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TABLE IO. Hy+A matrix.

Hy+A &) (=31
@) [Hyl + (1 +ag)6] = (og +i ayp) o]
[p(=3)] — (o =i a8l [H)l + @ - ag)ls]

talline Stark effect) on the orbit, and then indirect-
ly on the spin through the L.+ § coupling. (A re-
cent work of Lowther® studies the effects of cubic
and axial crystal fields on the spin-orbit splittings
of the energy levels in rare-earth ions, but does
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not compute the anisotropy.) These mechanisms
are much different from the ones in transition met-
als, We will thus not draw any conclusion for ma~-
terials other than the transition metals.
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A classical first-order calculation of the static distortion in a magnetic spiral with a magnetic impurity
is performed. The distortion for any spin in the spiral is defined as its change of orientation in the
ground state due to the impurity. The impurity is assumed to introduce a different spin on a particular
site, and to change the exchange coupling of this spin with all others by a constant ratio. With these
assumptions, a general expression for the distortion in any crystal with the spins arrayed on a Bravais
lattice is derived. The expression is analytically evaluated for a special one-dimensional spiral. The
distortion is found to be localized about the impurity for the one-dimensional case so one would expect
good localization in higher dimensions due to the additional couplings. Nevertheless, the distortion has
to be viewed as an extended rather than a point defect in the magnetic crystal.

I. INTRODUCTION

Magnetic spiral structures are well known to oc-
cur in nature.! In rare earths where the spins are
large, ground-magnetic-state structures are often
calculated by classical methods.? The interactions
between spins in magnetic spirals are known to be
of a range greater than nearest neighbor® and the

presence of a magnetic impurity will cause torques
to be exerted on spins in the locale of the impurity,
and hence the spiral will be distorted in the whole
neighborhood of the impurity. This distortion does
not appear to have been explicitly considered in the
literature before. However, the problems arising
from long-range interactions between impurities
and certain rare-earth-host crystals have been
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discussed.? A small concentration of magnetic im-
purities should have observable effects on elastic
neutron scattering from spiral magnets. A more
regular distortion, the “bunching” of spins due to
hexagonal anisotropy, has had observable effects.?®

Allowing long-range interactions, but assuming
that the distortion produced by the impurity is
small, this paper uses classical methods to derive
a first-order expression for the distortion at any
lattice site for any Bravais lattice of spins. It is
assumed that the effect of the impurity is to intro-
duce a different spin on a particular site and to
modify the exchange coupling of this site with other
sites by a constant ratio. The ground-state config-
uration of the impure crystal is obtained by mini-
mizing the magnetic energy of the crystal in the
same way that the ground-state configuration has
been calculated by many authors?'® for perfect crys-
tals. The resulting expression for the distortion
would, in general, require numerical methods for
its evaluation. In order to obtain some analytical
results, a model of one-dimensional exchange
coupling for a spiral, similar to one suggested by
Nagamiya, ® has been considered. For this model it
is possible, in first order, toderive simple expres-
sions for the distortion produced by a magnetic im-
purity in a crystal which has a spiral of arbitrary
turn angle.

II. MODEL

Long-range Heisenberg coupling between the
spins is assumed. The spins are further assumed
to all reside in planes perpendicular to the z axis
(which is thus the axis of the spiral) and so the Ham-
iltonian of the perfect crystal can be written®

Ho=—Sz‘Z?,J,,COS(¢¢—¢,), (1)

where ¢, is the angle spin i (of magnitude S) makes
with the x axis and J;; characterizes the exchange
coupling between spins ¢ and j. It is further as-
sumed that J;;=0 and J;;=Jyy. Spin i is assumed
to be located at the lattice site R;. The impurity
spin with magnitude S’ is assumed to be placed at
ﬁo. If the exchange coupling J, is changed to pdy,
by the impurity* and if we define

p=p(s/8)-1, )
then the perturbation of the crystal by the impurity
can be represented by the Hamiltonian
H =-28%p2; Jyycosd,, ®3)
i

where no twisting of the spins out of their planes is
considered (from effective local field torque con-
siderations, this is physically reasonable) and ¢,
is chosen to be zero to fix the one arbitrary angle.
We define the distortion A, at lattice site j by

AJ=¢’1’€'§J'=‘¢/"0£/, (4)

where a, =" R, is the equilibrium turn angle of the
perfect crystal, i.e., q is along the z axis and the
Fourier component of J;; is a maximum when eval-
uated at the point in reciprocal space where K=4q.

We assume p to be small so A; will be small.
With appropriate numbering of the crystal lattice,
we choose ¢, =-¢_;. The equilibrium configuration
of spins is then determined by requiring

9
30,

Within the context of our model, this gives the ex-
act condition

%} Iy 8in(o, = ¢,) =p Jyo sing,,. ®)

(Hy+ H,)=0. (5)

To first order in p and A, Eq. (6) becomes, with
A.IP=AI bl A’ and a,,=0t,— 01, )

23 Jyy (cosay,) A 4, =P I Sina,. (7)
Y

Equation (7) can be solved by Fourier analysis in
reciprocal space. We assume periodic boundary
conditions and write

1 - . - >
Jpj =F]?e fko(ﬁp ﬁj)J(k) (8)
and
1 e >
&=y et A®), ©

where the sums over k and K’ are over the first
Brillouin zone. We substitute Eqs. (8) and (9) into
(7), do a little manipulation, and find the following
relatively simple expression for A(E);

_JE&+q)-JE-q)
k+q)+Jk-q)-27@)

A(k)=ip T =-ipfk).  (10)

Using Egs. (8) and (9) we can write
A= S DAR)sink- R, (11)
k
where f(K) is defined by Eq. (10). This explicitly
displays the expected property A,=- A_;.
IIL. ONE—DIM!ZNSIONAL CASE

Following Nagamiya® we limit ourselves to near-
est-neighbor and next-nearest-neighbor interac-
tions. If a represents the distance between adja-
cent spins in our one-dimensional crystal, we thus
write

J(&)=2dJ, cos (ka) + 2 J, cos(2ka). (12)

Requiring J(g) to be the absolute maximum for the
range ~ m<ka <m, we findthat Eq. (12) canbe written

J(k)=4d[cosqa coska - ; cos(2ka)], (129

where J is an arbitrary positive constant measur-
ing the over-all strength of the exchange coupling.
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For our one-dimensional case, we use Eq. (12') to
evaluate f(k) and substitute in Eq. (11). The sum
over the Brillouin zone can be converted to an in-
tegral in the usual way. Making the substitution

y =ka for the dummy integration variable we find
that Eq. (11) becomes

P
27

2T siny sin(ny)dy |

o 1-cos(2qa)cosy ° (13)

A, =~ 7 sin(2qa)
If we let z=¢'” and integrate over the unit circle,
Eq. (13) can readily be evaluated from the residues
at the poles interior to the unit circle. The result

is the following simple equation:

1-]sin20l\
A, =~ ptan2 e(TSZO—) , n>0; (14)
80, (147)
N (147)

where 6=gqa is the equilibrium turn angle of the
perfect crystal between adjacent spins.

IV. DISCUSSION OF RESULTS

Equation (14) shows that the distortion is depen-
dent on turn angle. This makes sense when one
considers that the torque exerted on spins adjacent
to the impurity is dependent on the angle they make
with the impurity, From such considerations, one
would expect no distortion for the ferromagnetic
(6=0) and antiferromagnetic (6=7) cases and this
is what Eq. (14) predicts. For §=45°, Eq. (14)

predicts A,=- A_;=-3p and A, =0otherwise. For
this case the distortion is of minimal range. Other
angles show somewhat longer-range distortion but
for all 6, A,~0 as n~«. When §=30° one has for
n>0, A,==pV3 (2- V3 )" and 6=60° gives for the
same case A,=(-)"pV3(2- V3 )". Equation (14)
shows a type of compensation. For very small @
(in radians), A,=-2p6(1 - 26)" with >0, so that
although the distortion is very small it is also very
long range. When the distortion becomes compa-
rable to p (e.g., the 6=45° case), then it also be-
comes rather short range. Actually the localiza-
tion about the impurity would be expected from the
structure of Eq. (11) which applies to one, two, or
three dimensions. The fact that we do get localiza-
tion in one dimension only confirms the belief that
the additional couplings in higher dimensions will
produce well-localized distortions about the im-
purity. The main point of this paper is to empha-
size that a magnetic impurity in a magnetic spiral
introduces a localized but not point defect as far as
the change in the ground-state structure is con-
cerned.
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