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Self-consistent augmented-plane-wave energy-band calculations have been carried out for niobium for (a)
normal lattice constant, a = 1 exchange, (b} normal lattice constant, a = 2/3 exchange, and (c) 5%
reduced lattice constant, u = 2/3 exchange. At normal lattice constant, fx = 2/3 exchange, an occupied
s-d-band width of 0.387 Ry is found, in very good agreement with both L and M soft-x-ray emission

experiments. The calculated density of states at the Fermi energy is 28.2 states atom ' Ry ', corresponding

to a McMillan enhancement factor of 1.6. The Fermi surface consists of hole ellipsoids centered at N, a
large hole octahedron centered at I, and a multiply connected "jungle gym,

" similar to that calculated by
Mattheiss. The largest difference between experimental and calculated areas is less than 15%.

I. INTRODUCTION II. COMPUTATIONAL PROCEDURES

Although a model for the Fermi surface of nio-
bium was proposed by Mattheiss in 1965, it has
been only very recently that single crystals of suf-
ficient perfection have become available to permit
detailed Fermi-surface investigations. 3~ There-
fore we have carried out self-consistent band cal-
culations to compare with experiment. Previous
calculations by Deegan and Twosev and Mattheiss~
have determined, non-self-consistently, the band
structure of Nb using a modified orthogonalized-
plane-wave (MOPW) method and the augmented-
plane-wave (APW) method, respectively. In both
of these calculations the full Siater (a =1) exchange
appl oxlmatlon was used.

In the present work we report the results of three.
self-consistent APW calculations: (a) o. = 1 ex-
change, normal lattice spacing, (b) n = —', exchange, M

normal lattice spacing, and (c) o =-', , 5% reduced
lattice spacing. The resulting Fermi surface for
case (b) is compared to magnetothermala and de
Haas-van Alphen~'s (dHvA) data. In addition, the
logarithmic pressure derivatives of the dHvA fre-
quencies have been calculated from (a) and (b) us-
ing an experimental value for the compressibility,
and these are compared to very recent pressure
results of Anderson and Schirber.

General quantitative agreement is found between
our self-consistent n = 3 results and the non-self-
consistent n = 1 energy values of Mattheiss. This
interplay of exchange, self-consistency, and con-
figuration has been noted previously ' 3 in the 3d
and 4d transition metals.

A description of the APW method may be found in
a number of reviews. ' ' The self-consistency
procedure followed in the present work is that of
Papaconstantopoulos et al. ~ The initial atomic con-
figuration was 58', the same as that used by Mat-
theiss. The starting (n =1) and self-consistent
(o'=-', ) potentials are shown in Fig. 1. However,
we wish to stress a new method for obtaining fast
convergence. %e have found that averaging the
potentials in the usual method,

V(x) =0.V5V„~ (r)+0. 25V„„(&),
gives slow convergence (eight iterations). The sit-
uation is improved (five iterations) if the charge
densities p(x) are averaged. If, on the other hand,
the averaging is done with the quantity o(r) = 4mr'
x p(~), only three iterations are needed to converge
to within 0.002 Ry. This may be due to the weak r
dependence of o(~) compared to p(r) and V(x). In
Fig. 2, V(r) averaging is compared with o(r) aver-
aging for two typical states, Na and H, z.

The calculations were initially performed on a
weighted mesh of 33 points in the full Brillouin
zone. For the normal-lattice-constant case, after
convergence, two additional iterations were carried
out using 128 points in the entire Brillouin zone.
These results differed by less than 0.005 Ry from
the self-consistent values obtained with the larger
mesh. %e conclude that the 33-point mesh is usu-
ally sufficient for attaining self-consistency.

The Fermi energy was determined by integrating
the density of states to five electrons per atom.
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FIG. 2. Convergence rate for V{x) averaging and 0{v)
aver aging.

This density of states was found by interpolation of
the APW eigenvalues for 48 000 random points in
the Brillouin zone.

III. ENERGY BANDS AND DENSITY OF STATES

In Figs. 3 and 4 we show the self-consistent. (SC)
n = -', energy bands for Nb for normal (ao = 6. 23VV

a. u. '6) and 5% reduced lattice spacings, respec-

tively. The energy bands are similar to those of
the other group-VB transition meta3. s, vanadium
and tantalum. As one can see from Figs. 3 and 4
and the summary in Table I, the main differences
among the calculations are in the widths and posi-
tions of the d bands. The 8-d separation F3~ —I'z
and the d-band width 835-8&3 and s-P-band width

g-g separation
l 2'5- I'~ H25- ~i

Occupied
d-hand vridth 4-band vridth

H2'g —H(2 Ey —H)p

Present calculations
0.597
0.755
0.929
0.673

q-p-band width

0.527
0.553
0.621
0.543

Deegan and Those~
Mattheiss"

0.440
0.420

0.788
0.770

Other calculations
0.672
0.660

0.555
0.56

Photoelnlss ion
X-ray emission"'~

Reference 7.
'Reference 8.
Reference 19,

"Reference 17.
Reference 18.
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FIG. 3. Energy bands of niobium for 0. = 2sat normal lattice constant gp.

N& —I'& are all increased as one goes from Slater
to Kohn-Sham exchange. However, a 5% reduction
of the lattice constant increases the occupied d-
b»d width Ei, —H,3 by - 309o and the total d-band

width by -20% while leaving the occupied s-d-band
width E, —r, unchanged.

Although the SC Q = 3 d bands are slightly hlghex
than those given by Mattheiss, the occupied 8-d-
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FIGe ~e Energy bands of niobium for G = 3 at a lattice constant g=0 ~ 95gp,
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band widths are about the same. Our non-self-con-
sistent (NSC) results differ from the NSC results
of Mattheiss because the two potentials had diffex-
ent discontinuities at the APW sphere radius and
Mattheiss used a value for the lattice constant cox-
responding to 4 K, while we used the room-tem-
pex ature value.

Except for Fermi-surface data there is very lit-
tle experimental information by which these calcu-
lations can be checked. Both the ~& soft-x-ray
band measured by Holliday" and the L

&
and J„

bands measured by Nemoshkalenko and Krivitskii'
yield Rn occupied s-d-band width of about 5 8V
(0. SV Ry), in good agreement with the calculated
results in Table I. There appears to be structure
in the M& spectra suggesting that there are peaks
in the occupied portion of the density of states. In
our calculated density of states, Fig. 5, in addition
to a peak near EJ, (about 0. 14 eV below), there are
peaks at 1.5 and 3.0 eV below E„. Eastman has
measured photoemission from niobium and reports
on occupied d-band width of about 3 eV, with peaks
0.4, 1.1, and 2. 3 eV below E&. These peaks cox'-
relate fairly well with those in our calculated den-
sity of states.

In Fig. 5 it is shown that the density of states at
the Fermi energy, N(Ez) = 28. 2 states atom Ry
is nearly a maximum as expected for a high-T,
superconductor. From this result one obtains a
value of 4.V9 mJmole ' 'K for the electronic-
specific-heat coefficient. Since the experimental
value is V. 8 mJmole K, an enhancement fac-
tor of l. 62 is obtained, in good agreement with
McMillan' s value of 1.82.~' In Sec. IV cyclotron-
mass-enhancement values are given and the densi-
ty-of-states enhancement appears to agree well

with the enhancement predicted from magnetother-
IQal osclllRtlons but the values obtR1ned fx'oIQ de
Haas-van Alphen measuxements appear to be some-
what large. (See Table II. )

In Fig. 6 the density of states at a = 0.95ao is
shown, and it can be seen that N(E~) has decreased.
From this result one might predict a reduced su-
perconducting transition temperature at high pres-
sures, an effect that has been observed by Smith.

IV. FERMI SURFACES

The Fermi surfaces at normal and 5% reduced
lattice spRclngs hRve been calculRted fx'oIQ the enex'-

gy bands by graphical interpolation, and cross sec-
tions in the principal symmetry planes are shown

in Fig. V. The results are quite similar to those
given by Mattheiss, and we have used his notation
to describe the Fermi surface, which consists of
hole ellipsoids centered at N [ELL(N) ], a large hole
octahedron at I' [OCT(I')], and a multiply connected
surface of holes called the "jungle gym" (JG). The
jungle gym is the source of open orbits observed by
Fawcett and co-workers'6 and Alekseevksii et al. 4

The cross-sectional areas 8 and masses m*/mo
have been calculated for some of the extremal or-
bits, and those results are given in Table II along
with some of the experimental information about
the Fermi surface. The largest difference between
experimental and calculated areas is less than 15'%%

Rnd, since no adjustments have been made in our
self-consistent calculation, the agreement seems
reasonably good. We may also note from Table II
that the non-self-consistent a = 1 calculation of
Mattheiss agrees equally well with experiment.

Cyclotron-mass values are also shown in Table
II; the results obtained by Mattheiss' are included
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FIG. 6. Density of states of nio-
bium for n = 3 and at a reduced lat-
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for comparison. Although there are numerical dif-
ferences, the trends are the same. However, be-
cause we have used graphical construction to deter-
mine the masses, our results could be inaccurate
by 10-20%.

The mass values have been determined from both
de Haas-van Alphen oscillations and magnetother-
mal oscillations, and there appear to be significant
differences between the results from the two exper-
iments which are not understood at present. In
Table II we give the enhancement factor —that is,
the ratio of the experimental to the calculated
mass —for our calculation and both sets of experi-
ments. We note not only that the enhancement fac-
tor is rather large but that it appears to be signif-
icantly larger for the jungle-gym orbits than for
orbits on the ellipsoid. (Table II also shows that
the dHvA mass for one of the [111]ellipsoidal sec-
tions is unusually large compared to the other el-
lipsoidal masses. We have no explanation for this
at present. )

Finally, we have calculated the logarithmic pres-
sure derivatives of the extremal cross-sectional
areas from our APW calculation at 0.95ao, which
corresponds to a pressure of about 260 kbar. ~~ In
contrast to vanadium, where the ellipsoids at N
merge with the jungle gym at about 135 kbar, the
over-all shape of the Fermi surface does not ap-
pear to change in Nb at pressures up to 260 kbar.
For three cross sections, measurements have been
made of the change in the area with pressure by
Anderson and Schirber, and preliminary values
are presented in Table II. For the ellipsoids the
measured values are about 0. 1%/kbar, which is
roughly twice the compressibility. The change in
the jungle-gym orbit with pressure is very small.
In all three cases there is reasonable agreement
between calculation and experiment.

V. CORE BANDS

The self-consistent potential for a = 3 was used
to calculate the outer core levels 4s and 4p. The

FIG. 7. Fermi surfaces of niobium,
I

at n = 3. (A) Normal lattice spacing;
(8) reduced lattice spacing.

(B)
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TABLE II. Fermi-surface results.

OCT(r)
ELL(A)

[100]
[100]

Surface Orientation

[100] 0 138

O. 139'

o.e39'

I' Ild MT' dHvA

1.6 + 0.4
0.13 0.117 l.12

0.83 0.881

0.64 0.642

1,47 I

e (A-')
Experiment Calculation Experiment

0.5 O. 57 2.15

1,7 1.92

0.9 0.83 0.09

I*/
d ln8 (10" kbar )

Calculation Enhancement Experiment" Calculation
factor

IC IId MT dHvA

. ELL(Q [001]
o.e38'
0 815

0.82 0.855 1.60 1.97~0.09' 0.95 0.97 1.69 2.1' 0.1+0.01

OCT(I')
ELL(I)

[110]
filo]

O. 813'

0.760
0.74 0.675

0.73 0.762

1.3 1,66

1.54 + 0.06' 0.72 0.79

ELL(I')
ELL(X}

[101]
[011]

O. 757'
0.857 ~ 0.96 0.944
0 657 1.4o ~ o.oe'

1.0 0.98

OCT(I')
ZLL(X')

ELL(X')

o.e58'

l.se2'

1.860

0.647'

o.e44'
0.813 ~

0.71 0.677 1.22

0.65 0.742

l.95 l.881

0.38 0.453

0.62 0.663 1.28

0.78 0.70 1.57

1.56+ O. OS'

1.46 ~

2.65 ~

0.72 0.73 1.78

0.85 1,12

1.7 2.29

3.1+ o.1' o.96 1.17

1.3 l.54

3.2~ &0.01

2.2'
0.1 + 0.02

0.10

—0.09

0.025

-0.065

0.12

aNotation is an obvious modification of that used by
Matt& eiss (Ref. S) (see text).

"Reference 11.
'Present vmrk.

'heference 8.
'Reference 2.
~Reference 3.'

'Reference 23.

resulting bandwidths and those of Deegan and
Twose~ are shown in Table III. It is noted that the
present calculation gives greater widths for 4s and

4P bands than the OPVf calculation. On the other
hand, the gay 6& between the conduction and the 4s
bands and the gap G2 between the 4s and 4P bands
are both smaller than those found by Deegan and
Twose. The above workers, in their OPW calcu-
lation, treated the 4s and 4P levels as band states
rather than localized core states. In our calcula-
tion we kept the charge density, corresponding to
those levels, constant through the self-consistency
cycle. However, it should be interesting to per-

TABLE III. Core rvidths (Ry).

4g-band vridth 4p-hand width Gl 62

form the self-consistent calculation by recomputing
at ea,ch cycle ihe 4s and 4P levels.

Note added in proof. Recently it was found by
Janak eI; al. 3~ that for the case of Cu an exchange
coefficient a=0. '77 gives the best agreement with
experiment. We have also found in the case of
vanadium' that our results for e = ~ were consis-
tently lower than the experimental values. We then
performed a linear interpolation between the ~ = 3

and n = 1 results and predicted that the best agree-
ment will occur at a value of e higher than the Xe
value. However, when we performed the same ap-
proximate calculation for Nb, most of the areas of
the Fermi surface tend to worsen the good agree-
ment with experiment which the o. = 3 value gives.
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Probing the Electron-Phonon Interaction in Potassium by Far-Infrared Cyclotron
Resonance
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To probe the electron-phonon interaction in potassium, Azbel'-Kaner cyclotron resonance has been
observed at four frequencies in the far infrared (29.69, 32.12, 45.407, and 58.25 cm '). The experiments
were performed on a novel reflection cavity spectrometer with balanced homodyne detection driven by a
c.w. far-infrared laser. Signals are seen for EiIH and ELH at 29.69 and 32.12 cm ', but only for EIH
at 45.407 and 58.25 cm '. Two effects distinguish cyclotron resonance in potassium in the infrared
from that observed at microwaves. First, since the resonant electron does not escape the skin depth
before the infrared field changes phase, the resonances suffer from retardation effects and are no longer
amenable to the usual Azbel' —Kaner or Chambers theory of cyclotron resonance. Second, there is a
strong enhancement of the electron-phonon relaxation rate due to the large denisty of phonon states
available to scatter the excitations when the laser frequency is near the Debye frequency, =75 cm '.
The line-shape analysis, used to extract the electron-phonon coupling parameter ), does not reproduce
all of the observed features. In particular, it does not reproduce absorption features on the high-field
side of the subharmonic resonance which are shown to be related to the cyclotron waves that
propagate across the magnetic field in the bulk. Nevertheless, by focusing attention on the breadth and
position of the leading edge of the resonance, we can extract an electron-phonon X. X is found to be
0.11+0.02 and agrees with that determined by the temperature dependence of the phonon-limited dc
resistivity.

I. INTRODUCTION

Electrons in normal metals form a strongly in-
teracting gas whose transport properties are best
formulated in terms of quasiparticles. ' Quasi-
particles, as conceived by Landau, '3 represent

the low-lying collective excitations of the interact-
ing electron system, and behave very much like the
electrons from which they were constructed —with
one important exception. Whereas the electron
lifetime is extremely short, the quasiparticle mo-
tion is long lived. Since the quasiparticle state is


