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A numerical evaluation of the Jahn-Teller potential energy is presented for the case of Ti’* in ALO;.
It is found that the crystal-field theory is inadequate to explain the experimental results, whereas the
inclusion of covalency effects leads to a good agreement between the experimental results and the

theoretical ones.

The influence of a dynamic Jahn-Teller effect
on the energy levels of a d' electronic system in
Al,0; has been considered by Macfarlane et al.*
They obtained analytical expressions for the ener-
gy splittings 6, and §,, as well as the g values for
the Zeeman splitting of the E;,,,,E,,,, and ,E,,,
levels (Fig. 1). The independent variables in-
volved are the trigonal and spin-orbit coupling
parameters v and ¢ and the quenching factor y
=¢3Fyr/3@  where E;; denotes the Jahn—Teller
potential energy and 7w is the energy of the vibron-
ic mode responsible for the Jahn-Teller effect.
The analytical expressions were then fitted to the
experimental data concerning AL,O,: Ti** and the
experimental value of the Jahn—-Teller energy E ;.
was obtained'’? (E%" =200 cm™). The purpose of
this paper is to present theoretical estimates of
the quantity E;;. It turns out that the crystal-field
model is inadequate to explain the experimental re-
sults, whereas the inclusion of covalency effects
leads to good agreement between the experimental
results and the theoretical ones.

A theoretical estimate of the value of E;, in the
framework of crystal-field theory is feasible if
one restricts oneself to the octahedron composed
of the Ti* ion plus its nearest neighbors and adopts
a point-charge model. We start from the formula’
E;p=a%/2p, where a=v2 (d,,18V/8Q,|d,,) and B
denotes the force constant. By using the explicit
expression of 8V/8Q, reported in Ref. 3, one ob-
tains the following formula for the coupling con-
stant a:

a=%'(%_<r@+%5{@>(in a.u.), (1)

where (#?) and ¢*) denote, respectively, the mean-
square and mean-fourth-power radius of the 3d
orbit, R is the distance between the metal ion and
the ligands, and e’ denotes the effective charge of
the oxygen ions. In order to estimate a numerical-
ly, e’ was assumed to be -1 a.u., R was assumed
to be the lattice constant of the pure Al,O5 crystal, 4
and the free-ion values of &%) and {(*) were used:
@*=1,893 a.u., &*="7,069 a.u.’® We obtain in
this fashion the following value: a=9.3x10%a,u,

7

The corresponding Jahn-Teller energy E;. =a?/

28 (8=6x10° dyn/cm)® turns out to be E;p=2400
cm™, which is too large compared with the experi-
mental value E% = 200 cm™,

In recent years, it has been shown that covalency
effects play an important role in ion-phonon-in-
teraction phenomena such as paramagnetic relaxa-
tion, 819 the phonon-field contribution to the hy-
perfine coupling of S-state ions in crystals, ! and
the positions of the energy levels of ions in crys-
tals. ! Moreover, it has been shown that covalency
can substantially change the picture of the Jahn—
Teller effect. ~!° An evaluation of the quantity
E; in the framework of molecular-orbital theory
was therefore undertaken. The molecular-orbital
method in its “linear combination of atomic orbit-
als” form was employed. ** In the case of 0, sym-
metry, the proper set of ligand basis functions and
their metal-ion counterparts are given in Ref. 16.
The one-electron molecular orbitals to be consid-
ered here are

oA y) =Ny [4s + {7/ V) (2y+ 25+ 25 +24+ 25 +2)),
Vo(Ey) =Ny [3d 2.2+ 3057 (21 — 25 +24 = 25)]
=Nz [3dzz+ (XQO)/Z ‘[3) (223 +225

—21-23—23"'24—25)],
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FIG. 1. Low-lying electronic energy of Al,O5: Ti®*.
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FIG. 2. Coordinate system and numbering used in the

molecular-orbital calculation.

‘I,c,l'(Flu):Ns[ﬁpr'*'(x /V2) (2y - 24) +% K("
X (x5 +y3= %5~ Ys)]
=N3[4p + A7/ V2) (2g = zg) + 1057
X (%5 +y1~ %4 = 5)]
= Ny [4py + (A7 /V2) (25— 25) + 3 A{"
X(%y+y3 = %6~ ¥4 »
Uy(Fop) =Ny [3dye + 3057 (x5 +y 3+ %6 +95)]
=Ny [3dyy+3 M7 (0, +95 +25+9,)]
=Ny[3d,e+ 5 M7 (g + 9, +%4+36)] (2

where x,y, z refer to 3p,, 3p,, 3p, oxygen orbitals.
The coordinate system used is shown in Fig. 2.

For each molecular orbital the averaged energy
(H)qy is calculated and the coefficients 1, are varied
so that 6(H),, =0. This leads to a homogeneous sys~-
tem of linear equations from which the 1 ; are evalu-
ated. The condition that these equations are
solvable provides the secular equation |H; =G E |
=0 from which the energy levels E are obtained.
The extended Huckel theory, previously used by
one of us for deriving the energy levels of KCl:Tl, "
has been adopted in the present problem. Hartree’s
numerical values of O*" (Ref. 18) and Ti** (Ref. 19)
radial functions R(r) were used for our computations.
The numerical values of R(») were fitted with Sla-
ter functions. The overlap integrals G,;; were then
evaluated in the usual way.?® The diagonal terms
H,; in the secular equation |Hy;; —G; E| =0 were
estimated as the sum of ionization potentials V,
plus the Madelung energy E,. The quantities V,
were obtained from Moore’s tables? of atomic
spectra. For the off-diagonal terms H;;, we have
made use of the Wolfsberg—Helmholtz approxima-
tion, 2 The computations were performed by means
of the self-consistent procedure adopted in Ref. 17,
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Figure 3 shows the molecular-orbital diagram. The
configuration of the ground state is
A% (E)H (Fy,) (F,)'. The corresponding covalency
parameters \; turn out to be

>\§°) (A1‘,)= 11, >\;’)(Flu) =3.5,

AN E,)=8.68, A{(Fg)=0.1, 3)

Kéc)(Flu) =45,
Because of the small value of the parameter x5, the
molecular orbitals transforming as F,, are mostly
centered on the metal-ion orbitals d,,,d,,,d,,.
Therefore, with a good approximation they can be
taken to be coincident with the pure-3d orbitals.
Moreover, since \{" is one order of magnitude
smaller than A{", it turns out that r-bonding ef-
fects can be neglected also for the case of molec-
ular orbitals transforming as F;,. Therefore,
the computations have been performed neglecting
the contribution of 7 bonds and by using accordingly
renormalized orbitals. This leads to A3=4%7.7 and
As=A5=0. Following the procedure adopted in Refs.
7-10, the parameter ¢ was then expressed in terms
of auxiliary functions C%8(p,, p,) given by

CLa(Pg5 Py) =3 5704241 [ " i [ianetmen
X(& +m)* (€ = n)*(1 + &n)”
X (L-En)(E2- 1)1 -0, (4)
where
P=3(Ps+Py),  7=(Pa= Py)/Pa+Py)-

The corresponding expression of a turns out to be

a U
5= _lxéxzn[ 1310, xoR) -1 C1% (0, xoR)]

192<2 Uy XO-’[C::-I 1 (R’ XoR) - i Cp-l 1 (R, XOR)]
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FIG. 3. Molecular-orbital energy—level diagram of
Al,Oq: Tid*,
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TABLE I. Observed and calculated splittings and
g factors for the 2F24, ground term of Ti3*in Al,Oj.

MANCINI,

Crystal-field Molecular-orbital

Observed calculations calculations
512 em™) 37.8 0.8x 10" a7
5% em™)  107.5 4.4% 103 142
an’ 1.07 1.99 1.09

2Reference 1.

"é, (0 = Duyx5?[CE,1 R, xoR)
-1 G R, xoR)])

T 32 (lsxo{ %28 (0, yoR) =4 C°%2 (0, y o R)]
1CY2(0, yoR)]

- 9xo[C%1 (0, xoR) -

-15 E uyx§?[C3%,1 R, xoR)
=0

p-s %1(R, XoR)]

+9 E up x5 [C24,1 (R, XoR) =5 Co% 1 (R, XoR)]
-3 Zu' X [C34 1 (R, XoR) -LC?,?? 1(R, xoR)]
+§u{, X ?[C,1R, xoR) -1 C}% | (R, xoR)]
+32) px(Ch R, xoB)

-1 C3%.1 (R, xoR)]

" ;
- Z(;)_Du,', Xé-’[c},ﬁJ(R: XoR)- %cxl,ojg(R, XoR)])',

=
(5)

with xo=2*/Z} where Z*, Z¥ are the effective
charges Z and Z ; of titanium and oxygen, respec-
tively, divided by principal quantum numbers. In
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our case Z=3.93 a.u., Z;=4.38a.u., U;=Z; - K,
K,=275,C3 N, and

u,=1 if p=0,
u’=}}T—ZT(—§£—1ﬁ if 1<p<4,
W=y i 0shsd,

5= pll 6!(1;515)! i 5<p<6.

The evaluation of C%¥ (p,, p,) has been made using
a method of recurrent equations® by means of an
electronic computer. One finds a=3.2%10"%a,u.
The corresponding value of the Jahn—Teller ener-
gy is E;;=270 cm™. The strong reduction of E yp
in the molecular-orbital framework, in contrast

to the point-charge model, may be understood on
qualitative grounds by observing that in the former
case the valence electrons are smeared out over all
the complex. Therefore, the variation in the elec-
trostatic energy of the F,, electron in the field of
the valence electrons arising from the displace-
ments of the ligands may be expected to be smaller
with respect to the case when the valence electrons
are well localized as in the point-charge model.

' Analogous reduction factors of ion-phonon-inter-

action parameters due to covalency have been re-
ported. " Upon substitution of E;, =270 cm™! into
the analytical expressions of Macfarlane et al.,

the theoretical values of the energy splittings 6,,

5, and g values were obtained.?* They are reported
in Table I along with the experimental results. The
crystal-field results are also reported; it is seen
that the results of the molecular-orbital calcula-
tions agree well with the experimental data, while
calculations based on crystal-field theory lead to
meaningless results.

The principal conclusion can then be drawn that
covalency effects are of great importance in under-
standing the consequences of Jahn-Teller effect on
the properties of metal ions in crystals.
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Antiferromagnetism. The Triangular Ising Net,

G. H. Wannier [Phys. Rev. 79, 357 (1950)]. It
was kindly pointed out to me recently by Meijer!
that the energy-versus-temperature plots differ by
a small amount from similar plots constructed
with the help of the formulas of Houtappel.? A
short verification showed that the error is mine;
it occurs in the first formula on p. 364: the sign
of the two terms in x? should be reversed. When
this is done one obtains, in the place of Egs. (34)
and (35),

U 2
« (2/7) K (k) )
a[Ipl T2 [ pl+ 1@ - TeD]™® /)

where

e aflpl ]2 [(Ipl+ 1@ = 1pl)]i2
T4l (el +1)3@ = T

- (Ipl=1°*@=Ipl)
_{4[|H|]1/2+[(|u|+1)3(3_ ““)]1/2}2 ’

with p having its previous meaning, Eq. (36). The
result is now numerically identical and analytically
equivalent to the results of Houtappel. It differs
formally from his answers by a Landen transforma-
tion. In this way, only one formula is needed

where Houtappel needs three. The same page con-
tains an incorrect number for the zero-point en-
tropy of the antiferromagnetic net. The number in
Eq. (317c) is 0.323066; the series given there is
correct. Both corrections do not change the major
features and fixed points of the results or the quali-
tative conclusions. The energy-versus-tempera-
ture curves become somewhat more abrupt than
those shown in Fig. 12,

!p. Meijer (private communication).
’R. M. F. Houtappel, Physica 16, 425 (1950).

Spin Dynamics of Linear Heisenberg Magnetic
Chains, F. B. McLean and M. Blume [Phys. Rev.
B 7, 1149 (1973)]. The expression for the diffusion
constant D in Eq. (90) is missing a factor of 2.
The correct expression is

=25 ainta’(C a0
D= 3N GE’ sm‘qJ; dt F.(t'). (90)

The values quoted for the diffusion constant at high
temperature are also too small by a factor of 2.
The second sentence after Eq. (90) should read,
“The result from the numerical solutions is D
=0.69, or in terms of conventional units for a sys-
tem of spin S the result is D=1.38Ja%[S(S+1)]/2.”
The low-temperature values for the diffusion con-
stant given in the following paragraphs are correct
as they stand.



