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A new special point in the Brillouin zone is introduced. It is defined as the point such that the value which
any given periodic function of wave vector assumes at this point is an excellent approximation to the
average value of the same function throughout the Brillouin zone. This special point is termed the
“mean-value point,” and is dictated by the crystal symmetry. The coordinates of the mean-value point for

cubic lattices are explicitly given.

Different kinds of special points in the Brillouin
zone have been introduced since the existence of
these zones was noticed in 1928, After the work
by Bouckaert et al. Z on the symmetry properties
of wave functions in crystals, the concept of high-
symmetry points in the zone gained large popularity
and is still one of the basic concepts in solid-state
physics. Later, when deep interest arose in the
thermodynamical and optical properties of solids,
the concept of phonon (or electron) density of states
became relevant and critical points were introduced
by Van Hove® and studied in more detail by Phillips.*

Often, one is not interested in studying the prop-
erties of a single quasiparticle which belongs to a
particular point of the Brillouin zone, but rather in
studying the properties of all the quasiparticles of
a certain kind which are present in the crystal in
order to obtain crystal properties. In these studies
one is usually faced with the problem of averaging
quasiparticle properties (i.e., averaging over the
Brillouin zone). It is well known that carrying out
such averages is difficult and time consuming. I

is useful in this respect to introduce a new special
point in the Brillouin zone: the mean-value point. 5
‘Qualitatively, it is defined as the point such that
the value which any given periodic function of wave
vector assumes at this point is an excellent ap-
proximation to the average value of the same func-
tion throughout the Brillouin zone. It will be shown
that the symmetry properties of crystals provide a
way to uniquely define this point for any given
lattice. The coordinates of the mean-value point in
cubic lattices will be given together with two exam-
ples from semiconductor physics which will show
how useful this new point can be.

While studying crystal properties, one often en-
counters Brillouin-zone integrals such as

3 _
iof  r@an- G 7, ®
BZ

where the integrand f(K) is a periodic function of
wave vector and  is the primitive cell volume. As
shown in (1), this integral can be expressed as the
Brillouin-zone volume times the average value of
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f®). Furthermore, without loss of generality, we
can assume that f(K) belongs to the completely sym-
metric irreducible representation of the crystal
point group (this representation is usually denoted
T';), because, if this is not the case, we can de-
compose f(K) into irreducible representations and

it is easily demonstrated that only the I'; represen-
tation contributes to integral (1).

Using the symmetry properties of f(K) (I'; sym-
metry and periodicity in K space), we can decom-
pose it into symmetrized linear combinations of
plane waves® with I'; symmetry,. as follows:

fR)= 2 aGTV®), @
where G{FV(K)=1 and the summation index i runs
over the stars of equivalent lattice vectors. Note
that the functions G{'1’(K) which appear in (2) de-
pend on the lattice structure but not on the particu-
lar function f(K). On the right-hand side of (2),
only the coefficients a; depend on the particular
function f. Inserting (2) into (1), we obtain

_en) s (),

I Q Q 0s

®3)
since it is easily demonstrated that all terms in
(2) but the first (=0) give vanishing contribution
to the integral (1). We see, therefore, that the
average value f is nothing but the first term in ex-
pansion (2). We must find a way to evaluate this
term.

In view of Egs. (2) and (3) one might be tempted
to define the mean-value point as the point kK * such
that G{T(K*)= 0 for any positive integer . In fact,
if this can be done, then

F&*) =ay=F. @)

This is asking too much, of course. We have to
be satisfied if we can find a point K * for which the
first equility in (4) is not strictly valid but is a
reasonably good approximation. Since expansions
similar to (2) are generally rapidly convergent,
we define the mean-value point as the particular
point K * for which

Ggrl)(ﬁ*)=0 (i= 1’ 2, sy n)’ (5)

with # being the largest integer possible. The
value of » is limited by the compatibility between
different equations in system (5). In general, we
expect n=3, since the unknown variables in (5) are
the three coordinates of K*. It might happen that
system (5) has more than one solution and the sys-
tem obtained by adding to (5) the (z +1)th equation
GIP(E *) =0 has no solutions at all. In this case
we define the mean-value point as that particular
solution of system (5) which minimizes the absolute
value of the next term |G{H(K)|.

We can now determine the coordinates of the

mean-value point for cubic lattices,
Simple cubic. Inthis case n=3 and system (5) is

X+Y+Z=0,
XY +YZ +ZX=0, (8)
XYZ=0,

where X =cos(2rk,) and similar definitions hold for
Y and Z. System (6) uniquely defines the mean-
value point kK *=(r/a) , 4, 1), which lies halfway
between the high-symmetry points I" and R of the

Brillouin zone.
Face-centeved cubic. In this case n=2. The

resulting system has an infinite number of solu-
tions, and, as already explained, we uniquely de-
fine the mean-value point as the one which mini-
mizes the next term in expansion (2). The mean-
value-point coordinates are® kK *= (2r/a)(0. 6223,

0. 2953, 0).

Body-centered cubic. In this case, again we
have » =2 and minimization of the ¢{=3 term in ex-
pansion (2) is necessary. The mean-value point is
K*=(2r/a)(%, &, 1). The location of the mean-
value point in the Brillouin zone of cubic lattices
is shown in Fig. 1.

The mean-value point K * that we have defined is
really significant only if f(k*) approximates closely
the average value f. We can say in general that
the approximation is good if expansion (2) can be
truncated after the term ¢=3. This is generally
the case, because, using tight-binding language,
'such truncation in expansion (2) means including
interactions up through the third neighbors. How-

FIG. 1.
ferent cubic lattices. Solid circles are the mean-value
points, whereas open circles indicate high-symmetry
points.

Mean-value point in the Brillouin zone of dif-
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FIG. 2. (a) Valence charge density in Ge along the
bond direction as obtained using the mean-value-point
method. The origin is halfway between the two atoms and
units are electrons per primitive cell. (b) Difference be-
tween the valence charge densities in Ge as obtained by
Walter and Cohen (Ref. 7) and by the mean-value-point
method. Note the change in scale between (a) and (b).

ever, special cases might happen in which f(&)
varies so strongly in the Brillouin zone that a large
number of terms havetobe retained in expansion (2)
and the mean-value point becomes meaningless.

We believe that these special cases, though not im-
possible, occur only rarely.

We now present two examples from semiconductol
physics in order to give convineing evidence of the
elegance, power, and usefulness of the mean-value-
point technique in making averages over the Bril-
louin zone. Both examples make use of the mean-
value point defined for face-centered-cubic lattices.

The first example is the calculation of the va-
lence-electron charge density in semiconductors.
We define

f(E)"'eE |d)u(ﬁ, F)|2: (7)

where the band index v runs over all valence bands
and zpv(ﬁ, T) are Bloch functions. Valence-electron
charge densities for a few semiconductors have

A. BALDERESCHI 7

TABLE I. Average energy per electron in the valence
bands. Different approximations of the Kleinman—Phil-
lips (KP) method are compared with the mean-value-
point method. The zero of energy is at the top of the
valence bands (I' point) and energy units are eV.

KP Mean-value
8 points 64 poin@s 512 points point
Ge —4,76 -5.07 -5.09 -5,18
GaAs -4.66 -4,94 -4.95 -5.01
ZnSe —4.59 —-4.80 —4.80 —-4.85

been calculated by Walter and Cohen, ” using a grid
of 3360 sample points in the Brillouin zone. Using
the same wave functions, we have calculated the
valence-electron charge density in Ge with the
mean-value-point technique. The result along the
(1, 1, 1) direction is shown in the upper portion of
Fig. 2. It was our intention to compare our result
with that of Walter and Cohen in the same graph,
but since the two results agree to within 1%, dif-
ferences between them could hardly be appreciated.
Therefore, we have represented in the lower por-
tion of the figure, using a magnified scale, the dif-
ference between the two results.

The equilibrium lattice constant and the bulk
modulus of crystals may be calculated from the
total crystal energy as a function of lattice con-
stant. One of the terms which enters the total
crystal energy is the sum of the one-electron ener-
gies over all occupied states. We define

f(ﬁ) =E Ev(i;) ) (8)

where the band index v runs over the valence bands
and E (k) are the one-electron energies. We use
the pseudopotential method to compute E,,(I'Z) for Ge,
GaAs, and ZnSe. We obtain for the sum of the one-
electron energies the results shown in Table I. In
this case the mean-value-point method is compared
with a method due to Kleinman and Phillips, ® which
is based on a procedure for successive approxima-
tions.

The above examples serve to demonstrate the
accuracy of the mean-value-point technique. One
comment on Table Iis in order. The Kleinman-—
Phillips eight-point approximation is inadequate in
averaging over the Brillouin zone and this approxi-
mation is nothing but the commonly used weighted
average on the high-symmetry points I', X, and L.
When 512 points are used, our mean-value-point
method agrees with the Kleinman-Phillips method
within 2%.
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Complete measurements of the anisotropy of the central-orbit cyclotron effective masses by
Azbel’-Kaner cyclotron resonance have been taken at a frequency of 24.03 GHz and a temperature of
1.15°K for the magnetic field in the three crystallographic planes of Bi. Deviations of up to 10% from
ellipsoidal behavior were observed for the electron-effective-mass anisotropies. Except in one instance,
the various effective-mass anisotropies give a good fit to the Cohen nonellipsoidal nonparabolic (NENP)
model and the fit is clearly superior to the Lax ellipsoidal nonparabolic model fit. The ratio of the
Fermi energy to the L -point band-gap energy, E ;/E ¢» Was determined from fitting the NENP model
and found to be 1.54-0.4, in good agreement with other measurements. The fit to the NENP model
also indicated that m,/m,’ is approximately 1, implying that the L -point valence and conduction
bands have identical parameters. The cyclotron effective masses agree within 3% with the values

obtained by Edel'man and Khaikin, and disagree by as much as 30% with the values obtained by Kao.

Quantum oscillations of the microwave surface impedance similar in nature to de Haas-Schubnikov
oscillations have also been observed, but periods arising from the large cross-sectional areas could not
be detected and no conclusions regarding the NENP model could be made. Magnetoplasma oscillations
due to standing Alfvén waves have also been observed. The mass-density values derived from these
measurements agree with the values obtained by other investigators. However, the carrier concentration

derived from the Alfvén-wave periods differs by nearly 12% with the value derived from the
Azbel’'-Kaner cyclotron-resonance measurements. This difference may be due to nonellipsoidal effects.

I. INTRODUCTION

In spite of a wealth of experimental measure-
ments on the electron Fermi surface of Bi, the
exact shape of the surface is still somewhat uncer-
tain. Two recent papers, for example, are at odds
with each other. Herrmann ef al.,! from rf-size-
effect measurements, obtain data which supports
the Cohen nonellipsoidal nonparabolic (NENP)
model? of the electron Fermi surface, whereas
the magneto-optical results of Maltz and Dressel-
haus® support the Lax ellipsoidal nonparabolic
(ENP) model.* In two earlier papers®® (hereafter
referred to as I and II, respectively), we analyzed
the Azbel’-Kaner cyclotron-resonance (AKCR)data
of Edel’man and Khaikin” (hereafter, EK) and Kao®
and, with a few exceptions, found reasonable agree-
ment with the NENP model. The various discrep-
ancies between experiments and the Fermi-sur-
face models for Bi have been reviewed in I and II.

In hopes of clarifying the situation, we undertook
further measurements of cyclotron resonance in
Bi. At the outset, we were motivated by our abili-
ty to observe quantum oscillations (QO) of the
microwave surface impedance similar in origin to

de Haas—Shubnikov oscillations and magnetoplasma
oscillations of the Alfvén-wave type, in addition to
cyclotron resonance. All three phenomena were
observed during the same liquid-helium run, with
no basic change in measurement method required,
a circumstance which had the potential to reveal
fine deviations of the Fermi surface from ellip-
soidality. For example, by forming the ratio of
the cyclotron effective mass m* and the extremal
cross-sectional area A, (the parameter obtained
from the QO), the deviations expected for the
NENP model are about 20% instead of the 10% or
so expected in either m* or A,,; alone. The fact
that the phenomena were observable simultaneous-
ly meant that errors due to sample handling, mis-
alignment, temperature variations, and the like
would not be present, as they might be if data from
different investigators were combined.
Unfortunately, in spite of the fact that QO were
observable over a large angular range, it turned
out that at the crucial angles where the ratio might
be expected to show up the deviations, the QO
disappeared, apparently because of a lack of suffi-
cient resolution in our apparatus. Hence, our
original motivation for undertaking the present set



