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Philos. Mag. '7, 115 (1962).
Our measurements here, as well as those of others, show that

in Ag the value of p lies between 0.5 and 1 [see, e.g., K. L.
Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969),
table on p. 369]. %e have, therefore, used p = 0.7 as an average
value since the extraction of grain-boundary-scattering information
does not require an exact value for p. %e need p for two reasons

here: (i) to determine lo and (ii} to subtract off the Fuchs size
effect for the twinned sample. For (i) above, an exact value of p is
not required since lo is very large and does not affect the final

. result in a significant way; for (ii), the size-effect resistivity is very
small if p = 0.5 since other scattering mechanisms are so strong,
and again the final result is only weakly dependent on p.
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The self-consistent screening of a charged impurity by conduction electrons in a simple cubic metal is

calculated in the tight-binding approximation. In order to satisfy screening it is not sufficient to add to
the impurity-site potential an. impurity-induced hopping perturbation, rather, perturbations on

neighboring lattice sites must also be included. If the impurity potential is truncated a few lattice sites

away from the impurity, the self-consistent Hartree screening problem can be reduced to a small set of
simultaneous equations which can be solved numerically. Using techniques developed by Callaway and

by Mann, Seeger, and co-workers, calculations are performed of the residual resistivity and specific heat

of a dilute alloy for a set of self-consistent screening parameters. In addition, the forward-scattering

amplitudes of electrons on the Fermi surface are calculated. The results show significant numerical

differences from the non-self-consistent highly localized potential model used in current

coherent-potential-approximation calculations of the properties of disordered binary alloys, The
conclusion is that quantitatively accurate calculations of disordered alloys must include screening

contributions to the potential. Predictions concerning the range of validity of the forward-scattering

approximation introduced by Stern are also discussed. In addition, it is discovered that a new

approximation, representing a hybrid between first-order perturbation theory and the highly localized

potential model, can adequately describe self-consistent scieening of the charged impurity investigated

here.

I. INTRODUCTION

It has recently been shown that in the calculation
of properties of disordered systems, the shielding
requirement places a restriction on the random po-
tential. ' When applied to a model which has pla, yed
a central role in the development of the coherent-
pot8I14iR1 Rpp1'OX1B1KtiOI1 (CPA), th8 Slll81Cllllg 1'8-

striction indicates that this localized-perturbation
model is not applicable to real systems. Because
this CPA model has been utilized with great expec-
tations as the model that can explain the properties
of real transition-metal alloys it is very important
to pursue the implications of this shielding restric-
tion further. Although the localized-perturbation
model cannot satisfy the shielding restriction and

remain physically interesting, it is still possible
that by appropriately choosing the random potential,
even though it violates the shielding restriction, the
quantitative error made would not be serious. If
such is the case then the shieMing restriction,
though physically corx ect, in practice would be of
only academic interest. The purpose of this paper
is to investigate numerically the implications of the
shielding restriction and to determine whether it is

quantitatively important. We find that, in general,
the shielding requirement is quantitatively impor-
tant.

In calculations of the effective potential of a lo-
calized impurity by the conduction electrons in a
metal two approximations are commonly used. In
the first, the density perturbation caused by the im-
purity is taken to be small relative to the unper-
turbed electron-gas density. In such a case, the
response of the metal is accurately described by
first-order perturbation theory. In a good many

systems such an approximation greatly simyMies
the solution of the self-consistent screening prob-
lem. However, the large density perturbation in
the immediate vicinity of the impurity genexally
causes the approximation to break down in that re-
gion. An example of such a breakdown will be ex-
hibited explicitly later on in this paper. The second
approximation, the localized-perturbation model,
replaces the impurity potential by an effective 6

function. The exact response to such a potential can
be readil. y calculated, if the potential is a,ssumed
known and not calculated self-consistently. The ap-
proximation has been used to great advantage on
CPA calculations of the properties of disordered



binary alloys. 3' It has been pointed out, howev-

er, '5 that such a potential cannot be made self-con-
sistent Rnd yleM pelfect scx'66Qlng of R chRx'ged lIQ-

purity via the Friedel sum rule. 6

A third approximation has been introduced by
Sternv as a generalization of perturbation theory.
I11 it~ the Rppx'oxlnlRte slQgle-electx'oQ elgeQstRtes
ax'e taken to be Bloch states with an energy shifted
from their unperturbed energy by the forward part
of the scattering amplitude. Scattering out of the
Bloch states is treated as a small perturbation.
This forward-scattering approximation (FSA) is
expected to be valid when the impurity potential is
slowly varying in space. The validity of the FSA
will be discussed later on.

A fourth approach that has proven very fruitful
wil. l be the one used in this paper. In this approach
the impurity potential in the Wannier representation
is taken to extend only a finite number of lattice
sites beyond the central impurity site. Techniques
for solving the shielding problem in such a model
have been developed by Callaway and Mann. The
techniques have been extended by Mann, Seeger,
and co-workers to yieM the transport properties of
dilute alloys, such as the residual resistivity and
thermoelectric power, o'0 and the magnetoresis-
tivity. ' ' The attractive feature of the impurity
potential of finite extent is that the scattering equa-
tion can be solved exactly without too much effort.
A shortcoming of the model is that it neglects the
long-range oscillations in the impurity potential as-
sociated with the Friedel oscillationss in the screen-
ing-charge cloud; aside from that, though, it should
be a reasonably accurate representation of the
stx'ongly scx'eened impurity potentlR1. Furthex' Rp-
plications of this model are to the scattering of pho-
nons'~ and spin waves'4 by localized imperfections,
the problem of excitons in metals, ' the magnetic
properties of transition-metal alloys'6 and the re-
sponse to impurities in semiconductors. '7

One other approximation mill also be discussed
in this paper. In this approximation the scattering
of the conduction electrons by the impurity poten-
tial on the site of the impurity is calculated to all
orders in perturbation theory while the scattering
on all other sites is calculated only to first order in
perturbation theory and scatteriQg both from the im-
puxity site and a neighboring site is neglected. This
approximation takes into account the long-range os-
eillations in the impurity potential and is correct to
all orders in perturbation theory where the poten-
tial is strongest. Furthermore the approximation
will be shown to give results close to those of the
fourth approximation. In Appendix 8 the self-con-
sistent screening equationinthis model mill be devel-
oped. An analogous approximation has been used
recently in treating the effect of impurities on the
phonon spectrum. "

An outline of the paper is as follows: In Sec.
II the truncated-potential model (the fourth ap-
proximation mentioned above) will be presented,
along with some results that can be obtained exactly
in the model. The screening process will be dis-
cussed in detail, particularly with regard to the
self-consistency of the screening potential. PR-
rameters relating the impurity potential on R lattice
site and the charge imbalance on that and neighbor-
ing sites will be introduced.

Section III presents the results of calculations.
The screening charge and the impurity-potential
strengths on the sites nearest a charged impurity
are plotted versus a parameter describing the dif-
ference between the atomic energy of the impurity
and the host atoms. The potential strengths are in-
serted into the equations for the total screening
charge given by the various approximations men-
tioned in the introduction. The other approxima-
tions ax'6 discussed 1Q terIQs of their accuracy lQ

reproducing the results of the truncated-potential
approximation. The residual resistivity and the
change in specific heat of a dilute RBoy in our mod-
el are Rlso plotted ln thi8 sectioQ. It wiB be found
that the residual resistivity is smallest when the
impurity potential is smoothest. The specific heat
mill be compared to the rigid-band model and local-
ized-perturbation model. A sensitive dependence
on screening parameters will be found, contrary to
predictions of the rigid-band model. The real and
lIQRglnRly pRrts of the forward-scattering RIQpll-
tude from the impurity potential w01 also be graphed.
It is found that the FSA is most nearly correct when'
the potential is most spread out.

H. SCREENING MODEL

We shall treat the conduction electrons in a met-
al in the tight-binding approximation. Although this
approach is by no means rigorous, the results we
shall obtain can also be obtained by working in the
Wannier representation. s 9 What we are doing is
making the approximation of neglecting interband
matrix elements of the perturbing potential. On
the other hand, the single band in the tight-binding
approximation approximates the isolation of the con-
duction band from higher bands in noble metals, and
we should thus obtain a not too unreasonable de-
scription of the screening of negatively charged im-
purities in noMe metals.

The eI,ectrons are furthermore assumed to prop-
agate in a simple-cubic lattice. This lattice, al-
though it does not occur in pure metals, simplifies
the calculation of Green'8 functions and has a rea-
sonable looking density of states. We are in any
case interested in quantitative comparisons within
a given model with the CPA, localized-perturbatio@
model, and not to real systems, For the unper-
turbed Hamiltonian we assume the following:
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where a„ is the annihilation operator for an atomic
orbital on the nth site. The prime on the summa-
tion indicates that it is restricted to nearest-neigh-
bor sites. The band is centered at zero energy and
its full width is 8'.

The eigenfunctions of Ho are of the form

e„-(r)=Pe'" "«q(r —g„), (2)

where (()(r —R„) is the atomic orbital associatedwith
the nth site and R„ is the position of the site. We
have

H,e; = E(R)e„-

= -[6 W(cosk„s+ cosk,a+ cosk~)]4 &,

where a is the interatomic spacing of the lattice.
For convenience we can take a=1. It is clear that
in this model an electron wave function is complete-
ly specified by amplitudes associated with the vari-
ous atomic orbitals. Similarly, the single-electron
Green' s function in coordinate space is completely
described in terms of amplitudes associated with
pairs of site indices. Because Ho is invariant under
any displacement that takes the crystal into itself
(we neglect surface effects), the Green' s function
for Ho will depend only on the relative positions of
the two sites.

In the presence of a perturbing potential V, the
Green' s function is given by

matrix elements between a finite number of sites,
therefore, there will exist only a finite number of
matrix elements T„„.(E), expressed in terins of
ea,ch other and V and g(E) through Eq. (5a). T(E)
is then obtained as a solution of a finite set of linear
simultaneous equations. Equation (5b) then yields
G(E) immediately.

Knowing the Green' s function we can find the
change in the conduction-electron density at a given
site due to the impurity potential, for we have

p„= (2/v) f'&1m [G„„(Z)]dz, (6)

where p„ is the conduction electron density on the
nth site and E~ is the Fermi energy. We have mul-
tiplied by a factor of 2 to take account of spin.
Equation (6) can be proved by expanding G(E) in
eigenfunctions of the full Hamiltonian.

We also obtain, by expanding G(E) in terms of
eigenfunctions I j) of the full Hamiltonian,

&n( inc(z)~n') .

Tr(lnA) = ln[det(A)], (6)

If we subtract from (6) the corresponding expression
for the conduction-electron density in the unper-
turbed metal, sum over sites and use the relation

G(z)= (z a, —v-f5) '

=g(z)+ g(z) vc(z);
here

(4)

where A is any matrix, we obtain

2 ~&e
=—Im —(ln {det[g(Z)]]

m „„8E
The site indices have been suppressed; they will be
restored whenever it is found necessary or particu-
larly useful. The infinitesimal i6 assures that the
Green's function is causal. The last of equations
(4) is Dyson' s equation for the Green' s function.
Replacing G(E) on the right hand side of (4) by Go(E)
gives the solution of the equation to first order in
the potential V.

A useful operator associated with the Green' s
function is the scattering or T matrix T(E), which
is defined by

T(E)= V+ Vg(E)T(E)

or, from (4)

G= g(E)+ g(E)T(E)g(E)

An attractive property of T(E) in our model is that
it has matrix elements only between sites on which
V has a nonzero projection. If V is taken to have

—te(det[d(«))))d«) (9)

=-—Itd te det)

=—Im(ln (det [1—g(zz) V] )).2
(10)

In going from the second to the third line of (10) we
used the solution of (4), G(E) = [1 g(E)V] g(E). -The

last line of (10) is a generalization of the Friedel
sum rule. We note that if the matrix 1 g(E)V is-
in the site representation and V is truncated then
finding the determinant requires evaluating a finite
number of terms.

We now make the simplifying assumption that the
impurity potential has the equivalent of full rota-
tional symmetry about a central ionic site. In par-
ticular, what we assume is that any rotation or ro-
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tation plus inversion about that site that takes the
lattice into itself leaves the potential unchanged.
Such symmetry, of course, is only characteristic
of nonmagnetic impurities.

The Green's function and the T matrix can then
be reduced in terms of irreducible representations
of the point-symmetry group of the crystal. 8'19

The simylifications effected by such a reduction are
substantial and are developed in detail by Mann,
Seeger et al. ,

' '2 and by Callaway. 8 For the pur-
poses of this paper a brief description mill suffice.

A useful orientation is gained by noting that the
reduction of operators just described is the ana-
logue of reducing the same operators in terms of
angular momentum eigenstates in a isotropic sys-
tem with a spherically symmetric potential. In the
crystal case, however there are only a finite num-
ber of irreducible representations (10 for a cubic
crystal) as opposed to an infinite number of possi-
ble angular momenta in the isotropic system. An
equation in close correspondence with the Friedel
sum rule can be obtained from Eq. (10) by reducing
the matrix 1 —g(E)V One ob. tains

Z &p„=-—Zn„v„, (g,),
2

(11)

where nr& is the dimension of the irreducible repre-
sentation F, (we use the notation of Bouckaert,
Smolouchowski, and Wigner 0) and 5r, (E) isthe imag-
inary part of ln fdet[1 —G(E)V]}corresponding to
the F] x'eyx'esentatlon dxvlded by si ]. %e obta1n 1n
a similax' fashion for the change in the density of
states at the Fexmi energy

S (Z,)=-- -Z „, „"' ~ (12)
d~r, (&) '

dE

where N is the number of impurities (in the dilute
limit) and V is the volume of the crystal. Finally
me note that the residual resistivity, as mell as the
other transport properties mentioned in the intro-
duction, can be found using methods outlined by
Mann. ' For an impurity potential extending to the
six nearest neighbors of a central impurity site one
has to solve three simultaneous linear equations to
obtain the resistivity, and for a potential extending
to the twelve next-nearest neighbors one must
solve fifteen such equations. ~'

%e nom require that the impurity potential be
self-consistent with respect to the electron-electron
interactions. A simple self-consistency require-
ment is that the total charge in the screening cloud
be equal to minus the impurity charge. An equation
embodying that requirement is obtained by substi-
tuting on the left-hand side of either Eq. (10) or
(ll) minus the charge on the impurity. The equa-
tion neglects the effects of the distortion induced in
the ionic lattice by the impurity. Blatt 3 has es-
timated that distoxtion effects can reduce by uy to

47% (Cd in Cu) the effective charge of an impurity
mith a valence one greater than the host as seen by
the conduction electrons in a noble metal. Such an
effect is beyond the scope of our work, but should
be kept in mind when the results are applied to real
situations.

The impurity potential in the %'annier representa-
tion mill, in general, have diagonal and off-diagonal
terms. The diagonal terms represent perturbations
in the atomic energies and the off-diagonal terms
repx'esent pex'turbations in the hopping terms in-
duced by the impurity. In the local. ized-perturba-
tion model of the CPA the impurity perturbation is
a single diagonal term on the impurity site. This
simplest of potentials is not adequate when the
screening requirement is added. ' The next addi-
tion to the localized-perturbation model might be to
add a perturbed hopping term to the neax'est neigh-
bors. As discussed in Appendix A this is also not
adequate to satisfy screening. The minimum re-
quirement to satisfy screening is to add perturbed
diagonal terms to the neighboring atoms of the im-
purity. Since a perturbed hopping term does not
aid in satisfying screening but adds another param-
eter, me simplify our model by assuming that the
impurity potential is diagonal in the Wannier repre-
sentation, i. e. , it will contain no "hopping" terms
such as those in the summation in Eq. (1).
Furthermore, it will be truncated beyond the next-
nearest neighbors to the central impurity site.

The potenti. al will be nonzero on 19 sites. Be-
cause of the cubic symmetry of the surrounding lat-
tice it will be described completely by three param-
eters: its strength on the central site, on a near-
est neighbor, and on a next-nearest neighbor. The
Friedel sum rule provides one relationship between
the three potential strengths, so me only need two
more self-consistency conditions to completely de-
termine the impurity potential. The tmo me have
chosen are

Vo= &0+—(Q+ &po)+—Zbq a~ GPSS

V, =~ &p, + -'( (9+&po)+—'~
ei Rga e &~o, i ~ &~—

mhere Vo is the impurity potential on the central site
and V& is the potential on a nearest neighbor. Eo
describes the difference between the atomic charac-
ter of the impurity and the host atoms, and ~0 and
4, are Hartree-like parameters giving the poten-
tial energy on a site in terms of the charge imbal-
ance on that and neighboring sites, respectively.

50 and 6, should not be too large because it is
known that for too strong a Coulomb interaction the
ground state mill be a spin ordered one, fundamen-
tally different from the ground state in which me are
interested. We have chosen 60/W= k»d IRAN 1 &0/
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kg = 2. 6V. The first ratio ls slgnlf icantly less
than the "Hubbard ratio" that leads to ferro-
magnetic ordering of conduction electrons in a mod-
el similar to this one. The second ratio was chosen
to satisfy the requirement that the potential energy
be the same on both the central site and on the near-
est neighbors due to a charge imbalance on the near-
est neighbors. This requirement is what one ob-
tains for spherical symmetry. With spherical sym-
metry any charge unbalance is in the form of a
spherical shell. Such a shell contributes a poten-
tial which is constant on the shell and within it. In
our simple-cubic lattice we do not of course have
spherical symmetry but the potential for a given
charge unbalance with the cubic lattice symmetry
would not deviate greatly from that expected for
spherical symmetry —hence the chosen ratio for
6 /6, to eliminate an additional parameter from the
model.

Our calculations were for a half-filled band.
There was therefore in the unperturbed metal one
electron per atomic site. To simplify calculations,
the impurity was taken to have one unit less of posi-
tive charge (rather than one unit more of positive
charge) than the host atoms. The screening poten-
tial was then basically repulsive and no bound state
was formed (except possibly for hole bound states
above the top of the band). Because electron bound
states lead to no special behavior in the electron
gas, 5 except in the density of states below the bot-
tom of the band, no important information was lost.
The symmetry of the model allowed us to extract
results for an impurity of plus a positive charge;
all results in the next section will be for the latter
case,

III. RESULTS AND DISCUSSION

The impurity-potential strengths and the conduc-
tion electron screening charge on the sites in the
immediate vicinity of the impuritp are plotted ver-
sus Eo/W, where Wis the bandwidth, in Figs. 1
and 2, respectively. Also shown for comparison are
the corresponding values for the localized-perturba-
tion model (denoted by &,„,). A useful result indicat-
ed by Pig. 1 is that the potential on the nearest-
and next-nearest-neighbor sites is small enough to
be treated by first-order perturbation theory. The
same is not true of Vo, the potential strength on the
impurity site. The change in sign of the screen-
ing-charge density from the impurity site to the
nearest neighbor for Eo/ W+0. 08 is the first wiggle
in the Friedel oscillations of the screening-charge
density. Because of our truncation of the potential
we cannot assess the self-consistent effect of that
wiggle on the screening potentia1 with any degree of
certainty. Note that the localized-perturbation mod-
el is not self-consistent, nor can it be made so. By
definition the potential perturbation is only on the

—-0.004

—-0.008

—-0.0I 2

FIG. 1. Impurity potential in the immediate vicinity
of an impurity of plus one unit of positive charge solved
for self-consistently and plotted as a function of Eo Vo

is the potential on the impurity site. V& and V2 are the
potentials on the nearest- and next-nearest-neighbor
sites, respectively. 8' is the bandwidth. Also shown
is the value of VO=EO for the localized-perturbation
model, labeled. by 6z„,. In this model both V& = V2 = 0.

impurity site yet charge perturbations exist on the
neighboring atoms as shown in Fig. 2. Also shown
in Fig. 2 are the charge distributions if the localized
perturbation model is used, but the value of the poten-
tial on the impurity site is given by the self-consis-
tent truncated model. In other words the value V() de-
termined from the truncated self-consistent is used
as the perturbing potential for the localized pertur-
bation model. in place of Eo. The charge on the im-
purity site is accurately given, in this case, by the
localized-perturbation model but not for the neigh-
boring sites. It is important to emphasize that
using V instead of E is outside of the scope of the
loca3ized-perturbation model. Vo is determined
self-consistently and differs from Eo because of the
self-consistent potential induced by the charge dis-
tribution. It is impossible to calculate Vo within
the localized-perturbation model since this model
cannot be treated self-consistently. However, the
use of Vo in the localized perturbation model and
the close agreement for po with the self-consistent
theory has implications for the validity of the hy-
brid model discussed further on and in Appendix 8,

In Fig. 3 are plotted the total screening charge
predicted by the various approximations discussed
in the introduction. A shielding charge of 1.0 rep-
resents the correct shielding. The curve denoted

5,„,is the localized-perturbation model. This mod-
el never completely shields the impurity. The
curve denoted FSA is that calculated by the FSA to
first order which is, in this case, formally the
same as first-order perturbation theory, because
the energy shift introduced by the single impurity is
negligible. Vfe note that the FSA gives correct
shielding only when Eo/W= 0. In that case we note
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FIG. 2. Conduction-electron screening charge in the
immediate vicinity of the impurity. po is the change in
the conduction-electron charge on the impurity site. p&

and p2 are the changes on the nearest- and next-nearest
neighbor sites, respectively. The solid curves are the
results for the truncated self-consistent model. The
dashed cuxves are the results for the 6&~ model Qocalized-
perturbation model). The dotted curves are the results
of the localized-perturbation model if the self-consistent
potential Vo is used in place of Eo.

These results agree with the FSA near Eo/W= 0
and do not deviate as much from the correct value
at higher values of Eo/W. However, there is no

physical justification for the FUN approximation.
The highly localized potential model, labeled

g~~ in Fig. 3, assumes that the impurity potential
is zero except on the central site. The total
screening charge predicted when that approxima-
tion is made in Eq. (10) or (11), as plotted on Fig.
3, is a consistent underestimate of the correct
value. The prediction becomes more nearly cor-
rect as the potential becomes more concentrated
on the central site, although for the range of the
parameter Eo that we have taken it is never great-
er than 83% of the screening charge.

In sharp contrast to the above, the hybrid ap-
proximation, described in Appendix 8, gives the

that Vo/W= —0. 11 and V, and Vz are much smaller.
The expansion parameter of perturbation theory for
the impurity site is in this case (6VO/W)I(Ez) =0.6.
Here I(Ez) is the imaginary part of p WII00(E+)
and is plotted in Fig. 8 as a function of E. This is
not a small parameter and it is difficult to under-
stand why the result is accurate to 2% viewed from
ordinary perturbation theory. Viewed from the
FSA, the expansion parameter is x, the ratio of
the imaginary part of the energy shift to the real
part-both terms have been plotted in Fig. 4. Near
Eo/W=O this ratio has the value of 0. 17 which is
small and explains the good agreement of FSA curve
there. The FSA deviates 20% from the correct
shielding value when F3=0, 44, and the ordinary per-
turbation theory expansion parameter is 1.1-clear-
ly too large to be applicable. It is of interest to
note that at Eo= 0, the potentials totaled over the
six nearest neighbors and then twelve next-nearest
neighbors are about the same as that on the impuri-
ty site, i.e. , 6V~/W=-0. 066, and 12V&/W= —0. 12.
The potential is appreciably spread out compared
to the Fermi wavelength or lattice spacing, causing
the scattering of an electron at the Fermi surface
to be mainly in the forward direction. In this case
the parameter x is expected to be small' as found
explicitly for this model. Finally plotted in Fig. 3
as FUN is the total screening charge obtained by
using the FSA expression to first order but replac-
ing the potential by the real part of the enexgy shift.

IQ. IQrrqrr ~ rrrrrrf' ~ ~

hybf'id

8,„„

FUN

/

f
!0 /

0.5—

FIG. 3. Total screening charge as given by various
models. For perfect screening the result shouM be l.0
for all values of E0/TV. This result is obtained for the
self-consistent truncated model shown by the horizontal
line through 1.0. The hybrid model results are shown
by the dotted curve. The forward-scattering approxima-
tion result to first order is shown by the curve labeled
FSA. The localized-perturbation model results of the
CPA are shown by the dashed curves labeled 6». The
results denoted by the dashed-dot cuxve and labeled by
FUN are those obtained from the real part of the energy
shift substituted in the expression for the FSA in place
of the potential.



5068 J. RUDNICK AND E. A. STERg
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FIG. 4. Real (solid curves) and imaginary (dashed
curves) parts of the forward scattering amplitude at the
Fermi enex'gy. These are proportional to the real and

imaginary parts, respectively, of the energy shift caused
'by alloying to first order in the concentration. The thick
curves are for the self-consistent truncated model while
the thin curves are for the localized-perturbation model
of the CPA.

total screening charge to within better than 1% for
the entire range of Eo. The hybrid model is cor-
rect to all orders in strength on the central site
and to first order in the rest of the potential, ex-
cept for scattering terms coupling the central and

neighboring 81tes ~ Although to obtain 'the results
for the hybrid approximation in Fig. 3 the poten-
tial strengths obtained from the truncated poten-
tial approximation were used, one can solve a
self-consistent screening completely within the hy-
brid model, including an impurity potential without
truncation. The equation and its formal solution
are developed in Appendix B.

We note in Fig. 4 that the ImT»(Ez) is accurate-
ly given in the 1.ocalized perturbation model when

Ee/W20. 5. However, the ReT»(E~) is never giv-
en accurately by the localized-perturbation model.
This is a direct consequence of the neglect of the
potentials outside of the impurity site.

The residual resistivity due to a dilute concen-
tration of impurities is plotted in Fig. 5. The im-
purity potential at the next-nearest neighbors was
neglected to simplify the calculation though 1nclud-

ing it should not change the result by much since
the neglected potential gives negligible large angle
scattering, The rise in the resistivity with the in-
creasing potential at the central site is due to the
increase in s-like scattering by the impurity at the

expense of higher-angular -momentum-type terms 2 j

as the potential becomes more strongly peaked.

O.S
Eo/N

FIG. 5. Residual resistivity p due to a dilute concen-
tration of impurities, divided by the number of impuri-
ties N and by go, the interatomic spacing in units of the
Bohr radius. The curve labeled 5&~ is for the lo~alized-
perturbation model of the CPA while the other curve is
for the self-consistent truncated model.

The scattering phase shifts for the various irre-
ducible representations are shown in Fig. 6.

We note that the resistivity for the localized-
perturbation model, denoted by |),„„differs from
that of the self-consistent model mainly for small
values of Ee/W. Most of this variation is caused
by the difference in the impurity potential intro-
duced by self-consistency, i.e. , the difference
between Vo and Eo in Fig. 1. If the potential at
the impurity site is assumed to be Vo in place of
Eo for the lighly localized model, close agreement
with the self-consistent model is found. This isbe-

—-0.05

60

OQ

—I.O

0.5
E0/Nf

FIG. 6. Scattering phase shifts associated with the
impurity potential. The correspondence between the
curves and the phase shifts is as follows: 6q&, solid
line; dr, dashed line; dr, double-dashed~et line;
6p (~s dashed&ot lines 6z 2~e, s dotted line. The curvg
labeled 4q„~ is for the localized-perturbation model of the
CPA. The other curves are for the self-consistent trun-
cated model. The localized-perturbation model has only
one phase shift 5z g,
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cause the resistivity is dominated by the 8-wave
scattering coming from the impurity site.

Figure 7 shows the logarithmic derivative of the
low-temperature electronic specific heat with re-
spect to the concentration of impuxities for a dilute
concentration. The prediction of the rigid band mod-
el is that it should be proportional to the energy de-
rivative of the density of states, independent of
screening parameters. The density of states in our
model has a zero derivative on the middle of the
band, so our result is in clear contradiction to that
prediction. It is useful to note in this respect that
experiments on dilute noble metal alloys~8 also dis-
agree with the prediction of the rigid-band model.
The hybrid model here is, at its worst, off by only
slightly Inore than 1pp.

As in the case for resistivity, the difference in
Fig. '7 between the localized-perturbation model and
the self-consistent model is mainly caused by the
difference between Eo and the self-consistent Vo.
In this particular case V, and Va do not contribute
to the y changes because the derivative of the unper-
turbed density of states at E& is zero. In the more
general case where the derivative of the unperturbed
density of states is nonzero, V, and Va do contrib-
ute to y and the fuQ self-consistent problem must be
solved for quantitative results. The localized-per-
turbation model of the CPA wouM nowhere be ac-
curate in this more general case, in contrast to the
result shown in Fig. V where it is accurate above
EJW=0. ».

IV. CONCLUSION

A calculation has been performed of the self-con-
sistent screening of a charged impurity in the tight-
binding approximation with the further approxima-
tion that the impurity potential is truncated beyond
the second neare8t neighbor8 to the impurity. This
approximation was taken to be fairly accurate and

0.5
Eo/4

FIG. 7. Logarithmic derivative with respect to the
number of impurities, N, of the electronic specific heat 'y.
The curve labeled 6«n is the result for the localized-
perturbation model of the CPA while the other curve is
for the self-consistent truncated model.

used as a standard to compare with other approxi-
mations to the impurity screening problem. An ap-
proximation representing a hybrid between first or-
der perturbation theory and a highly localized im-
purity potential model was found to very closely
replicate the predictions of the truncated potential
model. Furthermore, the self-consistent screen-
ing problem in that approximation is straightfor-
ward in principle to solve. First order perturba-
tion theory, was found not to hold at all while first-
order FSA was valid only when the potential was
appreciably spread out over more than one lattice
site. The rigid band model never was appropriate.
The highly localized potential model is also not ac-
curate, a result that casts doubt on the usefulness
of CPA calculations that rely on it. There is hope
that the hybrid model can be easily incorporated in-
to a coherent potential formalism; work in that di-
rection is presently in progress.

APPENDIX A: IMPURITY HOPPING PERTURBATION

As mentioned in the text, perturbations induced
by the impurity in the "hopping" matrix elements
were neglected. This neglect was partially moti-
vated by the fact that simply adding the hopping
perturbation to the impurity site perturbation still
does not adequately satisfy the perfec& shielding re-
quirement, In this appendix we prove this result.
The highly 1ocalized potential approximation in our
single band model, has the unphysical feature that
for a band half full one can only have perfect
screening of an impurity of Z = 1 when I Vo I = . The
question arises whether adding a hopping perturbation
will correct this screening difficulty. Such a ques-
tion is relevant because of the many recent CPA
calculations using the highly localized approxima-
tion enhanced by such off-diagonal terms. "

%e consider the response of the conduction-elec-
tron system to the impurity potential

I'= ~oatoao+~ (faoa„+f aInao)

where, as before, a„ is the destruction operator for
an atomic orbital on the nth site. The prime on the
summation means that it is to be only over sites
that are nearest neighbors to the central impurity
site. For such a potential one obtains the following
expression for the phase shift at the Fermi energy
E=O.

5(0) = tan '[- voI(0)/y] (A

where I(0) ls the lnlaglnary part of +oW tillles the
Green' 8 function goo(E), &o = 6 Vo/ W, and W is the
full bandwidth T is given by

T= (I —12t/W) (I- 12t*/W'). (A2)
I(E) and R(E), the real part of + Wgoo(E), are plotted
in Fig. 8,

In obtaining (AI) we used the relationship that
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one can envision a case of degenerate bands, such
as d-bands, where an integer number of electrons
per atom can be accommodated by distributing over
the bands such that each band accommodates a non-

integer number of states per atom. For such a
case it is useful to discuss the shielding require-
ment for a less than half-filled or more than half-
filled band in addition to an exactly half-filled band
as above. In this more general case the phase
shift of (11)will have the value

6(E)= Im(lnOg —vo)GO(E) —T[e Go(E) —1]]), (A3)

where Go(E}=~Wgo(E} and e=6E/W. To obtain
(A3) we used the relations

g, (E)=-'[Eg,(E)—1],

go(E)+4g (E)+g (E)= sE[Ego(E)-1].

FIG. 8. Real Q(E)] and imaginary fI(E)] parts of

~ Wgpp(E) plotted as a function of energy E.

go(0)+g4(0)+ 4g~(0) = 0, where the subscript denotes
the difference in the number of neighbors between
the site locations of the matrix elements. Thus a
subscript 0 denotes a diagonal element goo while 2

denotes a matrix element between Wannier states
centered at sites a distance 2 nearest neighbors
apart, and 4 denotes a matrix element between
Wannier states centered at sites a distance 4 near-
est neighbors apart. By assuming E~= 0 to obtain
(Al) we have chosen the only physically interesting
case where the band is half-filled. This corre-
sponds to a pure host of one electron per atom. A

pure host of zero or two electrons per atom would

correspond to an empty or full band, neither case
being of interest because it is not metallic. Per-
fect screening of an impurity with plus or minus

the charge of an electron requires l 6l = &m. In
the highly localized potential model (T = 1) one can
have perfect screening of either a positively or
negatively charged impurity only when I Vol - ~.

In (Al) we can have 161 = —2w only under two

conditions; we must either have I Vol - ~ or T
=0. The second case, asonecanseefrom(A2)
and (1) corresponds to an off-diagonal impurity

potential that exactly cancels out the hopping terms
connecting the central impurity site with its neigh-
bors. The atomic orbital on the impurity atom is
completely isolated from all the other atoms in the

host. T = 0 is then an additional unphysical feature
and the addition of a hopping perturbation alone

does not give a physical solution to the perfect
shielding requirement.

Within the one-band model the above discussion
exhausts all physically interesting cases. However,

Equation (A3) can be written as

(e —,—e T)I(E)
(g —vo)R(E) —[eR(E)—1]T)

Applying the screening requirement to (A4) and

using the functional forms of I(E) and R(E) illus-
trated in Fig. 8, one obtains the same unphysical
restrictions as found for the case of the highly lo-
calizedpotential (T= 1), namelythe following: In the
case of the screening of an impurity of unit charge,
an impurity of positive charge (valence one less
than the host) can only be screened by a less than
half-filled band; by symmetry an impurity of va-
lence one more than the host can only be screened
by a more than half-filled band. (ii) There can be
no screening of an impurity with a charge of l2el,
)3e(, etc.

The only improvement over the highly localized
model introduced by the hopping perturbation is
that of an isovalent impurity in a less than or more
than half-filled band. In that case Vo can be finite
instead of zero. However, even in this case there
is some question whether a one-band model with

fractional occupation is a valid representation of
overlapping degenerate bands, and deserves further
study. All in all, the addition of simply a hopping
perturbation does not give a very satisfactory im-
provement to the screening difficulty encountered
in the highly localized perturbation model.

APPENDIX B: HYBRID APPROXIMATIONS

The numerical results of the paper indicate that

V, and V2 are always small enough to be treated by
perturbation theory while Vo in general must be
treated to all order. We divide the solution for the
Green's function in two steps. In the first step we

solve for the Green's function with only Vo present
and treat it to all orders. We next calculate the

correction to the Green' s function added by V, and

V~ using perturbation theory.
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We solve the Dyson equation (4) where V in the
%annier representation is nonzero only for the di-
agonal element on the impurity site:

g... (E) V.Z...(E)
G„,„(E)=Z„,„(E)+ "

1 V (E)ogoo
(81)

6p:ZX(R —R e) V&r + F(R Vo) (84a)
tt'

X(%„)and f(R„.Vo) are obtained directly from (83)
and (6). We have used the fact that the unperturbed
Green' s function depends only on the relative posi-
tions of two sites. We now generalize (13) to ob-
tain a relation between the impurity potential and
the perturbed charge density.

V„=—&p„+—Z — "- + (1 —6„,o)
6p„ bq Q

e " e„.„„IR„-R„.I
"' IR„I e

~ il„g
~

Q —
+ED) . (85a)(

Adding V, and Vo in perturbation theory, (4) be-
comes

G„,„.(E) =G„',„.+Q G„' „"(E)V„r.G„'re„, (E), .(82)
tt

where the prime is added to the sum to indicate that
the term n"= 0 is not included.

Numerical calculations indicate that in the sec-
ond term on the right side of (82), cross terms be-
tween Vo and V„"W Vo are always negligible in the
model of this paper, permitting the substitution of
g for G in that term. Thus (82) simplifies, with
the aid of (Bl), to

G... (E)=g... (E).ZZ. ,:(E)V„-g.-,„.(E)
nee

Z..o(E)ao..(E)Voto, o(E) (83
1 —Voto„(E)

where now the sum is over all sites including the
impurity site (n =0). Now, using (6) we obtain for
the change in the electronic density at the nth site

Taking the Fourier transforms of (84a) and (85a),
we obtain

~5p.e" ' ~ -=~p(q) =k(q)v(q)+f(q, Vo),
tt

v(q) = Eo+A(q)[Q+ &p(q)],

(84b)

(85b)

where k(q), v(q), and f(q, Vo) are obtained by taking
suitable Fourier transforms of the corresponding
quantities in (84a) and (85a). A(q) is given by

Q eke %g( 1 0

geist„l e

An important feature of A(q) is
4m 4

A(q)- —,—' as q-0.
Q' e

On the other hand k(q) approaches a constant, and

f(q, Vo) has no singularity as q-0.
Substituting (85b) into (84b) we obtain

k(q)A(q) Q k(q)Eo
1+k(q)A(q) 1+k(q)A(q).

(86)

, f(q. V.)
1+k(q)A(q)

'

Taking the limit q-0 and remembering the com-
ments just made we obtain

p 6p„= lim &p(q) = —Q.
q"0

So we obtain perfect screening on this model.
Using (85b) and (8't) to find v(q) and taking the in-
verse Fourier transform yields

v (q)e II Q doqn=
(2v)o

1 "[A(q)Q+Eo+A(q}f(q, Vo)]e "~
(2m)'„ 1+k (q)A(q)

(88)
Numerically solving this implicit equation for V„
completes the solution of the self-consistent
screening problem in the hybrid model.
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The temperature dependence of the electron scattering time 7 averaged over an orbit has been

investigated in thallium using the radio-frequency size effect. It was found that ~ fit an expression of
the form 1/v = a + b T ". For closed orbits the temperature exponent varied from n = 3 at low

magnetic fields to n = 5 at high values of the magnetic field. A scattering-effectiveness criterion was

introduced and was used to predict a magnetic field dependence for n in agreement with experiment.

The value of the deformation potential averaged over an orbit was obtained for orbits with n=3.

I. INTRODUCTION

The temperature dependence of the relaxation
time for electrons in metals has been the subject
of several recent investigations. Various tech-
nicIues including radio-frequency size effects
(HI'SE), ' ' ultrasonic attenuation, e-" cyclotron
resonance, 6 bulk-resistivity measurements, ~~

and magnetic-surface-state resonance~~ 2~ have
been employed by experimenters, yielding a vari-
ety of results. Generally, however, it is found

that the relaxation time ~ varies according to I/v
=a+bT" for temperatures in the range 0 to 10 K,
where g assumes values between m=2 and g='7.

The experimental results may be understood by
assuming that an electron on a resonant orbit un-

dergoes a scattering event in an average time v.

which removes the electron from the resonant or-
bit. If one Blso assumes that collisions with im-
purities and with the lattice (in the form of elec-
tron phonon -interactions} contribute to the total
scattering rate independently, the expression for
v may be written as I/7= I/7, + I/v~, where I/r; is
the average scattering frequency due to impurities
and 1/~~ is the electron-phonon scattering fre-
quency, 7, is temperature independent over the

range of temperatures investigated,
A model for electron-phonon scattering in which

it is assumed that every electron-phonon collision
is effective in removing the electron from the
resonant orbit results in an expression of the form

I/~~ =, ' I'n;(I -f„-,;)5(z„-„--a(u; —z„-)
IC I

+ (~;+1)(1 —f„- „-}5(Z„-,"+au); —Z„"}]qdq,
corresponding to processes of emission and ab-
sorption of a, phonon of wave vector q. (M is the
ion mass, C, is the velocity of sound, and C0 is the

average deformation potential. ) In the Debye ap-
proximation and at low temperatures the integral
may be evaluated and one finds I/v~ = I'I' where

I'=2 ~ 4&&io'(I Col'/a ) (m. /I)
for thallium where I COI is measured in eV and kD

in units of 10 cm '. Thus a temperature depen-
dence for I/v of the form I/~= a+ I'Ts is pre-
dicted. If v=3 experimentally, as occurs for
many orbits observed in this experiment and

others, a value for the average value of the defor-
mation potential over the orbit can be determined.

In this experiment, as well as in the work of


