeter
with a stated accuracy of at least 0. 01%. The
calibration of the gaussmeter was checked with a
Varian NMR probe. The magnet rested on a
rotating platform, so that the field could be rotated
360' in a horizontal plane. The magnetic field
direction was parallel to the surface of the sample
to better than 1 . '

IV. EXPERIMENTAL RESULTS

A. AKCR Results

The cyclotron effective masses were obtained
by least-squares fitting of a curve to the variables
N, the peak index, and 1/HN, the peak-field-value
recipx'ocal. Cooper and Lawson~ have described
at length the problems encountered using least-
squares-fitting techniques when one of the variables
takes on only integer values.

The uncertainties in the determination of the
cyelotxon effective mass arise from difficulties
associated with accurately locating the H„, such
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FIG. 1. Azbel'-~-'-~oner cyclotron-resonance trace for
the magnetic field in the trigonal plane and al

in low-&v' samples, and from shifts in the true
location of II' due to experimental errors such as

ie sweep. Foronlinearities in the magnetic f' ld
the bisectrix and trigonal samples, the cumula-
ive effect of these errors was usually about 1%

in e small-massor less and was smallest for H
' th

directions. Nd' ' . ear the large-mass directions, these
errors were occasionally 3%, but 2% was a more
ypical figure. Generally speakin

that the rel t'
e ing, we can say

ne poin o thea e relative error in m* from o ' t t
next is no greater than about 3% for the bisectrix

e inary sample,and trigonal samples. For th b'

b
however, this relative error was some h t 1w a arger
ecause of the lower value of & 0v. ccasional un-

certainties of 6% were encountered, but 4% and
less were more typical.

In the tri onal 1'g p ane, the most complete set of
AKCR data of any plane was taks en. Figure 1 shows
an AKCR trace for H parallel to the binar
and E lH

e inary axis

in th
At least 20 peaks could be 1 d

in e low-field mb)-mgz& branch, although in Fig.
1 only about 15 can be seen because of th 1

g
' required to keep the low-order subharmonicsain

from saturating the electro Thnics. he number of
subharmonic peaks which can be resolved for a
particularp ar mass branch varied markedly with the
orientation of H. As H is rotated fro

H fl

ion parallel to the small-effective-mass d tss iree ion

(Hi t
p, to the large-effective-mass d t'ss irection

deer
p&, the number of observable subhsu armonics

is ecreaseecreases from 20 to about nine. This d

is a tributable to the anisotropy of the electron
relaxation time ' '

e mass with theThe variation of the measured CQ
ig. or the elec-orientation of H is given in Fi 2 f

rons, along with the curves computed for the ENP
and NENP modelsels. Figure 3 is a polar plot of the
small effective masses in the trigonal 1

e poin s shown on Fig. 3, the ENP and NENP
curves coincide.

the or.
'

The differences between the mod 1mo e s occur near
e orientations of H where the cyclotron effective

mass is largest, a statement true in general for

th
every plane. In Fig. 2, the curve computed f

e NENP model for r = 1.0 and X = 2 0 '
01

to fit the ex
is observed

o i e experimental points quite well and the
fit to the Ne NENP model is clearly superior to the
fit to the ENP model. For any x th ere is always
a value of X giving a curve which fits the data as
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FIG. 3. Polar lop t of small electron cyclotron effec-
tive masses observed in the trigonal plane of Bi. The
curves are generated from both the ENP and NENP mod-
els, which coincide for the points shown here.
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Investigator H,ef. (me V)

g
(meV)

Jain
Brown et al.
Weiner
Engeler
Hebel and Wolff
Smith et al.
Brown and Silverman
Esaki and Stiles
Strom et al.
Brandt et al.
EK
EK
Bate et al.
Antcliffe and Bate
Ellet et al.

18
19
20
21
22
23
24
25
26
27

7
7

28
29
30

17.7
25
22
22a

27
27.6
21
15
29.2
27

7
15
46
24
14
15'
24
20
12
20

2.5
1.7
0.5
0.9
1.9
1.8
0.9
0.75
2.4
1.3
1.7
0.5

3

»1

Assumed value found in Ref. 20.
"Assumed value found in Ref. 19.
'As interpreted by Dinger and Lawson,
As interpreted by Dinger and Lawson,

Ref. 5.
Ref. 6.

TABLE I. Band-structure parameters reported in the
literature for Bi. .

have to go further than the first step. Assuming
a value of r=1.0 gives X=1.44, a quite reasonable
value. A logical question to ask is what range of
~ results when & is allowed to vary between 0. 5

and 1.7. The answer can be found in Fig. 4. Val-
ues of r and X which result in the best least-squares
fit to the data points give the curve shown on the
graph. The portion of the curve within the rec-
tangle represents the most logical values of ~ and

&, based on 0. 5& X& 1.7. The point to notice is
that the range of r within this rectangle is fairly
small (0. 9 &r & l. 7) and is near unity. In particu-
lar, a value of r = 3 (which is the value found by
Bate et af. ) requires X=0. 20, which is an entire-
ly unreasonable value. Hence, from the trigonal-
plane data we conclude that r —1, so that rn 2

=m'„
as found by many other workers. For ~= 1.0, in
the trigonal plane, X= 1.44.

2. Bssectrax (XZ) Plane

well as the choice r = 1.0, X = 2. 0. In other words,
unfortunately, there is not a unique pair of values
of ~ and X which gives a best fit. Under these
circumstances the best that can be done is to
assume a value of one of the parameters and deter-
mine a value for the other parameter on the basis
of the best fit to the experimental points. The
values of X and r determined by other investigators
are given in Table I. From this table, it is ob-
vious that the least information is known about r.
In most electron Fermi-surface studies in Bi, &

is assumed to be 1.0. However, the series of
de Haas-Shubnikov experiments by Bate and his'
co-workers~'2' and Ellet et al. 30 using Bi alloys in
order to raise and lower the Fermi level have given
direct information on the value of r. Unfortunate-
ly, these experiments have given inconsistent re-
sults, indicating either that x —1, x = 3, or x» 1.

Values of X have also varied considerably, but
here there seems to be a general consensus that
the value X= 1.7 determined by several experi-
ments is the best value. The only direct measure-
ment of X was in Ref. 25, using tunneling spectro-
scopy, and a value 0.75 was obtained. However,
the interpretation of these tunneling measurements
is not unambiguous, and there is some question
about the validity of the 0. 75 figure. Clouding the
issue still further is the fact that in I and II, we
found evidence for a value of X= 0. 50.

Under these circumstances we have chosen to
begin by assuming a value of ~ = 1.0 and perform-
ing a least-squares fit to determine the best value
of X. If a totally unreasonable value of X were to
result, i,.e. , outside the range 0. 5-1.7, then a
new value of r would be assumed and the least-
squares fit performed again. As it turns out, we

2,5

2,0—

IO—

05—

'o I

I,O
I

20
I

3so
I

4io 5io

FIG. 4. Values for r and X which give the best least-
squares fit to the points near the effective-mass maxi-
mum in m& in Fig. 2, as evaluated in the NENP model.

The bisectrix sample had the best &v' of any of
the three samples; 22 peaks were observable for
the most favorable orientation of H, several more
than were observable for the trigonal sample, and
the signal-to-noise ratio was somewhat larger.
The appearance of the bisectrix-sample field
sweeps is essentially identical to the trigonal-
sample sweeps.

The anisotropy results for the CO cyclotron
effective mass in the bisectrix plane are shown
in Fig. 5. The points for the m» branch fit the
NENP model quite well, and clearly fit it better
than they fit the ENP model. For comparison
with the trigonal plane (and in the next part, the
binary plane), we have plotted the NENP curves
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FIG. 5. Electron cyclotron effective masses observed
in the bisectrix plane compared with curves generated
from the ENP gower curve in each case) and NENP (up-
per curve in each case) models.

for X=2. 0, the same value used for all planes. A

,
least-squares computer fit, however, gives a
slightly different value. Again, we will initially
choose ~= 1.0 and compute a value for X. The re-
sulting least-squares-fit value is X= 2. 23 for
~= 1.0. This value is somewhat larger than the
value derived from the trigonal-plane data, but is
not unreasonable. For the mII branch in this
plane, an analysis of the variation of s for changes
in X yields a graph essentially identical to Fig. 4,
indicating that ~= 1 and is most certainly not equal
to 3.

For mIII in the region in which the data points
are shown there is little difference between the
two models. Near 8, a slight mismatch between
the data points and both the ENP and NENP models
is evident. Although the disa, greement involved

is not much outside the experimental error, the
pattern of d1sagreement suggests the presence of
a slight crystal misalignment ex ror,

Further evidence of a slight crystallographic
misorientation is apparent in the mI branch. This
particular branch is very sensitive to misorienta-
tion errors. The rather large difference between
the NENP model and the data points, and the prob-
ably fortuitous agreement with the ENP model,
can be explained by a misorientation error between
the surface normal and the true bisectrix axis of
only 0. 5 . A furthex difficulty is the similarity
between the anisotropy of the mI and hole branches
in this plane (compare Figs. 5 and 6). Near the
trigonal axis, the hole and electron masses are
seen to be very nearly the same. As we move-

away fxom the trigonal axis towards the binary
axis, the m» and mI„branches depart from the
hole-mass value and are easy to track. On the
other hand, the mI mass branch has an anisotropy
much like the hole mass and the two masses are

very close to each other over a considerable range
of Rngles neRx' the tx'1gonRl RX1s. The diff lculty
arises because the hole mass has a fairly low vv
as compared to the electron (ov'. Specifically, the
holes- have an &v=10 as opposed to -18 for the
electrons. Because the hole peaks are wider than
the electron peaks, the electron peaks are some-
times completely obliterated, especially in the
case of the high-order subharmonics. Hence, the
large expex'imental errors and poor fit to either
model for the mI branch can be explained in this
manner.

Returning to the hole cyclotron mass in Fig. 6,
the curve there is elliptical, computed using the
values of m~ for 5 parallel to the trigonal and

binary axes as the extremal values for the eQipse.
The derived values of the elements of the hole-
effective-mass tensor are given below in Sec. V.

3.' Binary (YZ) I'Iud

As mentioned in Sec. III, the binary sampl~ has
a surface which is probably not as flat as the other
samples. The quality of the observed traces
therefore suffers somewhat, as can be seen in
Fig. 7, which is a trace taken for 8 parallel to the
bisectrix axis. Whereas -20 peaks were observ-
able in the other two planes for this magnetic field
orientation, only seven were obsexvable in the
binary plane. The principal effect of this low val-
ue of 7' is to introduce a greater amount of scatter
in the data points. As long as the slope method
is used to compute the value of m~, however, the
derived values of m~ are essentially independent
of 7'.

Figure 8 is a plot of the data points near the
trigonal axis, compared with the predictions of the
two models. In the binary plane the mII and m»1
branches are degenerate; hence, there are only
two electron branches shown in Fig. 8. As was

20-

I8-

, I 4-
A1

fAO
iI 2-

sl0-

0 I 0 20 50 40 50 60 70 80 90 I 00

ANGLE FROM TRIGONAL AXIS (DEGREES)

FIG. 6. Hole cyclotron effective masses observed in
the bisectr1x plane. The curve ls an ellipse computed
using the bvo extrema in the data points as end points of
the ellipse.
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H(G)

200 l00 50

dP
dH

I

5xlO ~

FIG. 7. AKCR txace for the magnetic field in the binary
plane and parallel to the bisectxix axis. The A series of
peaks are from electron orbits on quasiellipsoids II and
III and the 8 series of peaks are from electron orbits on
quasiellipsoid Ie

the case in the trigonal and bisectrix planes, the
data points fit the NENP model fairly well, and
the fit is clearly better than the fit to the ENP
model. As in the other two planes, we have plotted
the NENP curve for X= 2. 0, although the least-
squares fits give somewhat different values than
2. 0. Part of the scatter in the mxx-~xxx branc
might be due to an incomplete degeneracy of the

mxx and mxxx masses because of a slight sample
misorientation. A slight misorientation causes the
peaks to be broader and would make the fields of
the peaks harder to identify, leading to larger un-
certainties in the masses.

The value for the tilt angle is most easily ob-
tained from the binary-plane data: eq is the angular

BINARY PLANE
I

I

NENP

0.08

0.06

0.02—
Z

I I i I I

-50 -20 -IO -5 0 5 IO

ANGLE FROM TRI GONAL A XlS ( DEGRE ES )

l5

FIG. 8. Electron cyclotron effective masses observed
in the binary plane in the vicinity of the trigonal axis com-
pared with the curves generated from the ENP model and
NENP model. The points with no curve are the hole cy-
clotron effective masses.

OiOl
m~

FAo

0 02

FIG. 9. Polar plot of electron cyclotron effective
masses observed with the magnetic field in the binary
plane ln the vlclnity of the bisectx'lx axis 7118 lines shown

are for both the ENP and NENP models, which coincide
at these angles.

difference between the trigonal axis and the maxi-
DluDl in ~x . We measure this as 6. 5 + 0. 2
This value is also consistent with the data in the
other two planes. Figure 9 is a polar plot of the
data in the binary plane near the bisectrix axis.

The least-squares fit of the data to the NENP
model was done assuming a value of r= 1.0. The
resulting best value for X is X= 1. 13 for mx and

1.24 for ~xx-mxxx. These again are quite rea-
sonable values and do not justify any attempts to
use a value of r different than 1.0.

The hole results axe plotted in Fig. 10 for the
binary plane. Good agreement is obtained with the
ellipsoidal model.

B. Quantum-Oscillation Results

As discussed in the Introduction, the principal
interest in the surface-impedance quantum oscilla-
tions is the information which can be obtained by
coml3luttlg the QO periods with the effective masses
obtained from AKCR. The sought. -for deviations
from ellipsoidality occur neax magnetic field di-
rections where the cross-sectional areas of the
Fermi surface are largest. By Eg. (3) this im-
plies that the period becomes small. As it turned
out, in our case the period became so small that
the oscillations were unresolvable and vanished.
We attribute the relatively low resolution to the
nonoptimum geometry; i.e. , the microwave sur-
face impedance is apparently not the best quantity
to measure in order to observe de Haas-Shubnikov
oscillations. We note that Khaikin et al. 31 ex-
perienced the same difficulty in their microwave
surface- impedance quantum-oscillation measure-
ments on Bl.

Figure 11 is a typical field sweep for H in the
binary plane near the trigonal axis. The short-
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I'IG. 10. Hole cyclotron
effective masses observed in
the binary plane. The curve
is an ellipse computed using
the two extrema in the data
points as end points of the
ellipse.
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period oscillations are the standing Alfven waves,
which will be discussed below. The oscillations
of interest here form the envelope curve of the
Alfven waves. The experimental error in deter-
mining the period from traces such as Fig. 11 is
relatively large, on the order of 5% or more.

The anisotropy of the QO periods for H in the
binary plane is shown in Fig. 12. The curve for
only the ENP model have been shown because of
a la,ck of data points of precision adequate to dis-
play any deviations froID the ENP model. These
deviations occur near the minima in the curves,
where the square points a,re plotted in Fig. 12.
From Fig. 12, it is apparent that near the trigonal

dR—
dH

lO
l
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IO;
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I
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I l
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e xlO G
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FIG. 11. Standing Alfvdn waves and quantum osci11a-
tions observed in the binary plane with the magnetic field
oriented 12' from the trigonal axis. The fast oscillations,
which are the Alfv6n waves, are shown in full only near
8 kG. The quantum oscillations form the envelope of the
Alfvdn waves, which are shown resolved into two separate
oscillation periods by the arrows.

axis, the hole periods dominate the observed
traces and nearly obliterate the electron periods.
This circumstance has manifested itself in every
QO-type experiment in Bi. Bhargava was the
first to solve this problem by differentiating the
signal and using a band-reject filter to delete the
hole signal. Filtering techniques of this nature
are clearly unusable here because of the Alfven
waves.

The anisotropy of & for H in the bisectrix plane
is shown in Fig. 13, which displays the lack of
data points for H near the trigonal axis. The
scatter in the points results mainly from the rela-
tively low number of peaks available to determine
d (from two to five peaks in most cases) and from
interference with AKCR peaks. Vfe were unable
to resolve more than one set of oscillations near

xIO 5
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K
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FIG. 12. Electron and hole quantum-oscillation periods
observed for the magnetic field in the binary plane. The
curves are computed from the ENP model.
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FIG. 13. Electron quantum-oscillation periods observed
for the magnetic field in the bisectrix plane. The curves
are computed from the ENP model.

the binary axis, although tmo sets should exist.
Again, however, me cannot make any comparison
with the NENP model, since no data points could
be taken in the angular region where the ENP and

NENP models differ.
The poorest-quality QO were observed in the

trigonal plane. Figure 14 displays the variation
of & observed in this plane. There is a range-of
angles apparent where no QO of any kind were
visible; the Alfven-wave envelope mas observed to
flatten out in this region and had no discernible
features. As mas the case in the bisectrix plane,

I I I I

0 5 I 0 I 5 20 25 30
X Y

ANGLE FROM BINARY AXIS (DEGREES)

FIG. 14. Electron quantum-oscillation periods ob-
served in the trigonal plane. The curves are calculated
from the ENP model.

0,4
Y PLANE

0$
I

X
0.2

O.I—

I I I I I I I

-40 -20 0 20 40 60 80 IOO l20

ANGLE FROM TRIGONAL AXIS (DEGREES)

FIG. 15. Anisotropy of the Alfvdn-@rave mass density
for the magnetic field in the binary plane. The curve'is
computed for an ellipsoidal model.

Standing Alfven waves were observable in the
binary and trigonal planes.

A typical Alfven-wave trace has already been
given in Fig, 11 for H in the binary plane. Figure
l5 is a plot of the measured anisotropy of vf in
this plane. The curve in Fig. 15 was calculated
from the ellipsoidal model by the procedure de-
scribed by Isaacson and Williams. ' For the case
of H in the binary plane, the anisotropy equations
have been given explicitly by Nagata and Kawamura.
The curve and data points agree mell. The devia-
tions near the maximum occur at an angle where
the nonellipsoidal distortion of the electron Fermi
surface is largest; it seems likely that the differ-
ences between theory and experiment are due to
nonellipsoidal effects. The obvious method of
verifying this possibility mould be to derive the
anisotropy equations for f in the NZNP model. We
have attempted this calculation, but thus far have
been unsuccessful. The difficulty lies in the im-
possibility of mriting the energy-momentum dis-
persion relation for the NENP model as quadratic
form. This problem can be bypassed in the deriva-
tion of the extremal cross-sectional area and cyclo-
tron effective masses by the technique used in I
and II, specifically by employing explicit angle
transformations rather than tensors in accounting
for the rotation about the trigonal axis and the tilt
of the electron quasiellipsoids. Such methods seem
difficult or impossible to apply in the analysis of
the Alfven. waves.

At first glance, it may seem puzzling mhy one
should not expect to see larger deviations between
theory and experiment in Fig. 15, on the basis of

the data points measured in the trigonal plane occur
at orientations of H at mhich the NENP and ENP
models coincide.

C. Ajfveia-%faye Results
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periments. To derive a value for the electron
Fermi energy, a value must be assumed for the

gap energy. Fortunately, the value E,= 0. 015
+ 0. 002 eV has been found in several experiments
(see Table I), so that this value can be assumed
with confidence. This value gives E~= 0. 023
+ 0. 007 e7. We will use this number in further

computations below.
A value for the hole Fermi energy EI, can be

deduced by combining the AKCR and QO data for
the holes for H parallel to the trigonal axis. Be-
cause the hole surface has a parabolic energy dis-
persion and is an ellipsoid of revolution about the
trigonal axis, we have from Eq. (3) that the QO
period for H ~~ K is

6 = eh/cm Er . (6)

I

IO
I I

0 20
Y
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I
Oel 30

X

FIG. 16. Anisotropy of the Alfvdn-wave mass density
for the magnetic field in the trigonal plane. The curve is
a hand-drawn curve through the points to indicate the
trend.

A. Vatge for E/E& and Fermi Energies

Averaging the four values of X faund above gives
X= 1. 5+ 0. 4, which agrees with the generally ac-
cepted value of about 1.7 measured in several ex-

the AKCR data. The reason is that f inoludes con-
tributions from all sheets of the Fermi surface.
Hence, at angles where a fairly large nonellipsoidal
distortion is expected frern one of the three elec-
tron quasiellipsoids, the other two quasiellipsoids,
along with the hole surface, appear ellipsoidal
and reduce any nonellipsqidal effects.

The measured anisotropy of the mass density in
the triganal plane is shown in Fig. 16. The curve
is hand drawn through the paints, and is not com-
puted from any model. For purposes of detecting
any deviations from ellipsoidality of the electron
Fermi surface, it is pointless to compute a theo-
retical curve, as was done for the binary-plane
data; in the trigonal plane the relatively large
effective mass of the holes dominates the value of
the mass density at all angles of the magnetic field.
Since the hole effective mass is isotropic in the
trigonal plane, there is very little variation in f,
as is evident in. Fig. 16.

V. DISCUSSION

The previous section presented the data from the
three phenomena studied in this work. In this
section we compare and combine these data to ob-
tain values of the various parameters of the band

structure and Fermi Surface of Bi.

By solving Eq. (6) for Er and inserting the values
of m* and & for H I~ Z, a value for the hole Fermi
energy can be calculated. Substituting m*
= 0. 064m p and &= 1. 57 & 10 ' G ' gives

Ep —-0.0155+0.0005 eV .
B. Effective-Mass-Tensor Components

The effective-mass-tensor components are most
easily and directly obtained from the AKCR re-
sults. Given the values of the cyclotron effective
masses for H along the three principal axis di-
rections, m, (i, = I, 3, 3 implies the P» direction),
then the elements of the effective-mass tensor at
the Fermi level, m~, are given by

where the indices are permuted cyclically. In
Table II we have summarized the effective masses
measured in this work. Inserting the appropriate
values given in Table II into Eq. (8) gives

m y
= 0, 00597m p

m~ = l. 33mo,

m', = 0. 0114m, .
These are the values which were used in the vari-
ous equations for the effective-mass anisotropy
in the ENP and NENP models. We should em-
phasize, however, that these values must first
be reduced to the bottom of the band using the
equations given in the Appendix of II before sub-
stitution into the anisotropy equations.

Table II also compares the cyclotron-effective-
mass values with the values obtained from other
cyclotron- resonance experiments in the literature.
Qf main interest is the comparison with the val-
ues of EK and Kao. As is obvious, the values
compare much more favorably with the values of
EK than with the values of Kao.- The poor agree-
ment between Kao' s values and the values of EK
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TABLE II. Comparison of the cyclotron effective masses observed in this experiment with the masses observed in other
cyclotron-resonance experiments.

Investigator Ref.

Electrons
5 1l X

sip mfgy m'f/' m*
.z

Hll V

mzz& mzzz

Hll Z

all

Holes

Aubrey
Gait et al.
Everett
Kao
EK
This work

34
35
13

8
7

0.119
0.13

0.14
0.120
0.123

0.009
0.0105

' 0.0098
0.0107
0.0093
0.0094

0.0078
0.0091
0.0077
0.0091
0.0081
0.0083

0.0156
0.0180
0.0155
0.0196
0.0161
Q. Q165

0.06
0.08
0.051
0.081
0.059
Q. 060

0.15
0.25

0.226
0.203
Q. 205

0.15
0.25

0.226
0.203
0.205

0.04
0.068

0.067
0.063
0.063

and this work can be attributed to the relatively
low ~v' of Kao's samples, which required him to
compute the cyclotron effective masses from the
position of the fundamental. As Kao acknowledges,
this procedure can lead to a 20% or more error
in the true effective mass. In passing, we might
note that our verification of the results of EK is
important because some investigators+' have
taken the effective-mass-tensor elements deter-
mined by Kao to be the better set of values.

If we had been successful in observing the
Alfven waves in all three planes, rather than just
two, we could calculate a set of values for the
elements of the effective-mass tensor following
the procedure of Isaacson and Williams. Instead,
below we shall use the values of the effective-
mass-tensor components obtained from AKCR in
the equations of Isaacson and Williams to obtain a
value for the hole and electron concentrations.

C. Quantum-Oscillation Periods
i

Table III summarizes the QO periods measured
in this work and compares them with some of the
de Haas-van Alphen and de Haas-Shubnikov periods
reported in the literature for pure Bi. The agree-
ment is good, confirming that the observed oscil-
lations result from the successive depopulation of
Landau levels at the Fermi level.

D. Caner Concentrations

The values of the carrier concentrations n, are
related to the Fermi surface by

n —2 73x fpz7 cm

n=2. 84xip' cm '. (18)

This value agrees to 4% with n." ", which is with-
in the experimental errors. The agreement is to
20% with n " . We feel that the superior agree-
ment between n, and n" " argues in favor of a
nonellipsoidal electron Fermi surface for Bi.

We can obtain another value for the electron and
hole concentrations by combining the AKCR-derived
effective-mass-tensor components and the Alfven-
waves results. As discussed in Sec. II, the Alf-
ven-wave period in inverse field, d(l/H), can be
related to the mass density f. The quantity f in
turn is a function of the effective-mass-tensor
components, the orientation of the external mag-

For the ENP model, the volume of the electron
Fermi surface is given by

Vsse ——8v (2m~m~ms) ~ Eg~ (1+X) j . (18)

Substituting into this equation, we obtain

nE» = 2 yexyP~' cm-'.

The hole Fermi-surface volume is given by

V, = s v Mi(2Ms) (E")

where EJ", is the hole Fermi energy. The values
of M~ and M~ have been computed previously [Eg.
(10)] and a value for Ez was found in Eg. (7) above.
Substituting these values into Eq. (15) gives

n, = 2V,/h (10)

where V, is the total volume of the hole Fermi
surface (for V,) or the electron Fermi surface
(for V.). We consider the electron concentration
first. For the NENP model the volume of the
Fermi surface is easily found to be

Vsssp = Sv(2mgm m ) E (1+ gX).

Using EJ =0.023 e7 as found above and the values
of the m& as given in Eq. (9) (after reducing them
to the bottom of the band to get the m, ) results in

Investigator
Electrons

Ref. All R Hll Y
Holes
All Z

Brandt
Kunzler et ar,.
Eckstein and Ketterson
Bhargava
Brown
This work

38
3S
40
32
41

4.3
7.1 4.1
7.6 4.5
7.20 4.17
7.03 4.07
7.0 4.05

8.2 1.56
8.2
8.9 1.6
8.30 1.575
8.15 1.57
8.2 1.56

TABLE III. Comparison of quantum-oscillation periods
(in units of 10"56 ) measured in this work with values
reported in the literature.
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and

n, = 3.09+0.09x10' cm '.
(17)

The source of the approximately 12% difference
between the concentration values derived from the
AKCR results and the Alfven-wave results is some-
what difficult to assess. Most of the difference is
probably attributable to the assumption of an
ellipsoidal Fermi surface in the derivation of the
equations in Ref. 11. We have attempted to derive
the analogous equations starting from the NENP
dispersion relation, but thus far have been un-
successf ul.

VI. SUMMARY AND CONCLUSIONS

Complete measurements of the central-orbit
cyclotron effective masses by Azbel' -Kaner cyclo-
tron resonances were taken for the magnetic field
in the three crystallographic planes of pure Bi.
Quantum oscillations of the microwave surface
impedance were observed in all three planes, but
oscillations for H oriented normal to the large
cross-sectional areas of the electron Fermi sur-
face could not be detected, except in one case.
Standing Alfven waves were observed for the mag-
netic field in the binary and trigonal planes.

The main purpose of this experiment was to
determine as accurately as possible the shape of
the electron Fermi surface. Errors in the cyclo-
tron-resonance portion of this work could be held
to 4% or less and this uncertainty was sufficiently
low to show that the electron Fermi surface is
distorted by about 10% from an ellipsoid. Further-
more, the manner in which the surface is dis-
torted seems to be predicted fairly accurately by
the Cohen band-structure model.

The implications of the value of m~/m, ' - 1 found
here are interesting. First, we emphasize that
within the framework of the Cohen model we have
definitely. ..,mt z~~~rt;P that t' can be no greater than
about 1. 7. Prom Table I me see that Bate et aE.
have measured r = 3. Their measurements con-
sisted of de Haas-Shubnikov-effect studies on tin-

netic field, and the electron and hole concentra-
tions. For H and the microwave electric field
oriented along crystallographic axes, the expres-
sions for f reduce to a tractable form. The ap-
propriate equations are given in Ref. 11, where
Isaacson and Williams used them to derive values
of the hole and electron concentrations and the
elements of the effective-mass tensor. Since we
have values of the effective-mass-tensor elements
from AKCR, we shall use the appropriate equa. -
tions in Ref. 11 as four equations to determine
n, and n by a least-squares fit. Substituting the
values of the m; and M&, we obtain

n = 3. 1gy0. 0gxl0" cm '

doped Bi. A doping level of 0. 1 at. /p was used to
lower the Fermi energy into the I -point valence
band, creating holes whose anisotropy was then
measured. One implication of our result for r is
that the doping level of tin used in Ref. 28 distorts
the shape of the I -point valence band from the
shape in pure Bi. In other words, the rigid-band
model apparently does not hold for concentrations
of tin in Bi of 0. 1 at. %.

A feature of our results which offers strong
evidence for the NENP model is the superior agree-
ment between the hole and electron concentrations
when the electron concentration is computed from
the NENP model. The difference between n, and
n is only 4% for the NENP mode, ,whereas the dif-
ference is 20% for the ENP model.

The QO results were consistent with both the
ENP and NENP models, because of the lack of
data at magnetic field orientations where differ-
ences are expectedtoexist. The standing-Alfven
wave results appear to be relatively insensitive
to small distortions of the electron Fermi surface,
since the period is an average over all pieces of
the Fermi surface and small distortions are
obliterated.

Our agreement with the NENP model is at odds
with the results of the magnetoreflectance studies
of Maltz and Dresselhaus mentioned in the In-
troduction. The observation of the reflectance
from a trigonal-plane sample as a function of mag-
netic field and incident photon energy is a fairly
sensitive test to distinguish between the ENP and
NENP models. Maltz and Dresselhaus find that
a better fit is obtained with the ENP model. We
are unable to offer a satisfactory explanation of
this difference. It is possible that the NENP dis-
persion relation, although it approximates the con-
stant-energy Fermi surface quite mell, is not the
proper description of the energy dispersion (i. e. ,
the variation of surface shape with energy), and
should be modified. However, there is no obvious
way to modify the NENP dispersion relation to
make the energy dispersion have the nonparabolic
form of the ENP relation in the trigonal direction,
yet retain the nonellipsoidal shape of the Fermi
surface.
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APPENDIX

In this appendix me list the ENP and NENP elec-
tron-dispersion relations and cyclotron. -mass
anisotropies. The ENP dispersion relation is
given by
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2 2 2

E(l+&)= ' + ' +2~/ 2m2 2M3
(Al)

where X=E/E~, E, is the valence-to-conduction-
band energy gap, and the m& are the effective-
mass-tensor components at the bottom of the con-
duction band. The NENP dispersion relation is
given by

p2 p4
E(1+~)-y

m2 Alp g

2 w g pplg m 3
s/s 1

(mscos'born, sio'b sb' cosQ

p2 pa
2m/ 2023

(A2)
where x= mz/m2, y= 1+ X- Xr, and mz is an effec-
tive-mass-tensor component at the top of the va-
lence band.

The cyclotron effective mass for the NENP
model is given by

x 1+2K%k + v+ b Kk —2 Q ek

(A3)where

b = rA(1+ X).+ v

mztan 0/cos'8+ y(m3+m, tan~8)
2(m 3+ m, tan28)

and K(k) and e(k) are the complete elliptic inte-
grals of the first and second kind. respectively.
The angles 8 and Q define the direction of the ap-
plied magnetic field H with respect to the princi-
pal axes of the Fermi surface, as shown in Fig. 1
of I.

The ENP cyclotron-eff ective- mass anisotropy
can be obtained from Eq. (A3) by setting &= 1, and

taking v'»xX(1+ X).
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