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As a prototype of a ferroelectric crystal we consider a system of interacting anharmonic oscillators.

This model is treated via a simple Hamiltonian which consists of a sum of single-particie

quartic-anharmonic-oscillator Hamiltonians together with a quadratic intercell interaction term. The
interaction term —typically long range in nature —is treated in a molecular-field approximation, yielding

an effective lattice Hamiltonian which can be scaled in terms of two parameters only —an

effective-inverse-mass parameter and an effective coupling strength. For computational simplicity we

treat the inverse-mass parameter as an effective temperature, with zero-point fluctuations playing the

role of thermal fluctuations. The effective lattice Hamiltonian is solved numerically exactly to determine

whether the lattice of coupled oscillators will, at some temperature, undergo a transition to a state in

which the average value of the particle displacement is nonzero. From the properties of the exact

solution it is shown that one can have a second-order transition or no transition, depending on the

magnitude of the intercell coupling. If the anharmonic potential in which each particle moves possesses

a double-well character, a second-order transition will occur for any value of the coupling strength

greater than zero. On the other hand, if the anharmonic potential exhibits only a single minimum, then

a transition will occur only if the coupling strength exceeds a critical value. These and other exact

results establish a basis for ascertaining the range of validity of certain approximate treatments of the

molecular-field Hamiltonian. In particular, we discuss in detail (i) variational treatments in which a set

of trial displaced-oscillator wave functions are introduced as solutions to the molecular-field Hamiltonian

and (ii) a so-called "two-leveV' approximation which is analogous to the de Gennes pseudospin model

of hydrogen-bonded ferroelectrics. Finally, we discuss the collective properties of the system of coupled

oscillators within the context of both the exact and approximate treatments,

I, INTRODUCTION

The past few years have seen an abundance of
experimental information become available relating
to lattice structural transformations in ferroelec-
tric crystals, In particolar, light scattering and

inelastic neutron scattering have provided an in-
sight into the dynamical aspects of these transitions
which was heretofoxe unavailable. One broad con-
clusion which has evolved from the experimental
investigations is that the traditional method of
classifying ferroelectrics into one or the other of
the categories of "order-disorder" or "displacive "
is no longex valid. Indeed, most ferroelectric
crystals probably xeside somewhere between these
two extremes, The early theoretical txeatments of
ferroelectrics were directed at either the order-
disorder limit' ~ or the displacive lixnit, ~ with
little attempt being made to bridge the gap between
the two extremes. More recently, however,
progress has been made in this direction with the
treatment of simplified model Hamiltonians which
are capable of exhibiting qualitative behavior rem-
iniscent of both the order-disorder and the displa-
c1ve descriptions. ' '

For the most part, the theoretical treatments of
structural transformations in ferroelectrics have

centered about a lattice-dynamical approach which
utilizes R cl ystRl Hamlltonlan of the schexnatlc
form

II=X+ Vp+ Vs+ V4+ ~ ~ .
Here K represents the kinetic-energy operator for
all the ions in the crystal, whereas the terms V„
arise from a Taylor-series expansion of the effec-
tive interionic potential in powers of the ion dis-
placements. The quadratic term V, is the usual
harmonic term and contains contributions from
both a. short-range repulsive interaction and a
longer-range dipolar interaction. The cubic and

quartic anharmoni. c interactions V3 and V4 are
usuaGy assumed to be dominated by the short-range
forces only.

From the microscopic viewpoint the ferroelec-
tric crystal is distinguished from other insulating
crystals by the fact that a long-wavelength cancel-
lation occurs between the short-range repulsive in-
teraction and the long-range dipolar interaction,
giving rise to the so-called "polarization catastro-
phe. " In particular, the force-constant matrix
obtained from V& may be negative defi.nite, so that
the harmonic approximation represents an unstable
state of equilibrium fox' the crystal. The crystRl
must then be stabilized by the V4 interaction, with
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the V3 term giving rise to a coupling to the strain
field. Clearly, if V, & 0 the inclusion of the V4 in-
teraction cannot be carried out using ordinary per-
turbative techniques which employ the harmonic
approximation as a starting point. Furthermore,
if the anharmonicities are particularly strong, as
in the order-disorder ferroelectrics, perturbative
techniques fail also. Thus, a self-consistent re-
normalization procedure must be devised which
circumvents the harmonic approximation altogeth-
er. Recently, several such renormalization
schemes have appeared on the theoretical scene'~ ~~

and have been applieg with varying degrees of suc-
cess to the description of lattice structural trans-
formations in ferroelectric crystals.

In the present work we will be concerned with the
solution of a model molecular-field Hamiltonian
describing a system of interacting anharmonic os-
cillators. The model will be solved exactly using
numerical procedures and the results compared
with certain approximate self-consistent renormal-
ization schemes. A primary point of concern will
be how the order of the phase transition depends
not only on the model parameters employed but
also on the method 6f approximation. This will
provide us with considerable insight into the validity
of some of the recently employed approximation
schemes for describing structural transitions in
ferroelectrics.

We will be considering a periodic array of spher-
ical anharmonic oscillators of inverse mass pro-
portional to X, one oscillator for each lattice cell
l, coupled via a dipolarlike interaction bilinear in
the lattice displacements. The system Hamiltonian
will have the form

H=Q
~

.—2A. q+ 2uu(+4 ye(2 ~ & 2 4

dur

——2 X(ll')ugu, (I)

This Hamiltonian arises quite naturally if one con-
siders the situation of a crystal consisting of two
sublattices, with the atoms on one sublattice giving
rise to a short-range intracell anharmonic single-
particle potential in which the atoms of the second
sublattice move. We can then imagine these latter
atoms as being coupled via a long-range intercell
diyolar interaction which is treated harmonically.
Such a description provides a qualitative, but ad-
mittedly oversimplified, description of a prototype
ferroelectric.

If the bilinear interaction term in (1) is truly long
range in nature, then it should be a reasonable
first approximation to treat the intercell interac-
tions as a mean field, averaging over all cells ex-
cept the cell of interest. Mathematically, this
means that we approximate the density matrix of

the entire crystal by a product of single-particle
density matrices associated with the individual
lattice cells, i.e. ,

p(4, 4, ~ ",Eg) = II p(I ).

When this is done the system Hamiltonian assumes
the form of a sum of independent effective single-
particle Hartree Hamiltonians, each of which re-
sembles a quartic anharmonic oscillator in the
presence of a self-consistept linear symmetry-
breaking field. Thus, in the mean-field approxi-
mation, all the relevant static properties of this
system of interacting oscillators can be obtained
from a self-consistent determination of the eigen-
functions and eigenvalues of the single-particle
Hamiltonian23:

2

H(u) = - —,
' X', + -,'au'+ 4''- gu(u),

cfÃ
(2)

where g denotes the q =0 Fourier component of
y(ll '). Miller and Kwok~4 have shown that a Hamil-
tonian of the form (2) follows from a Hartree de-
scription of a two-sublattice crystal such as we
have discussed above, with the average of the sin-
gle-particle coordinate, (u), being taken with re-
spect to a single-particle density matrix based on
the Hartree Hamiltonian (2).

We will be considering whether the system of
coupled oscillators discussed above will, at some
temperature, undergo a transition to a state in
which the average value of the particle coordinate
is nonzero. When such a transition occurs, we
will determine whether it is continuous or discon-
tinuous and how the detailed features of the transi-
tion depend on the method of approximation used.
We proceed by reformulating the problem some-
what, i.e. , we ask what happens to the system of
particles if we vary 5 (X is proportional to 5) rather
than varying the temperature. This varies the
.zero point rather than the thermal motion in a
system in which the frequency remains constant in
the harmonic approximation. Thus, thermal fluc-
tuations have been replaced by zero-point fluctua-
tions and X behaves like an effective temperature.
This permits us to employ a computationally and
conceptually simpler wave-function formalism, as
opposed to a more complicated density-matrix
formalism without any change in the qualitative re-
sults. Thus, we concern ourselves with the
ground-state energy of the system rather than the
free energy and view the particle distribution in
terms of the ground-state wave function. We will
speak of varying "temperature" or A. interchange-

. ably.
In Sec. II we compute the eigenfunctions and ei-

genvalues of the quartic oscillator for a wide range
of X values by numerically diagonalizing the Hamil-
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tonian (2) in the absence of the symmetry-breaking
field. From a consideration of the qualitative fea-
tures of the ground-state wave function, me are
then able to distinguish between tmo distinct regimes
which mill be termed the "ordex-disorder" and the
"displacive " regimes.

A treatment of the full Hamiltonian (2) including
the self-consistent mean field, yields the result
that for the case in which each particle moves in
an anharmonic double-well potential (a & 0), a sec-
ond-order transition mill occux from a state with

(u}W0 to a state with (u}=0, irrespective of the
coupling strength X. On the other hand, for a&0
each particle moves in an anharmonic single-well
potentlRl Rnd R tx'Rnsltlon will occux' only 1f the
coupling strength X exceeds a critical value. In
this case, the system is in the displacive regime
for all X values.

For a& 0 we consider the evolution of the ground-
state wave function in the presence of the mean
field for transitions occurring in the order-disorder
(small-X ), displacive (large-X~), and intermediate-
X regimes. The inclusion of the symmetry-break-
ing field is considered both approximately and

exactly. In the small-A. ' regime a "tmo-level" ap-
proximation is employed, i.e. , an approximation
in which the Hamiltonian (2) is diagonalized in the
2&2 subspace of the ground and the first-excited
states of the quartic oscillator. Such an ayyroxi-
mation is equivalent to the original de Gennes
pseudospin model of hydrogen-bonded ferroelec-
trics and has been considered more recently by
Miller and Kwok 4 within the context of a Hartree
description of the crystal lattice. Comparing the
results of this approximation mith the results of an
exact diagonalization of (2), we find that such an
approximation is valid only for very small values
of the coupling strength X, yielding qualitatively in-
correct results otherwise. Progressing from the
order-disorder regime to larger-X values, the
two-level approximation becomes progressively
worse. Using the results of the exact evaluation
of (2) as a guide, we examine various approxima-
tions appropriate to the displacive regime-in par-
ticular, we consider a variational treatment in
mhich a displaced harmonic-oscillator wave func-
tion is employed as a trial ground-state wave func-
tion. In the a& 0 case, the variational treatment
predicts a first-order transition always, although
the transition becomes more second order in char-
acter as the coupling strength increases. This re-
sult is to be compared with the exact treatment
which predicts a second-order transition irrespec-
tive of the magnitude of y. However, in the exact
treatment the second-order tx ansition becomes in-
creasingly sharp as X-0 so that in the small-X
regime the transition predicted by the exact solu-
tion is almost first order. in character. In the

large-y regime the X dependence of the order pa-
rameter yielded by the variational treatment agrees
quite. mell with the behavior of the order parameter
of the exact solution except in the immediate vicin-
ity of the transition. Indeed, the approximate
treatment predicts a first-order transition before
the second-order transition point of the exact solu-
tion is reached.

As might be anticipated, the variational treat-
ment of the a &0 case yields an ordex parameter
whose X dependence mirrors quite well the X de-
pendence of the exact order parameter, except in
the region near the transition, where the approxi-
mate treatment predicts a second-order transition
occur x'1ng somewhRt befol 8 the second-ox'dex' tran-
sition of the exact solution.

In See. IV the collective properties of the oscil-
lator system are treated by computing the resyonse
of the lattice to an external field which couples
linearly to the particle displacements. The re-
sponse function obtained in this may exhibits a
resonance at a characteristic frequency whose long-
mavelength component vanishes at the second-order
transition point. The behavior of this "soft mode"
is discussed within the context of both the approxi-
mate and exact treatments.

Section V of the paper is devoted to an evaluation
of the various approximation schemes in the light
of the information gleaned from the exact numerical
treatment. In particular, the origin of the first-
order transition in the variational treatment of the
case mhere the particle moves in a double-mell
potential will be discussed.

In a recent paper, Onodera'6 considers a system
. of coupled oscillators in the mean-field approxima-
tion. By treating the problem classically, this
author is able to obtain a formal expression for the
susceptibility of the undistorted phase ((u}= 0) in
terms of hypergeometric functions. From a con-
sideration of the properties of the cia,ssical para-
electric susceptibility, Onodera concludes that a
second-order transition occurs for the model de-
scribed by (2). In contrast to this, the present
work does not restrict itself primarily to the re-
gion above the transition. In fact, some of the
most important features mhich distinguish order-
disorder from displacive behavior are to be found

in the X dependence of the order parameter below
the transition.

II. EIGENVALUE SPECTRUM OF QUARTIC OSCILLATOR

By means of the scale transformation u- [lal/
(By)]'~'u, X- q(8/ lal )'+x, and X-2)f/lal, the
Hamiltonian (2) can be cast in a form which exhibits
only two independent pax ameters: an effective in-
verse-mass parameter and an effective coupling
strength. Thus, a mean-field treatment of the
coupled-oscillator problem reduces to that of de-
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FIG. 1. Plots of the ground- and first-excited-state
vrave functions of Hp@) ~ The curves are labeled by dif-
ferent values of g .

termining the eigenvalue spectrum of the single-
particle Hamiltonians

H'(I) =H', (u)- ym(u),

where
2

Ho=——2X 2 +4u +4u .
dQ

In the present section we will be primarily con-
cerned with the energy spectrum of Ho(u). Since
we are interested in including the anharmonicity
exactly, we cannot rely on perturbative measures.
Qn the other hand, since the eigenvalue spectrum
of the quartic oscillator cannot be determined
analytically, one must resort to a numerical diag-
onalization of Ho(u) over a wide range of X~ values.

The numerical diagonalization is most easily
implemented by constructing the Hamiltonian ma-
trix (nlHoln') using a set of basis states ln) which
approximate as closely as possible the true eigen-
states of Ho. For computational simplicity, a set
of harmonic states would be desirable, although it
is clear that the harmonic set derived from Ho in
the absence of the u term is not the optimal set-
indeed, for the case where the harmonic coefficient
is negative, this basis is not even defined. Thus,
we proceed by choosing a self-consistent set of
basis states which include in some manner the an-

harmonicity of the I term. Introducing a trial
ground-state oscillator wave function of the form

I0&=(g/ )'" """, (4

one can evaluate the ground-state expectation value
of Ho(u) as

E', =(O~H', ~0) =-,'~'g~2/g+3/g'. (5)

The extremal condition BED/Bg= 0 then determines
the variational parameter g as a solution to the
cubic equation

Rag +Sg-24=0.
Of the three solutions to (6) only one corresponds
to a true minimum of Eo. Using this choice for g
it is then an easy matter to construct the complete
set of oscillator states to be used in setting up the
Hamiltonian matrix. The energy spectrum of these
variational oscillator states will be denoted by E'„.
In contrast to this, the energy and eigenfunction
spectrum associated with the exact treatment of
Ho(u) will be denoted by 8„'and y'„.

In Fig. 1 the true ground-state and first-excited-
state wave functions of Ho(u) are plotted for a range
of X values extending from 0.02 to 9. For small
values of X these wave functions resemble sym-
metric and antisymmetric combinations, respec-
tively, of Gaussian distributions centered at the
minima of the double-well potential. In fact, the
exact X -0 limit reduces the ground state of the
system to a single doubly degenerate level with
eigenvalue $0=- 1, the wave functions consisting
of a sum and difference of 6-»ction spikes cen-
tered at the positions of the potential minima. As
the magnitude of X2 is increased the two peaks of
the ground-state wave function merge into a single
distribution centered at the origin. From these
qualitative considerations one expects the approxi-
mate wave function (4) to work best for large values
of X2-in particular, for values of X such that the
particle no longer "feels" the hump in the double-
well potential. This will occur for (x4)» (xa).
Using (x ) = 3 (x ), (x ) = 1/(2g), and g- (24/X )'~~

for large X, the criterion for the approximation
(4) to be valid takes the form

y2 &) 64

The regime defined by the inequality ('l) will be
termed the "displacive" regime, since the ground-
state wave function of the system closely resembles
that of a simple oscillator. If now the magnitude
of X is reduced in value until the particle zero-
point energy becomes comparable to the depth of
one of the potential minima (X -0.2), a regime is
entered in which the wave function no longer re-
sembles an oscillator state, but rather is charac-
teristic of a particle tunneling between the potential
barrier separating the two minima of the potential
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FIG, 2. Plot of the ground-state energy vs & as obtained
from the exact and variational treatments of Ho(N).

a bridge between these two limits. We have already
discussed in some detail the approximation based
on the variational wave function (4) and have sug-
gested that it should provide a good description of
the displacive regime. Indeed, this is the case as
can be seen from Figs. 2 and 3 where the ground-
state energy $0 and excitation energy 8,—80 are
plotted as functions of X . The solid curves repre-
sent the exact solutions obtained from the accurate
numerical diagonalization of Ho, while the dashed
curves are derived from the approximation (4).
Figure 2 illustrates the quite remarkable agree-
ment between the exact and approximate ground-
state energy for all A. ~1. The excitation energy
8,—80 is a much more sensitive test of the approx-
imation and, as can be seen from Fig. 3, signifi-
cant deviations between the approximate and true
curves begin to appear at A2-10. Below this value
of X the approximation becomes increasingly poor.
Indeed, the self-consistent choice for (8,—So)/X~

is simply g, and this can be seen from (6) to ap-
proach a constant value of 3 for small Xa, whereas
the exact (h, —80)/X~ approaches zero as X2-O.

In thy order-disorder limit a seemingly good
description would be to choose approximate ground-
and first-excited-state wave functions Co and C f as
symmetric and antisymmetric combinations, re-
spectively, of displaced-oscillator states. That
is, we choose the states Co and 4', to have the form
(apart from normalization)

well-this is the so-called "order-disorder" re-
gime.

The above considerations can serve as a guide in,
establishing approximations valid in the large- and
small-X regimes, with the exact solution providing

g I=+z, ++s~4'i)

where

(Sa)
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FIG. 3. Plot of the excitation
energy vs g as obtained from the
exact and variational treatments of
H;(g).
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FIG. 4. Comparison of the exact excitation energy of
Hp (Q) as a function of & with the excitation energy ob-
tained from an approximation in which the ground- and
first-excited-state wave functions are taken as symmetric
and antisymmetric combinations of off-center Gaussians.

The parameters g and uo are chosen so as to mini-
mize the energy of one of the displaced-oscillator
states, "i.e. ,

a(%„IHol@'„) s(4~IHol4~)
8g

— 8.
where

&+slHol +s&= &@a IHol +a, &

= —,
'

n'og- 2/g+3/go+ (12/g)uo- 4uo+4uo .
(8)

The optimum values of g and uo are then obtained
as solutions of the coupled equations

uo =(1o8—/g)

(10)

hog = 24+ 48uoog- 8g.

The approximate ground-state energy computed in
this way agrees remarkably well (~ 0. 1%) with the
exact ground-state energy for all X «0. 1. Again,

however, the excitation energy is the most sensi-
tive test of the approximation. Thus, we use the
approximate wave functions (8) to compute

(4flH ol4$) (@Ql HQI@o) o uQXg

(+i I +i) (+ol +o) sinh(guo)

A calculation of the excitation energy as a func-
tion of Xo using (11)yields the dashed curve of Fig.
4. This is to be compared with the exact excitation
energy which is plotted as the solid curve in the
same figure. It is clear that the approximate ex-
citation energy can differ from the exact energy by
as much as several orders of magnitude. Thus,
the approximation just considered, although pro-
viding an adequate evaluation of 80, is not satis-
factory for calculating the excitation energy. This
shortcoming can be traced to the fact that the ap-
proximate ground-state wave function (8) underesti-
mates the overlap in the region near I = 0. This is
illustrated in Fig. 5 where the approximate and
exact ground-state wave functions are plotted for
X =0. 04. It is clear that (8) mirrors the form of
the exact wave function extremely mell except in
the region near u = 0, where the dominant contribu-
tion to the excitation energy is found. Thus, an
approximation of the type (8) does not provide a
reliable guide to the magnitude of the tunneling fre-
quency in the order-disorder regime. Improve-
ments to this approximation are being pursued and
will be discussed in a later publication.

So far little mention has been made of the case
where the particle moves in an anharmonic, but
single-well, potential. %'e have already seen that
the use of the undisplaced-oscillator wave function
(4) provides a good description of the ground-state
and excitation energies of Ho(u) in the large-A.
regime where the particle no longer feels the hump
in the double well. It is thus to be expected that
for the anharmonic single-well potential the varia-
tional approximation should work quite well over
the entire range of Xa values. In Fig. 6, 8~ and
8f —So derived from the exact and variational
treatments of Ho(u) are plotted as functions of X .
As anticipated, the low-lying energy spectrum of
the single-well quartic oscillator is reproduced
almost exactly by the variational approximation.
This lends strong support to the validity of the
"self-consistent-phonon-approximation" (SPA)
treatment of the vibrational properties of crystals
in which the dominant contribution to the anhar-
monicity arises from the quartic interaction. ~ If
the harmonic-force matrix is not positive definite,
one expects the SPA to be best at high tempera-
tures-in particular, at temperatures for which the
thermal energy'k~T exceeds the depth of one of the
minima of the effective double-mell associated with
the unstable normal mode. On the other hand, if
the lattice is intrinsically stable, with the harmonic
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force matrix positive definite, then the self-con-
sistent phonon approximation is expected to work
well over a wide range of temperature. A further

discussion of the analogy between the present cal-
culation and the SPA will be deferred to Sec. V of
this paper. There we will consider in more detail

10

FIG. 6. Plots of the ground-state and excitation energy vs X as obtained from the exact and variational treatments of
&0{u).
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TABLE I. Values of the coupling strength X for vrhich
transitions of a particular character are found in the
exact, variational, and two-level treatments of the in-
stability-driven (ID) and field-driven (FD) systems.

Character of
transition

No transition

Variational Two-'Level

( )
X-8 ( ) X=o (ID)

X=0 (ID)
0&q 8 (FD)

First order

Second order X&0 (ID)
X&8 (FD)

X~0 (ID)

X &S (FD) ~&0 (ID)

the correspondence which exists between A. and an
effective temperature.

III. TRANSITION IN SYSTEM OF COUPLED OSCILLATORS

A. Different Physical Systems

It is to be noted that the original model Hamil-
tonian (1) is an even function of the particle dis-
placements, whereas a mean-field treatment of the
bilinear interaction introduces a term linear in the
particle displacement. Thus, although the diagonal
matrix element of the position variable u in any of
the eigenstates of the Hamiltonian (1) is identically
zero, it is possible in the presence of the symme-
try-breaking field that at some X, it will become
energetically favorable for the particle to make a
transition to a state in which (u) is nonzero. Such
is the situation described by the effective Hamil-
tonians (3). We will be distinguishing between an
"instability-driven" transition, described by H (u),
and a "field-driven" transition, described by
H'(u). In the former case the system is intrinsi-
cally unstable and one expects a transition to occur
for any positive value of the coupling strength y.
In the latter case, however, where the lattice is
intrinsically stable, it is expected that a critical
value of the coupling strength must be exceeded
before the lattice undergoes a transition. The
eigenvalue and eigenfunction spectrum associated
with the exact treatment of H'(u) will be denoted by
8'„and y'„, respectively.

In Secs. IIIB-IIID we consider the details of treat-
ing the Hamiltonians H' and H both approximately
and exactly. Table I summarizes the predicted
transition character yielded by the exact and the
approximate treatments.

B. Instability-Driven Case-Exact vs "Two-Level" Treatment

As a prelude to a determination of the self-con-
sistent solutions of the Hamiltonian H (u), we con-
sider the somewhat simpler problem of examining
the eigenfunction and eigenvalue spectrum of Ho(u)
—EN as a function of A, and an externally applied
field F. In the region of X2 for which the true

The new energies and wave functions are then given
in the two-level approximation by

=——a'(h, + h, + [(8,—ho)a+4Eada j'~aj,
1

~2 1/2

where

The ground-state average of the particle displace-
ment as a function of field is given by

2Ed
(polulpo)=(u) —

[(g- h-)a 4+adajsya (14)

In Fig. 8 we depict the manner in which the ground-
state wave function cpo evolves in the presence of
the field F. In the small-X regime the major ef-
fect of the field on the symmetric combination of
off-center Gaussian-like structures is that of di-
minishing the amplitude of one peak relative to the
other. On the other hand, for larger values of A.

the effect of the field is to shift the entire central
distribution to one side.

If we insert into (14) the mean field Il = X(u), we
obtain the self-consistent displacement as the solu-

ground-state wave function of Ho(u) describes the
particle as being well localized in one of the other
of the wells of the double-minima potential, one
expects the energies of the two lowest-lying states
of Ho(u) to be well separated from the energies of
the higher excited states, Thus, if the fieM E is
small enough so as not to induce transitions to the
higher-lying states, one can as a first approxima-
tion diagonalize the full Hamiltonian Ho(u) —Pu in
the 2 x2 subspace defined by yo and y„ the ground
and first-excited states, respectively, of Ho(u)
Figure 7 depicts the X dependence of the ratio of
the excitation energy of the second-excited state
to that of the first-excited state and it would appear
from the plot that the two-level approximation
should work best in the region where X2-0. 19.
The numerical diagonalization of the Hamiltonian
Ho(u) as a function of A, provides all the informa-
tion necessary for determining the complete prop-
erties of the transition in the two-level approxima-
tion. Thus, if

(PO) (
Ot

Dj

then
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tion to the equation

2 X(u)d'
( ) [(g 8 )2 4 2(u)2d2 ] 1/2 ~

Equation (15) yields two possible solutions: the ob-
vious solution (u) = 0 together with the displaced
solution

(u)'= d'- (h, —h2}'/(4 y 'd').

Fol d + (81 8Q)/(2 Xd) the minimum energy occurs
for (u) =0 and is simply h2. For d & (h,-h2)/(2yd),
however, the minimum energy occurs for a nonzero
value of (u) and is given by

8;= -,'(h-, + 8;—[(h-, - 8;}'+4X'd'(u)']"']

= 2(bi+ bo- 2Xd') (iv)

A transition from one state to the other is signaled
by the vanishing of the expression (16). Since
(8, —S2) is a rapidly increasing function of X, with
d remaining relatively constant, the critical value
X, at which the transition occurs is an increasing
function of the coupling strength X. Furthermore,
one can expand d and (h, —$2} in powers of X2 about
the point X, to obtain

FIG. 7. Plot of the ratio of the two lowest-lying excitation
energies of FPO(g) as a function of g2. or

(u)'~ (X', —~'}~ 2X,(~,—X)
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FIG. 8. Plot of the way in which
the ground-state wave function of
the two-level approximation evolves
in the presence of a symmetry-
breaking fieM in the various g re-
gimes. The various curves cor-
respond to different values of the
applied field.
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(»») ~ (x, —x)'" (18)

which is the usual molecular-field result if we
identify X with temperature. The square- root be-
havior of the order parameter (»») as a function of
A, in the vicinity of the transition is not just an arti-
fact of the two-level approximation. Indeed, as we
show in the Appendix, the exact solution of the
Hamiltonian (2) also yields the result (18). In the
limit X-0 the ground state of Ho(»») becomes doubly
degenerate with wave functions represented by
symmetric and antisymmetric combinations of 5
functions centered at the minima of the double-well
potential. Thus, as 1-0, d-1/v2, (8,—8,)-0,
and (u) saturates at the value 1/W2.

Figure 9 depicts the behavior of the self-consis-
tent displacement squared as a function of X for in-
creasing values of the coupling strength y, with
results from both the exact solution and the two-
level approximation being illustrated. The solid

lines representing the exact solution were obtained
from a numerical diagonalization of the full Hamil-
tonian He(u) —Eu, subject to the self-consistency
condition E= y(q&, 1 I I ye). It is easily seen (see the
Appendix) that, if the transition of the exact treat-
ment is second order, it occurs when

(
5(p»» I »» I p»» )

5E p~o

It is to be noted that the two-level approximation
predicts a A, = 0 saturation value for (»») equal to —,',
irrespective of the magnitude of the coupling
strength. On the other hand, elementary stability
arguments tell us that in the presence of the self-
consistent field the true saturation value of (u)3
should beg(1+ 8 )(), as exhibited by the solid
curves in Fig. 9. For values of the coupling
strength greater than 0.05 the agreement between
the exact treatment and the two-level approxima-
tion in the region & & &, becomes increasingly
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FIG. 9. Plots of the square of
the order parameter (u) ve Xfor
the exact and bvo-level approximation
treatments of the instability-driven
transition.
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worse. Nonetheless, this approximate treatment
provides a reasonably accurate evaluation of ~„
the critical X value at which the transition occurs.
The reasons for the success of the two-level ap-
proximation in determining X, will be discussed in
Sec. V.

A striking feature of the plot in Fig. 9 is the fact
that the transition becomes increasingly sharp as
&, decreases. Indeed, for X —0.05 the transition
is almost first order in character, reflecting the
underlying intrinsic instability imposed on the sys-
tem by the double-minima potential field. For X,
in the small-X regime the rapid increase of the
order parameter below the transition point is a
characteristic feature of the instability-driven
transition.

16uo~+ 8(3/g —1)uo = Ji,

X g +Sg-48guo-24=0.
(2O}

Inserting now the self-consistent value Xuo for the
field I' yields one set of equations for the undis-
placed state:

uo= 0,
Xg +Sg —24=0,

(21a)

and an additional independent set for the displaced
state:

&o =x'e (8 —24/g+ X},

X gs- (3X+16)g+48=0.
I(2ib)

Equation (21a) gives rise to three solutions for g,
only one of which is real. This latter solution is
positive for all &~ 0 and can be shown to represent
at least a local minimum of E0 for X & X, =$4 X

~ (X

C. Instability-Driven Case-Exact vs Variational Treatment

The above considerations were carried out with-
in the context of a comparison of the exact treat-
ment of the instability-driven transition with the
two-level approximation. It is instructive at this
point to consider yet a further approximation —an
approximation motivated in part by the success of
the trial oscillator wave function (4) in describing
the low-lying excitation spectrum of Ho(u) in the
large-X' regime (see Figs. 2 and 3}. This suggests
that we attempt to describe the transition through
the introduction of a displaced-oscillator function
of the form (8b) as an approximation for the true
ground-state wave function in the presence of the
symmetry-breaking field. Computing the expecta-
tion value of the Hamiltonian Ho(u) —Fu with re-
spect to the function (8b) yields an expression for
the energy identical to (9), but with the addition of
a term (-Fuo}. A subsequent minimization of the

energy with respect to uo and g results in the fol-
lowing two coupled equations:

gi=g2=24/(x+1), &=&~

(sx+)8)"'/x}
ga-16/(x+ 3 )

Furthermore, the self-consistent displacement
corresponding to the solution g& satisfies

(23)

~2(1+ 8 x) ~u()~ 6, O~X~X2 (24)

whereas the self -consistent displacement associated
with g2 satisfies

—sa X~uo~ 6, 0~X~&2.2 1

For the solution g&, the displacement uo increases
with decreasing X, saturating at the value [2 (1
+ 8 X]'~ -this is the physical solution. It corre-
sponds to at least a local minimum of the energy
in the interval 0~X~ X&. The solution gz, how-
ever, corresponds to having uo decxease with de-
creasing X, passing through zero at & = && and then
becoming imaginary —this is the unphysical solu-
tion. It corresponds to a local maximum of the
free energy. In general, the energies associated
with the undisplaced and displaced solutions cross
at some X, in the interval && & X & Xa with the transi-
tion between the two states being distinctly first
order.

In Fig. 10 we plot the & dependence of the
squared order parameter associated with both the
physical and unphysical displaced solutions for a
series of increasing y values. Xz, the lower limit
of metastability for the undisplaced solution, has
been denoted the "supercooling point" while ~&, the
upper limit of metastability for the displaced solu-
tion, has been denoted the "superheating point. "
&&, X„and && aQ approach the asymptotic value

~4 y for large y with the transition becoming
more second order in character. We should note
that the variational treatment predicts a transition
for g=0. In this case &=0 is the supercooling
point. As will be discussed in the Sec. V, the
first-order transition which occurs for the case
of zero-coupling strength is actually due to the re-
stricted form of the variational wave function,

+ 8) and a local maximum for X& xz. Furthermore,
it possesses the following limiting properties:

@~3 $~0

g = 24/(x+ 8),

g-(24/x')'~', x--.
A consideration of Eq. (21b) describing the dis-
placed state indicates that there exists a limiting
&q=2'4(X+~3)s~ above which no real and positive
displaced solutions are possible, but below which
two such solutions exist. If we label these solu-
tions gq and g2, then they exhibit the limiting prop-
erties
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transitions occurring for large values of the cou-
pling strength the tlualitative features of the transi-
tion in the immediate vicinity of the transition
point should be similar in both the instability- and

field-driven cases. We will examine this point in
more detail in Sec. IIID.

D. Field-Driven Case-Exact vs Variational Treatment

As we emphasized in relation to Fig. 6, the
variational-oscillator wave function provides an
excellent evaluation of the ground-state and low-
lying excitation energies of the quartic Hamiltonian
Ho(u) over the entire range of A, values considered.
Thus, it would be expected that such an approxi-
mation would provide a qualitatively reasonable
description of the field-driven transition. We
compute the ground-state expectation value of
H'(u) with respect to one of the displaced oscillator
functions (Sb), obtaining

(~~ I
&'(u)

I
~i& = ~ &'g+ 2/g+ 3/g'+ (i2/z) uo

+ 4uo+ 4uo —E Xuo .' (25)

The requirement thai this energy represents an
extremum with respect to u0 and g yields two inde-
pendent sets of self-consistent equations:

FIG. 10. X dependence of the squared order parame-
ter (g) associated with the stable and unstable solutions
obtained from the variational treatment of the instability-
driven transition.

u0=0,

. EXACT—VAR I ATIONAL

since the exact treatment predicts no transition for
x=o.

Figure 11 compares some of the predictions of
the variational calculation with those of the exact
calculation for increasing values of the coupling
strength. In both cases the transition point in-
creases with increasing y. However, as we
pointed out above, the first-order transition point
of the variational treatment approaches a nonvan-
ishing value, whereas the X, associated with the
exact solution approaches zero as y-0. We note
that for small values of the coupling strength, the
actual second-order transition occurs well beyond
the supercooling point but below the superheating
point, whereas for larger values of y the actual
transition occurs beyond both metastability points.
The relation between the metastability points of
the variational treatment and the actual second-
order transition point will be discussed in more
detail later.

For the instability-driven transitions which oc-
cur at large g values, the zero-point energy of the
particle will considerably exceed the depth of the
potential minima. In such a situation the particle
primarily feelS-the quartic contribution from the
potential field. Thus, it seems reasonable that for
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FIG. 11. A, dependence of the squared order parame-
ter (u)' associated with the exact ond variational treat-
ments of the instability-driven transition.
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&g -8g-24=0; (26a) tion which determines the point at which the actual
second-order transition of the field driven case
occurs is given by Eg. (19) with Po replaced by po.

uoo= Ps (X- 8 -24/g),
X go —(3y —16}g+48=0.

(2sb}

In the undisplaced state, Eg. (26a), a positive and
real g solution can be found for all values of X.
However, this solution represents a minimum of
(25} only if g & 24/(y —8), which is satisfied for
X&o4 X

I (y —8). The various limiting values of the
undisplaced g solution are given by

g - (24/x')'",

g=24/(X —8), X= —,', Po(y —8) (27)

g-2 /x P.

g~
- (3)f —16)'lo/X,

g, -48/(3)f —16),

(28)

The order parameter associated with solution g&

satisfies

~g (y —8)~uo~- o, O~X~Xo.

This is the physical solution-it gives rise to a
vanishing order parameter for X= X, = z, X'+(y- 8)
and the transition between displaced and undis-
placed states is second order. We note that the
saturation value of uo at Q is I'o ()f —8) so that again
we see that one must have X&8 in order for a tran-
sition to occur at all. The order parameter as-
sociated with the unphysical solution satisfies

-kX —Io ——r,
and is always imaginary.

In Fig. 12 we plot the X dependence of the
squared order parameter associated with the exact
and variational treatments of the field-driven tran-
sition. It is clear that the variational solution
reproduces the behavior of the exact solution ex-
tremely well except in the immediate vicinity of
the second-order transition point. In general, the
&, predicted by the approximate treatment lies
below the actual X,. This last might have been
anticipated, since we saw previously that for the
instability-driven transitions occurring in the
large-& regime (see Fig. 11) the actual second-
order transition point was situated above the tran-
sition point of the variational treatment. The rela-

It is clear from the above that we must have X & 8
in order for the undisplaced g solution to represent
a stable solution at large &.

Equation (26b) governing the displaced state has
two positive and real g solutions for X& Xo=io (y
—~~)o . Denoting these two solutions by g~ and gz,

they exhibit the limiting properties

go=go=24/(X-'o }, &=&o

IV. COLLECTIVE PROPERTIES

Central to any discussion of second-order struc-
tural transformafions in crystals is the so-called
"soft mode, " i.e. , a collective mode of the system
whose characteristic energy vanishes at the tran-
sition point. The idea of the soft mode was first
introduced within the context of displacive ferro-
electrics by Cochran and Anderson and has since
received considerable attention. From the experi-
mental point of view the soft-mode concept is of
great importance, since the anomalous tempera-
ture dependence of the mode near the transition
can, in many cases, be observed using the tech-
niques of inelastic neutron scattering and light
scattering. In displacive ferroelectrics the soft
mode is usually identified with a low-lying trans-
verse-optic-phonon frequency, whereas in ferro-
electrics of the order-disorder type the soft mode
exhibits the characteristics of a tunneling mode or,
perhaps, a coupled phonon-tunneling mode.

In Secs. I-IG we found that the characteristic
low-lying excitation energy associated with the
exact and variational treatments of the static
molecular field Hamiltonians (3) were 8;—So and
X g, respectively. In the instability-driven cases
8& —80 did not vanish at the second-order transi-
tion point of the exact treatment nor did X g vanish
at the supercooling point of the variational treat-
ment. Similarly, in the field-driven case, neither
8&- 80 nor & g vanish at the respective second-
order transition points of the exact and approxi-
mate treatments. None of this is surprising, of
course, since both z —80 and X~g are energies
associated with single-particle-like motion in the
individual potential wells, whereas what we would
like to evaluate is the energy associated with a
mode which involves the correlated motion of all
the particles. In order to evaluate this energy we
must consider the response of an individual ion
displacement when a time-dependent external probe
is applied to the system.

We introduce a time-dependent field of the form
—$,5E,(t) u, into Eg. (1). The resultant Hamil-
tonian may then be used in conjunction with the
equation of motion for the density matrix of the
system in order to obtain the linear response of
the average particle displacement. Within the
context of the molecular-field approximation, one
expresses the system density matrix (now time-
dependent} as a product of single-particle density
matrices, each of which is associated with a single
lattice cell. ~9

The result for the linear response of the average
particle displacement to a time-dependent pertur-
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bation 5H(t) can be written concisely as

5&u,&(t) =-t f '
dt'&e,

l
[g, (t), 5H(t')]le, &, (29)

where 40 denotes the ground-state wave function in
the absence of DK In the molecular-field approxi-
mation, the perturbation M has the form

5H(t) = —Z y(ll ') u, 5(ug.)(t) —Q Eg(t) u, (30)
rr'

and the ground-state average in (29) is with respect
to a product of single-particle ground-state wave
functions based on one of the static molecular-
field Hamiltonians of Eq. (3), i.e. , 4p=II gqgp(ug).

In order to case Eq. (29) into a more tractable
form, we introduce a set of intermediate states
into the commutator and decompose all time- and
lattice-dependent quantities into their appropriate
frequency- and wave-vector-dependent Fourier
components. After some straightforward algebraic
manipulation, the q and ar Fourier transform of
the response function 5&u,)(t)/5Eg. (t') takes the
form '

5&u &(ggg)/5E (go)=g l&qgplglqg )l p g g p

X 1-2xq P0 u P~
a

(gk gg )
1

2 (gt g+ )2 ~ (31)

The frequencies of the collective modes of the
system are defined as the positions of the reso-
nances of the response 5&u,&(og)/5E, (gd). From Eq.
(31)we see that the response function exhibits
simple poles for those values of the frequency
which satisfy

We graphically illustrate the solutions to Eq. (32)
in the plot of Fig. 13. It is clear that there exists
one low-lying mode together with an infinite number
of higher-lying single-particle-like modes. Since
X(0) & X(q o 0), the smallest frequency of the lowest-
lying branch occurs for q=o. For values of A.

above the transition point we can replace 8' by h'
and y' by (It)'. Approaching the transition point
from above, we see that the criterion for the low-
est-lying-mode frequency to vanish is simply

(33)

The relation (33) is identical to the relation (19)
which determines the second-order transition
point. To see this we need only carry out a linear-
response calculation using the Hamiltonian H p(u)
—Eu. The results of such a calculation may be ob-
tained from (31) by setting q = gd = y= 0 and replacing
y' and 8' by y' and 8', respectively. Thus,

=2 p up

which suffices to show that (33) and (19) are iden-
tical. Thus, we see that there exists a long-wave-
length collective mode of the system whose energy
vanishes at the second-order transition point.

So far our attention has been focused on the exact
treatment. On the other hand, in the two-level
approximation things simplify considerably. In
this approximation there exists only a single col-
lective mode with a frequency defined as

EXACT

0.50g FIG. 12. X dependence of the
squared order parameter (gg) as-
sociated with the exact and varia-
tional treatments of the field-driven
transition.
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FIG. 13. Plot illustrating the
graphical soluU. on of Eg. (32). The
solid lines represent the dependence
of the left-hand side of Eq. (32) on

The intersections of the hori-
zontal line with the solid lines yield
the positions of the poles of the re-
sponse function (31).

II,'=(@i- go)'-2x(e)l(elluleo)l', (@i-ho) (34) (y', (x) lu I y'o(x) )'x'=2
&i(~) —&o(&)

(SV)

The transition in the two-level approximation oc-
curs at the X value for which expression (16) van-
ishes. This last is equivalent to Eq. (33) with only
the first term in the sum on the left-hand side re-
tained.

As a final exercise prior to concluding this sec-
tion we evaluate the collective response of the un-
distorted phase within the framework of the varia-
tional approximation employed in Sec. III. We can
work directly with Eq. (Sl). We need only recog-
nize that with I rpo) given by (4), the first-excited
state is &2gu I go). Thus, the corresponding exci-
tation energy 8', —80 is X g, the matrix element
(y'o lu I y', ) is given by 1/v 2g, and (go Iu I y') = 0,
a &1. Substituting these results into (31), we im-
mediately obtain

5(u,) (&o) —X'

5E,((o) &oo —X4go+ hog(q) '

and we see that the response has a simple pole at

~,' = &'(x'g - x(~)) (36)

In the field-driven case eo vanishes at the second-
order transition point, whereas in the instability-
driven case this squared frequency vanishes at the
supercooling point.

V. CONCLUSION

As was noted in Sec. III, the two-level approxi-
mation works remarkably well for determining X,.
The explanation of this becomes apparent if one
examines (33) or its equivalent (A24). In the two-
level approximation, the summation on the right-
hand side of (33) is replaced by a single term so
that X, is determined by the approximate expression

This expression can also be viewed as the two-level
approximation for the vanishing of the response
frequency [see Eq. (34)]. We will see that this
happens to be a very good approximation.

In the case of H' or H with y large, the displa;
cive regime, the transition occurs in a region
where the lowest states of Ho are well represented
by harmonic-oscillator wave functions. For such
wave functions, 11)~u I 0) and the orthogonality of
the states requires that (alul0) =0, aW1. For
the states of Ho in the large-y regime, the approxi-
mation (y, Iu I cpo) «(y', I u I pro), a 4 I, holds. The
large-e states are less well represented by har-
monic-oscillator states, but they must still be
orthogonal to the true z =1 state which is well rep-
resented by u I yo). The contribution from a &1

terms in (33) is also diminished by the energy de-
nominators, but the orthogonality relations are
still the primary effect.

The case of H with X small is the situation for
which the two-level approximation was originally
devised. Then 8, —So «S —So, a &1. In addition,
I qr, ) =u I yo) is still a good approximation and the
orthogonality considerations remain valid.

On the basis of the above, we can confidently
make the statement that the two-level approxima-
tion always determines A,, to good accuracy for the
system considered in this paper. Unfortunately,
this conclusion may not always be useful, because
its application requires an exact determination of
(y~ lu I po) and 8', —8~. When these quantities can-
not be determined exactly, the correct prediction
of A., requires their accurate approximate evalua-
tion.
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Given the fact that X, can be reliably predicted
from (37), we are now in a position to understand
the errors in its determination by the various
treatments discussed in Sec. III. There are really
two approaches which could be discussed: the way
the prediction of X, could have been made and the
way it actually was determined.

The approach that could have been followed is
the simplest case to consider and so will be dis-
~cussed first. This approach was described at the
end of Sec. IV where values were given for 8;—S~
and (p', lN I cp;) as estimated by the undisplaced-
oscillator variational calculation. These results
can then be substituted in (37) and the simple result

)(= x'g '(x, )

is obtained with the aid of (21a), (2lb), (26a), and
(26b).

In the displacive regime, we would expect that
8', —8', and (y', 1 u ( y0) would be estimated reason-
ably accurately. Because it is a variationa1 calcu-
lation, E0 is an upper bound on the true ground-
state energy. From symmetry, E', is also an up-
per bound on the true energy of the first excited
state (the lowest-lying antisymmetric state), since
it is the expectation value of Ho with respect to
u1y0). However, g is determined so as to mini-
mize E0 and no attempt is made to minimize E', .
So we expect that E0 is closer to E~ than is E', to

Therefore, we expect (I iul 0)- (y', lu l y0), but
(E', —ED) &(8;—$0). The validity of this inequality
can be established from the graphs of Figs. 3 and
6. This would make the predicted value of X, too
low. In the order-disorder regime, we see from
Fig. 3 that E,—E0 is again too large, but by quite
a bit. Thus we would expect that the predicted A.,
would be quite a bit too low.

The above is directly related to the calculation
that was actually performed in which the ground-
state energy was estimated by two different varia-
tional wave functions as E0(u0 = 0) or E 0(u0 t 0). At
large enough X, E0(u0=0) &ED(u000). The transi-
tion occurs when E0(u0 = 0) = ED(u0o0). In the field-
driven case, the transition was found to be second
order so that both the order parameter uo and the
response frequency vanish at the transition. When-
ever u0=0, (38) applies; so the conclusions of the
previous paragraph are valid in this case and agree
with the results shown in Fig. 12.

In the instability-driven case, the supercooling
point is where the response frequency of the un-
distorted phase vanishes. Thus we expect that, for
large g the true transition will occur somewhat
above the supercooling point and, for smaO g it
will occur considerably above this point. This
anticipated behavior agrees with tha. shown in Fig.
11.

In the displaced-oscillator variational treatment

of the instabiLity-driven case, we would not only
like to interpret why the transition occurs where it
does, but also why it is first rather than second
order. The reason for the Latter is that the choice
of wave functions used in the variational treatment
is not. the best. Part of the motive for the work in
this paper was for us to gain a better understanding
of the results reported in Refs. 18 and 19 for an
analogous three-dimensional problem.

The displaced oscillator was chosen as the
closest one-dimensional analog of the three-dimen-
sional displaced-oscillator density matrix. Using
this wave function to calculate the energy of the
displaced state as a contrast to the energy of the
undisplaced state has two flaws. First, C~ has the
wrong symmetry; to be a proper ground-state wave
function it should be symmetric. Second, as is
obvious from Fig. 1, in the region of Low A. it is a
superior variational wave function to y0 and the
fact that one finds a lower variational energy with
this form does not necessarily imply anything about
a transition.

Even though C~ does not have the right symmetry,
the difference between using this wave function and

40 (or 4', ) as defined in (8) is only of the order of
the overlap (@~IK I @s). This quantity is of the
order of magnitude of the right-hand side of (ll)
and, as can be noted in Fig. 4, is a rapidly de-
creasing function of X as A. -O. Either 4„, %0, or
4', yields the limiting value E~- —1, X-O. In con-
trast, the limiting value obtained from the undis-
placed oscillator wave function of Eq. (4) is ED-- &, A. -O. This variational form simply does not
have the ability to concentrate the particle density
in the region of the potential minimum even when
kinetic-energy considerations permit it.

Of course, what one could do is use +0 and 4', as
variational wave functions to estimate 8, —8& and

(y, lu I y0). In this case we have already seen in
Fig. 4 that energy of the symmetric state is always
lower when g= 0 as it should be. However, the
analogous three-dimensional treatment is much
harder to visualize. For y WO we correctly obtain
a second-order transition with this treatment, but
the transition point is not very well determined
when X is small. This is readily understood on
the basis of the two-level formula and the fact
pointed out in Fig. 4 that 8,—S~ is not very well
estimated by this approach at small X values.

An important result of this paper is implicit in
(37). This equation not only is a simple expression
for the determination of the transition point, but
also involves only quantities which are smooth
functions of ~ and which can be determined reliably
by means of simple variational calculations. (We
assume that a suitable variational procedure will
be found for the order-disorder region. ) Thus,
because a proper theory of the transition has been
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formulated, we are able to determine the transition
point without resorting to the exact, matrix-diag-
onalization procedure. Since the latter is equiva-
lent to a very high-order perturbation calculation,
it would be impossible in a three-dimensional sys-
tem. Nevertheless, one could hope to obtain a
temperature-dependent expression for a three-di-
mensional system in which the relevant quantities
could be estimated on a first-principles basis from
a microscopic Hamiltonian.

The three-dimensional analog to the present cal-
culation is to introduce correlated Gaussian density
matrices for the displaced and undisplaced states
of a three-dimensional lattice. ' In the present
work we found that the variationally optimized
ground-state wave function (4) provided an excellent
evaluation of the ground- and first-excited-state
energies of Ho for all X. Similarly, one would ex-
pect that in the absence of hard-core interactions
or cubic anharmonicity the correlated Gaussian
form for the density matrix of the three-dimension-
al lattice would provide an accurate evaluation of
the free energies associated with the distorted and
undistorted structures of a lattice of correlated
quartic oscillators with a positive definite force-
constant matrix. Furthermore, since the differ-
ence in free energies of the two structures'~ is a
measure of the "soft" collective excitation associ-
ated with the structural transition, the correlated
Gaussian ansatz should provide a good description
of the temperature dependence of this soft mode.

If the force-constant matrix of the three-dimen-
sional lattice is not positive definite, then the
Gaussian approximation is expected to work best in
the temperature region where the thermal energy
of the collective mode exceeds the depth of the dou-
ble well associated with this mode. This latter
conclusion is a generalization of the conclusions
which we reached concerning the eigenvalue spec-
trum of Ho in Sec. II. There we found that the
variational treatment of IID using a wave function
of the form (8b) worked best for large X; in par-
ticular, for values of X for which the zero-point
energy was such that the particle no longer felt the
presence of the hump in the double well.

At this point it is perhaps appropriate to com-
ment at greater length on the connection between X

and an effective temperature. To do this we com-
pare the X dependence of (u ) with the temperature
dependence of the same quantity when calculated
using a single-mode classical density matrix of the

type employed by Lines. " For definiteness, we

compare the results of our variational treatment
of the Hamiltonian Ho using the trial ground-state
wave function (8b) with a similar variational treat-
ment using a single-mode density matrix. In the
latter case, of course, we calculate the classical
free energy rather than the ground-state energy.

(I& ~ (x, —x)'~ . (Al)

In this Appendix, we will show that this behavior
is a general result of the mean-field approximation
providing certain symmetry conditions obtain. In

order to establish this, a generalized version of
the system described by the Hamiltonian (3) will
be treated here. The appropriate specialized re-
sults are then easily obtained.

Without entering into the details of the calculation,
we merely state that the resulting free-energy ex-
pression is identical to (25) with the kinetic-energy
term —,

'
X g replaced by an entropy contribution

—,
' Ting, where T is an appropriate reduced tem-
perature. If a qualitative equivalence exists be-
tween X and T, then we would expect that a quantity
such as (u & calculated as a function of temperature
would display a dependence on T similar to the A.

dependence of the same quantity calculated within
the context of the model treated in this payer. In-
deed, one finds that the X and T dependence of
(u &(X) and (u )(T) mirror each other quite well. In
the limit of small X or small T both (u ) (X) and

(I &(T) display linear dependences on X and T, re-
spectively. Furthermore, at the second-order
transition point,

&&'&(~.) = &&'&(T.)=~«(X- 8)

with variations about the transition point being
linear in (X- X,) or (T- T,). Thus, we see that if
we restrict ourselves to qualitative considerations
only, one can safely use A. and T interchangeably.
Only for large X is the equivalence between X and'

T broken. One finds that (u~&(X)- X Is, A.-~,
whereas (u'&(T)- T' ', T- ~. This departure from
a strict one-to-one correspondence between X and

T is to be expected here since large X implies
large 5 and it is no longer valid to make a direct
comparison with a classical temperature model.
However, the difference between X dependence
and the T' dependence is of no importance as far
as the conclusions reached in this paper are con-
cerned.

The exact calculation required the diagonalization
of a Hamiltonian matrix. In all cases, enough
exploratory numerical work was performed to
guarantee the reliability of all quoted results. For
most cases, a matrix of 40x40 was sufficient;
however, at the lowest X values there was consider-
able cancellation between 8, and 8~ in order to ob-
tain 8,—h, and it was necessary to use matrices
uy to 400 x400.

APPENDIX

It is quite easy to show that, in the two-level
approximation discussed in Sec. III, the displace-
ment in the region immediately below the transi-
tion follows a square-root behavior. That is,
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1

Suppose that P= H(A. ) is any Hamiltonian in which
the kinetic-energy term is —oX (d /dz ) and the po-
tential energy U(x)= P(-x) is symmetric. Then
all of the eigenfunctions of H are symmetric or
antisymmetric. Suppose further that U is not
pathological so that all of the properties of H will
be smoothly varying functions of X. Next consider

(A2)

where V(x) is antisymmetric and

h.
V
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E= X(f(&)&y, (AS)

with f(x) also antisymmetric. Previously, f(x)
= Vg) =x has been used. The notation ()z is used
to indicate the average value of a quantity with re-
spect to the ground-state eigenfunction of (A2); the
subscript F is a reminder that the ground-state
eigenfunction is obtained with a particular value of
E in (A2). The possible states of the system de-
scribed by (A2) are the self-consistent solutions of
(AS). H is considered to be the unperturbed Hamil-
tonian and its ground-state eigenfunction will be
symmetric so that (f(x))z~ = 0. Since the result
of turning on the perturbation FV will be to lower
the ground-state energy, any self-consistent solu-
tion to (A3) other than E = 0 will result in a transi-
tion.

A graphical illustration of the above is shown in
Fig. 14. The dashed straight line represents the
definition E= y(f(r)). The solid curves (a)-(c)
represent the expected functional behavior of the
calculated quantity (fQ))z for various values of X.
Since the effect of zero-point energy gives addi-
tional rigidity to the wave function, the relation-
ship A, & X, & Xo should hold. If the slope of c at the
origin is I/y, the transition occurs at X„and X,
and X~ are above and below the transition, respec-
tively. The shape of the curves (a)-(c) will give
rise to a second-order transition. The curve (d)
illustrates a case in which the transition would be
first order.

Thus, we see that a second-order transition re-
quires that

d(f&|
zo X

' (A4)

or that (f(r))z= F//g+ (higher-order terms in F) at
An additional requirement is that the (f(x))+-

vs-F curve must always lie below the straight line
obtained from extrapolating the curve from its
slope at the origin. If this latter behavior obtains
for all X values, the transition will be second order
for any value of g. Different behavior can result
in the possibility of first- or second-order transi-
tions for different y values.

The functional form of (f(v))z can be obtained
from a perturbation treatment based on.the method
of matrix partitioning. 33

0.2

0.0
0.0 0.2 0.4 0.6 0.8 I. O l. 2

FIG. 14. Graphical illustration of the self-consistent
solutions to Eq. (A3). Solutions are given by the inter-
section of the dashed straight line of slope X

i with the
curves labeled (a)-(d). The solid curves (a)-(c) cor-
respond to a second-order transition, whereas the dotted
curve (d) illustrates a possible first-order transition.

In the representation in which H is diagonal, X
can be partitioned as follows:

00 oy (Asa)

ho=choo- &o,(&„-&o) '3.,o (AV)

(AS)4', = —(X„„-8o) 'X,o.
From the choice of basis functions and symmetry
conditions, H is diagonal and V and f only have
matrix elements between states of opposite sym-
metry. Thus

Eo —EVo 0
X = -Ev„o E„

0 —FV„„E„

(zoo Xo„Xo„'I
X po Xgp Xpy (Asb)

where the subscript 0 denotes the ground-state
eigenfunction of H, p. denotes all of the antisym-
metric eigenfunctions, v denotes all of the sym-
metric eigenfunctions except 0, and y denotes both
p, and v. Similarly, the ground-state eigenfunction
of X can be written

4o= i=/ F4'~ [, (AS)

where the factor of F is for later convenience.
The definition of the ground-state energy X+o

= OCo implies
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be combined to obtain

( 0 fo„o
f= f~o o f~.

I(0 f„„oj
(Alo)

(A12)

(M-')„„
,(M-')„„

V„p
V„p

(A1S)

where Sp has been used to designate Sp times the
identity matrix of appropriate dimension and M is
used to represent the matrix in (A12).

Next, one can use two relationships between the
partitioned components of any matrix M and the
components of its inverse:

(M )„„=[M„„-M„„(M„„)M„„] (A14)

(M )„=—(M„„) 'M„„(M ')„„.
Now if, for notational convenience, we define

(A16)

D„„=(M ')„„
= [E„-8,—F'V„„(E„-8,)-'V„„)-', (A16)

the components of the ground-state wave function
are found to be

where E„and E„are written with single subscripts
to indicate that they are diagonal. One can combine
(A6) and (A9) to obtain

fo~+u+ ze„f,„+„
E $ F2+2 F2+3 (A11)

and can use (A8) together with the matrix elements
exhibited in (A9) to obtain

1+F 4' [1+F V „(E„—bo) V„„]%'„
(A19)

From the considerations of the previous paragraph,
it is clear that &f)z can be written as Fx(power
series in F ). The coefficients in the power series
should be smooth functions of X since they involve
only quantities which are themselves expected to
be smooth functions of X. In the vicinity of a sec-
ond-order transition, this expression must be of
the form

&f&p ——[X +bi(X, —A)]F- bp F (A20)

where the coefficients in the series have been ex-
panded in powers of (X,—X) and only the essential
dependence on this quantity has been retained.
The form of the linear term is dictated by (A4).
The coefficients b, and ba are constants. Now, if
(A20) is combined with (AS), two self-consistent
solutions for &f&~ are found,

or
&f&„=o (A21)

(A22)

X '=2fo~(E~ —Eo) 'Vga, (A2S)

The first is trivial; the second gives the required
square-root behavior.

It should be emphasized that the initial assump-
tions that H is even and that f and V are odd are
responsible for the elimination of all terms involv-
ing even powers of F in the power-series expansion

One can obtain an explicit expression for X by
combining (A4) and (A19). In the notation used in
this Appendix, the expression is

+u =Dpp~wo

4„=F(E„—Eo) 'V„„%'~.

(AI'7)

(A18)
(A24)

where Eo rather than 8o appear because Eo= 8p at
the transition. If we return to the notation used in
the main text,

x '=» &m'. I~leo&'&(C- ho)
Since Sp & Eo and all of the energies represented
by E„and E„must be greater than Eo, (E„-ho)

'
and (E„-$0) ' must exist and a Taylor-series ex-
pansion of (A16) about F=0 can be made. The key
point is that D» and therefore 4'„are both of the
form constant plus a series in F'.

The expressions (All), (A1V), and (A18) can now

results, in agreement with expression (SS) for the
vanishing of the response frequency.

The result (A19) serves as a starting point for
an, investigation of conditions under which the tran-
sition might be first order. However, such con-
siderations will be postponed until later.
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