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for the magnetic moment' to estimate q and T,
fox' sgfgEg Qf'psggE Pr, A particularly simple ap
yx'ORch is to.neglect exchRnge between ions with
different site symmetries. Then the problem re-
duces to two independent sublattices and the use of
Bleaney's' crystal-field scheme allows qualita-
tive agreement with the experimenta, l data at 4.2 K
for ti(hex) =0. 5 to 0.7. On this basis, order-of-
magnitude estimates for T,(hex) and T,(cubic) are
10 Rnd 3 mK, 1espectively, fox' single-erysra/ Pr.

%8 consider these estimates of q and T, uncer-
tain enough to think it possible that the hyperfine
heat capacity observed for polyc~stalkine Pr

might be characteristic of the 8&gle crystal also.
It should be pointed out that the susceptibility anom-
ajy for ordering with ferromagnetic exchange has
a large and strongly fieM-dependent magnitude
(for tv-0. 6 and ordering on the hexagonal sites only

g„ is 1.3 and 0.4 emu/mole Pr in 100 and 1000 Oe,
respectively). The field dependence of T„on the
other hand, remains quite small.
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A decoupling procedure in first-order Greens-function theory of ferromagnetism is devised to give a
better treatment for the spin kinematics. This improvement results in better high-temperature
characteristics in the Heisenberg model (such as the Curie temperature and zero-field susceptibility) but
reintroduces the spurious T term in thc low-temperature magnetization. Various first-order decoupling
pfoccdurcs arc analyzed 1Q vie% of thc11 inAucncc on thc spin kinematics and thc rcnorinalizat1on of
quasiparticlc energies. The proposed decoupling is also used to study the taro-spin system. Over a ~ide
temperature range, better results for various thermodynamics quantities are obtained when compared
with previous first-order decouplings.

I. INTRODUCTION

Ovex the past sevexal yeRxs, attempts to de-
scribe the thermodynamical properties of the
Heisenberg model for all ranges of temperature
have made considerable use of the double-time
temperature-dependent Gx'eeQ s functions. To
solve the yroblem of the infinite chain of equations

that appear in the Green's-function theory, several
first-ordex decoupling procedures have been pro-
posed. In the spin-oyerator formalism,
Bogolyubov and Tyablikov' first proposed the so-
called random-phase-approximation (RPA) decou-
pling scheme for the particular case of 8= &. Fol-
lowing the same ldeasp, Takir-Kheli Rnd tex' HRRx'
extended this decoupling procedure for all values
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of spin. Later, Callen proposed a symmetrical
decoupling method guided by a physical criterion,
and obtained good results for the case S ~ 1.

All these decoupling procedures have special
difficulties for the case S= —,'. In RPA decoupling,
the low-temperature magnetization presents the
well-known spurious Te term and the renormaliza-
tion of quasiparticle energies does not give a cor-
rect spin-wave behavior at low-temperatures.
The good results of this decoupling are those ob-
tained in the high-temperature region (T= T, and
T» T,). '2 In the case of Callen's approximation,
one obtains a good renormalization of quasiparticle
energies (in the sense of Keffer and Loudon4), but
the magnetization also presents a spurious term
T, and the T' term (originating from dynamical
interactions) does not appear. For low-spin
systems, Callen's results in the high-temperature
region are not in good agreemente' with the results
of more exact theories, although one can get an
improvement in the Curie temperature with some
modification in Callen's temperature-dependent
parameter. The difficulties for the S= 2 case
have also been shown' to exist in other thermo-
dynamic quantities. Hewson and ter Haar first
attributed these problems to the violation, of local
kinematics with an intimate connection to the na-
ture of a first-order decoupling.

A new first-order decoupling proposed by
Dembinski overcomes the difficulty of Callen's
scheme for the special case of S = 2. In this de-
coupling there is an additional term which takes
into account the kinematical effects, resulting in
a low-temperature series expansion of the mag-
netization free from the spurious term T and with
a T term quite similar to the one obtained by
Dyson. The evaluated Curie temperature is
equal to the RPA one, and there is also an im-
provement in the high-temperature zero-field
susceptibility series, ' which reveals the effect due
to the kinematic interactions in this region of tem-
perature. It is worth mentioning that the renor-
malization of quasiparticle energies in Dembinski's
approximation was not explicitly evaluated, but
the zero-order Green's function from the iterated
solution presents poles identical with those ob-
tained by Callen. 3 We should also mention that
none of these first-order decouplings gives a wave-
vector-dependent renormalization of the energy,
which is an important feature in phase transitions,
especially in, low-dimensional systems, as was
recently analyzed by Lines. ' However, it should
be noted that equally simple first-order decou-.
plings in k space give good agreement with Dyson's
theory at low-temperature, even if spin variables
are used. '

Owing to their simplicity, the first-order de-
coupling procedures have been applied in a wide

variety of problems such as ferromagnets includ-
ing dipolar interactions, '3' antiferromagnets, "
phase transitions, "and light scattering of ferro-
magnets and antiferromagnets. '6 Therefore it is
worth seeking a deeper understanding of its suc-
cesses and failures. Very recently the present
authors and Ramos have presented a critical
study of these first-order decoupling procedures
based on the two-spin system coupled by exchange
interaction. They compared the results of these
approximations with the exact ones in a wide range
of temperature, and almost all the agreements,
departures, and discrepancies which appear in the
application of those approximations to the Heisen-
berg ferromagnet are also prese~t in this simple
model. They also concluded that among those ap-
proximations, Dembinski's is the best for S = —,'.
Recently, Rhinos and Gomes" showed that the
correlation functions should play a fundamental
role in proposing decoupling procedures and have
explicitly shown how Callen and Dembinski's de-
couplings neglect terms of order T in the correla-
tion function ((S ) S', S&). Based on this method
they were able to reproduce Dembinski's decou-
pling. On the other side, several authors have
overcome those difficulties by employing a higher-
order Green's-function approximation, and after
tedious calculations they obtained Dyson's results
for the spontaneous magnetization at low tempera-
tures and the correlation function ((S ) S~S&) van-
ishes identically.

The aim of this paper is to investigate the re-'
sults of a first-order decoupling procedure which

gives a better treatment for the spin kinematics.
In Sec. II, based on the correlation-function ap-
proach, ',we introduce a first-order decoupling
scheme which treats the correlation function

((S~) S~S&) correctly up to order T . However, the
spontaneous magnetization evaluated by this
scheme (Sec. III) presents a spurious term T and
the T term is greater than Dembinski's. These
results give evidence that a first-order decoupling
procedure (in spin-operator formalism) cannot
give simultaneously correct temperature depen-
dence for the spontaneous magnetization and the
correlation function ((S ) S'S&) up to order T .
Note that this is not true in higher-order Green's-
function approximations. ~

While our low-temperature results are not very
good, the high-temperature (T = T, and T» T,)
ones are better than those obtained with the first-
order decoupling schemes previously mentioned.
In Sec. III, using the simple decoupling introduced,
we obtain very good results for the Curie tempera-
ture and for the high-temperature zero-field sus-
ceptibility series for the spin- —, Heisenberg fer-
romagnet, as compared to the ones of the labor-
ious method of Ref. 20. Very recently a mod-
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ification in Callen's decoupling has been proposed.
This decoupling, whose introduction is based
on the best possible result for the Curie tempera-
ture, provides a good description of the system
at high temperatures but does not change Callen's
results at low and very high temperatures. In the
present treatment the decoupling is obtained on a
physical basis, and the high-temperature results
are better than those of other first-order decou-

. plings (except for the Curie temperature of Ref.
21). We have also applied our approximation to
the two-spin system (Sec. 1V), obtaining the best
results when compared to the ones of other de-
coupling procedures. '~ These results reveal the
importance of the spin kinematics in the high-
temperature region. Finally, in Sec. V we pre-
sent a discussion of the results.

II. DERIVATION OF DECOUPLING

In this section we present the derivation of the
decoupling equation used in the remainder of the
paper. We use the well-known definition of the
temperature-dependent commutator retarded and
advanced Green's function for two Heisenberg
time-shifted operators A(t} and B(t). The ana-
lytic continuation of its Fourier transform
((A; B))~x""' to complex energies satisfies the fol-
lowing equation of motion:

B&(A;B» =(f/2v)&[A, B]&+«[A,ff];B» . (2. 1)

We assume that the Hamiltonian H contains near-
est-neighbor isotropic Heisenberg interactions and
the interaction with an external field k

H=-J'Z s~ 8 —ph+s' (2.2)
&tg)

where p, is the Bohr magneton times the gyromag-
netic ratio. With A= $', B=S„where the spin
operators are defined by the usual commutation
rules, we obtain from Eq. (2. 1),
(E- p&}«8;;8 &), =(f/2 }&[8'„8]&

+ 2zZ (((s;s;;8;)), -((s;s'„s;)),) . (2.2}

The key problem of a first-order decoupling
procedure is essentially to express the Green's
function ((8~8&, 8, &)z in terms of lower-order
Green's functions, which enables one to solve the
infinite chain of equations of motion in a approxi-
mate way. Callen proposed a representation of
the S~ operator in terms of the transverse spin
operators (S,S'} and of a temperature-dependent
parameter, which for S=& is

sg=&8'&+2(1 —2&8'&}8',sg —~a(1+2&8'&}sgsg .
(2.4)

For the low-temperature limit ((S ) = 2 ), this equa-
tion gives

S»= ~ —S S' (2. 5)

((s;s'„.s-, )), = [(s') + 5„-', (A —B)]((s'„.s;)),
i(2. 10}

and its associate correlation function for g = I,

On the other hand, in the high-temperature limit,
((8'& = 0} it gives

s;=-,' (s',s;-s, s',) (2. 5)

Note that (2.5) and (2.6) are exact representations
of the S' operator for S= 2. With the representa-
tion (2. 4), the Green's function ((8;8»8,))s is
written

«8;8» 8 », ,=, &8'&«8;;8 &) + l (1 —2&8'&)

x((8'S 8» 8, ))s —g (1+2(8'&)((8 8'8»' 8, ))s
(2.7)

The two higher-order Green's functions on the
right-hand side of this equation have been treated
in several ways. Callen treated them using a
symmetric decoupling. Ramos and Gomes" al-
lowed a more general decoupling for them and,
imposing some conditions on the correlation func-
tion ((S,) 8', 8~), obtained Dembinski's decoupling
equation. Here we use the general initial decou-
pling of Ref. 18 with different conditions on the
correlation function. As in Ref. 18, we approxi-
mate the higher-order Green's functions of (2.7)
to

«s', s;s'„s;)&, ;—&s,'s;)«s'„s-, )&,+ &s;s', &

x((8'„S,)) +A5, ,((S;;8,)), (2.8a)

«8,8,'8'„sg&, ;—,&s;s', &«s'„s;», +(s;s', )

x((S„S;)), +B5„,((8'„.8;)), , (2.8b)

which yield, when inserted into Eq. (2. 7), the
general basic equation of the decoupling:

((s;s'„s;)), —;, (s') ((s'„s;)),—2(s')(s;s', )

x((8';8)))s + g 5~, g(A(1 —2(S'))

—B(1+2(8')})((8».8, ))s . (2. 9)

The parameters A and B of the correction terms
can be determined by the conditions imposed on
the correlation function (S 8~8&&. As pointed out
in Ref. 18, there is no a Priori reason for assum-
ing that the low- and high-temperature values of
A and 8 are the same. However, one can show
that if the correlation function is to have the same
form in both limits, the values of A and 8 in those
limits must not be different. A first equation
connecting A and B can be obtained subtracting
(2.8a) and (2.8b) and using the high-temperature
limit of (2.4). One obtains
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Present
vrork

Dembinskia
or RPA

Second-orderc
Caj1enb Green's function

References 1 and 9.
'Reference 8.

Reference &9,
Up to order re.

(s;s;s;) „=, [&8')+-.' (A - a}](s;8',) . (2. 11)

With (2. 11) and the correlation function of (2. 9),
we ax'rive at

&+a=-2(s;8', & . (2. 12)

Equations (2. 11) and (2. 12) make now the problem
for evaluating the parameters A and B a simple
one, once we impose some approximation on the
correlation function (8 8~8&).

The choice of the parameters A and 8 must be
guided by a physical criterion in both high- and
low-temperature limits. It is well known that ig
the low-temperature regions

&8')=-'-a v'l2 (a. is)

TABLE f. Correlation function &(8~} 8~8&) in the low-
temperature limit from various first- and second-order
decoupling schemes.

limit. Since the approximation in the correlation
function (8~8~8&) is valid for both limits of tem-
perature, we must choose the parameters A and
8 in such a way that the T term does not appear
and that a molecular-field-theory-type behavior
in the high-temperature limit is obtained. These
two condictions are satisfied if we make

A —@=4(s')(s;s',) . (a. iv}

%'ith this condition and using the low-temperature
expansions of (8 ) and (Sgsg)~ we obtain from Eq.
(2. 15},

(s;s;s', ) =-'. (s;s', )+ o(i"'} (2. 19a}

(s;s;s;) =(s')(s;s', )r, (a. i9a)

and consequently

((s;}'s',s', ) = o+ o(i"'} . (a. 19b}

The results for the correlation function ((8 )28'8&)
in the low-temperature limit, using different ap-
proximations, are presented in Table I.

In the high-temperature limit we have, from
Eqs. (2. 11}and (2. 1V}, the molecular-field-theory-
type behavior for the correlation function„

(sgs~& = a07 ~ (a. 14}

(s;s;s', )=-.'&s;s', )-a,'~'+-'. (A-a}&s;8',) .
(2. 15)

The simplest cho1ce 18 A = 8, which coxresponds
to the random-phase approximation for the corre-
lationfunction(8 8 8&) in both limits of tempera-
ture. This choice x'eproduce8 Dembinski'8 'basic

equation as shown in Ref. 18. We notice that in
this case the low-temperature limit of S~ in Eq.
(2. 5) gives, in (2. 15)

((s;)'s', s', )=s',~' . (a. i6)

Obviously this is a spurious term, because for
8 = ~ we should have {8~} = 0. As pointed out in
Ref. 18, Eq. (2. 16}is an improvement in the the-
ory as compared to that of Callen, which makes
an error of 2g07 . The achievement of this ap-
proximation was to obtain a magnetization free
from the spurious term T and a T term quite
similar to Dyson'8 results. We should mention
that in the high-temperature region this approxi-
mation gives a molecular-field-theory-type be-
havior for the correlation function (8 8'8&).

Now we shall intxoduce a new approximation
which treats the correlation function &(S~} 8~8&)
correctly up to order T in the low-temperature

where ao is a constant and 7 is a reduced tempera-
ture defined by Callen. Substituting these ex-
pressions in Eq. (2. 11), one gets

r=i+2&s;s', ) . (2. 19b)

The parameters A and 8 are easily obtained from
(2. 12) and (2. 1V}:

x =(s')(s;s', ) -(s;s',),
B=-&8'&&8;8;&-&8,8;) .

(a. aoa)

(a. aob)

III. RESULTS IN HEISENBERG MODEL

In this section we use the decoupling equation
to break the chain of equation (2.3} in first order
The aim is to use the Green's function to calculate
the low-tempex ature spontaneous magnetization,
the Curie temperature, and the high-temperature
zero-field susceptibility for a Heisenberg ferro-
magnet. The comparison of these thermodynamic
quantities with other theories will reveal the

Finally, the basic equation of the decoupling to be
used is, from Eq. (2.9}and (2. 20),

((s;s'„s;)), ;—,(s')((s'„s;)),—2(s')(s;s', )

~ «8'„8;)), + 28„,(s')((8;8;).&8,8;&}&«;8,». . (2.»}
Vfe note that besides Dembinski'8 correction for
the spin kinematics, which is proportional to
(8~8~) (same lattice sites), this decoupling intro-
duces a correction which also takes into account
the correlations between different lattice sites
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ability of the proposed decoupling to describe the
Heisenberg model.

The method of calculation we use is the same
as Dembinski, ' and we shall not reproduce the
details. Following his notation, with the decou-
pling (2. 19), we obtain from Eq, (2. 3) the Green's
function

R=1+4oN ' Z ~ 4(k)+4a g [2o(2o'-R)]"
&o n=1

xyo ~"N " ' + y) ooz y), a/gy),
~ ~ ~ 1 1 n n n+1

1 n+1

G(E, k) = — - +2o(2&& -R)J "- N
7l s

where

where

x Q —'G(Z, X),
x Yo

(3.1)

n+1

f (&)= g (& —n~) .
m=1

(3. 13)

o = (s'),
/5'f

6

a=Yo —~a

Qg, = p.k+ 20' JQ)g, R

(3.2)

(3.3)

(3 4)

(S.5)

(3.6)

(3.7)

(S.3)

The set of equations (3.10) and (3.11) form the
necessary equations to evaluate the thermody-
namic quantities of interest. Vfe should note that
our Eqs. (3.10) and (S.11) go into Dembinski's
equations by replacing (2o —R) with (2o —1). At
this point, it is worth mentioning that the iterative
method used to solve Eq. (3.1) will not furnish the
actual renormalization of quasiparticle energies.
However, we note that the zero-order Green's
function from the iterated solution presents poles
identical with those obtained by Callen3 and
Dembinski.

Here the indices k, g, l, X, and 5 are identified
with vectors although the vector sign is left out for
clarity of the notation. The key of Dembinski's
method is to search for an iterated solution for
the Green's-function equation. Carrying out a
similar development for Eq. (S.1) and recalling

A. Low-Temperature Spontaneous Magnetization

The low-temperature spontaneous magnetization
up to the T term is evaluated from Eq. (3.10)
and (3.11) (with It = 0) by using the asymptotic ex-
pansions for the functions involved in these equa-
tions. After some calculations, the result is

o =-.'(s s'), (S.9) s/s „~( )
5/s s „s~(7

) //s

we find the following equations for the magnetiza-
tion and the function 3:
2 —o = 2oN" Z 4(k) +'2o Z [2o (2o —R)]"ypJ~N-~-t

n-"1

x Z &o„,yz &o ~ . y„&o„y
2 n n n+1

1

n+1
x Z [y„'„(n, )] 'e(x„), (3.10)

m=1

x7/vt:( —,')f(~)~'+O(v ), (3.14)

where v and ~ are well-known lattice structure
parameters and F( —1), defined by

TABLE II. Comparison of the coefficients of T~ and T terms in the low-temperature expansion of (S ) from different
decoupling procedures. The terms are written in the form q K (~)~ and -3xv C(z) &(2)Qq. .

Present work
sc bcc fcc

Dembinski~
sc bcc fcc

Callenb
sc bcc fcc

RPA
sc bcc fcc

Second-orderd
Green's function

sc bcc fcc
2.70 2.38 2.24 1.68 1.52 1.45

0
0

+2
1.68 1.45

0
1 35e

Reference 9.
Reference 3.

'Reference l.
Reference 19.

eThese listed values of Q coincide with the rigorous
Dyson results.
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TABLE HI. Curie temperature 0./P~J) for the spin-~ nearest-neighbor Heisenberg ferromagnet in cubic lattice given by
different approximations.

Lattice

bcc
fcc

Present
work

1.85
2,74
4.28

Baker
et al.

1.68
2.52
4.01

Dembinskib
or RPA Callenc

Copeland
and Gerschd

Cooke
and Gersch' Swendsen

1.76
2.60
4.08

Weference 20.
References 1 and 9.
'Reference 3.
'heference 6.

Reference 19. Second-order Green's-function approxi-
mation»

Reference 21.

has been evaluated by Watson. The results for
the coefficients of the T and T terms, using dif-
ferent approximations, are presented in Table II.

8. Curie Temperature

Equations (3.10) and (3.11) (with R=O) are now

used in the limit o -0 to obtain Pc = (It sTc)
where T~ is the Curie temperature. The result
1S

SS O (3.1V)

where &=2 for sc and bcc, and 6 for fcc, and

Once again the decoupling yields bettex results,
this time in the last coefficient, when comparing

In Table III we present the values for the Curie
temperature obtained using different approxima-
tions, and compare them with the value evaluated
by Baker et a/. from a high-temperature series
expansion.

C. High-Temperature Zero-Field Susceptibility

We use again Eqs. (3. 10)and (3. 11) now inthe limit
A-O, o 0 to obtain the susceptibility X from
e/pit-)f/p, . After a laborious calculation, we
f1nd

Pp Te 'Yo-1 Tm i 'yo-5'o-&

with RPA, Callen (C), and Dembinski (D) results.
In the present treatment,

2 RPA ~ 2@3=~3 -&0 =@3 —2'Yo

In Table IV we list the coefficients given by dif-
ferent approximations and compare them with re-
sults of Baker eI; al.

IV. RESULTS IN TWO-SPIN SYSTEM

Let us consider a ferromagnetic system consist-
ing of two spins coupled through the exchange in-
teraction, embedded in a external uniform, mag-
netic field h. In this case the Heisenberg Ham-
iltonian reads

H= —2ZSg 'Ss —Pk(S~+ So) .
This simple system has been used by the present
authors and Ramos to study the validity of the
Tyabliko, Callen, and Dembinski decoupling
procedures. The advantage of this method is that
the comparison, with the exact results, can be
analytically done over the whole range of temper-
ature. Now, the necessary equations to our
problem are (2. 1), (4. 1), and (2. 21). We refer
to Ref. 1V for a better understanding of this prob-
lem and to more explicit numerical calculations.
Here we shall present the results when using the
proposed decoupling. %e also present the results
for the correlation function &(Ss}SsS~&when using
HPA, Callen, and Dembinski decoupling proce-
dures.

The transverse correlation functions are

(4. 2)

TABLE IV. Coefficients at and a3 of the susceptibility series X =gpss genoa„(T~/T)". The first coefficients ao and aq are
equal to one in all approximations.

Present work
sc bcc fcc

a2 0.83 0.88 0.91
a3 0.61 0.72 ' 0.792

Baker et al.
sc bcc fcc

0.66 0.75 0.83
0.40 0.54 0.63

Dembinski"
sc bcc fcc

0.83 0.88 0.91
0.64 0.73 0.799

RPA'
sc bcc fcc

0.83 0.88 0.91
0.66 0.75 0.806

Callend
sc bc' fcc

1 1 1
0.97 0.98 0.99

Reference 20. Qeference 5. %teference 1. Reference 3.



of th«olio»ng equation

9"x'- 3f)('+ f}(-8 =0,

Q,)-

AJi

V
QQ-

(4.12)

It is ~orth mentioning that for the special case
8= 3 the exact solution can also be obtained th

e ~

8
Green s functxon method de83.1ng onlp' th th
first- and second order eguatjons of Inotlon«

poles of the exact Green's function, vrbich cor-
respond to the exact excitation energies of the
sp'sterol, are E»= jlk and E~,s= p,k+2Z. Here vge

present the temperature-dependent Green's-func-
tion poles obtained using the present and other
approxiM. ations

(4. 1,3)

FIG.
for the
= 0.1.
CUXV8S

02 O.s OS 08 1.0 Lk ts i.6 l.e 2D
KT
J

I. TTempex'atUre dependence of the m.agnetization
two-spin system, calculated for 8=( and pA, /Z
The exRct Rnd the pFGvioUs fix'st-ox'681 decoUpling
(solid lines) mere obtained in Ref. 17.

4.0.
I

l

l

t

d,'= (s"-1) '+ (exp[[c+4&S'&

$ =1+2(Sj8t&=
tanh(a/2f)

(4.9)

02 Q4

t=ksr/Z, s=ith/Z . (4. 1O)

The magnetization is obtained from E (3 9}
( . ), (4.8}, and (4.9) self-consistently. The
zero-field magnetic susceptibility is the solution

FIG. 2. Zero-fieM ma@18tic 8UsceptiMlig (888 the
definition in the tin 8 8xt) as fUnction of temperatGr8 fox" the
bVO-SPin System (8=
in Ref«

=g) «The SoBd cUxves %fere oMRkned
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where

q(T) = 2(S')(-,'+ 8(S;S',) —(S')),
Rap~(~) =2(~')Rp~ ~

q, (V ) = 2(S'),(I+ 2(S;S',),),

(4. 18)

(4. 18)

In this work we have investigated the results of
a first-order decoupling procedure in the Green s-
function theory of S =

& ferromagnetism devised to
give a better treatment for the spin kinematics
preserving a good renormalization of quasipar-
ticle energies. The motivation is that it is known
that the thermodynamical behavior of the Heisen-
berg model is dominated by the spin kinematics
and the renormalization of the quasiparticle en-
ergies. ' Previously developed decoupling pro-
cedures give good treatments of either of these
two properties. As an example we note that both

q, (Z) =2(S'),[1+2(S,S',),+(-'. -(S'),)]. (4. 18)

The results of Eqs. (4. 2)-(4. 18) as well as the
ones obtained with other decoupling schemes, "
are shown in Figs. 1-4.

V. DISCUSSION OF RESULTS AND CONCLUSIONS

the RPA and Callen's (S = —,') decoupling result
in a spurious 7 term (Table II). This is so be-
cause in the former the quasiparticle energies are
equivalent to simple spin-wave energies renor-
malized by a factor proportional to the magnetiza-
tion, whereas the latter obscures the local-spin
kinematics (Table I). On the other hand, in
Dembinski's approximation the spurious te rm
does not appear because it treats spin kinematics
as well as RPA and at the same time it improves
the renormalization of energies. This improve-
ment is reached through a renormalization factor
for the spin-wave energies which is proportional
to the thermodynamic energy (with a leading tem-
perature term arising in T'12'0) rather than the
magnetization. This renormalization factor is ex-
pected in the low-temperature region and was
also obtained in Callen's decoupling. However,
at higher temperatures all these decoupling pro-
cedures renormalize the spin-wave energies by the
average magnetization. Therefore a particular
treatment given for the spin kinematics strongly
influences the results in the high-temperature re-
gion. As an example we see that the same treat-
ment for the spin kinematics given by RPA and

0.3.

+~
M 0.2 FIG. 3. Temperature dependence

of the transverse correlation func-
tion for the two-spin system, calcu-
lated for S=y and ph/8=0. 1. The
solid curves were obtained in Ref.
17.
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FIG. 4. Temperature dependence of the correlation function ((St) StSt) and ths funct'o (T) ( th d finN' in th
text) for the two-spin system (8=)): (a) treatment of spin kinematics in the various approximations; (b) behavior of ths
renormalized energies in. the various approximations. Note that the exact energies correspond to g =1 and g =0.

Dembinski's decouplings (Table I) led them to ob-
tain the same Curie temperature which is better
than Callen's temperature (Table III).

The decoupling introduced here was generated
with the requirement of treating the correlation
function {(8,)'8,'8&) correctly up to order T', that
is zero up to order T, to treat better the spin
kinematics. At the same time in our treatment
the quasiparticle energies are equivalent to simple
spin-wave energies renormalized by a factor
proportional to the thermodynamic energy at low-
temyeratures and to the average magnetization at
high-temperatures, as in the Callen and Dembinski
apyroximations. This is shown by the zero-order
Green's-functions poles in Eq. (3.I). The im-
provement in the local spin kinematics results in
better high-temperature characteristics, such as
the Curie temperature and zero-field susceptibility
(Tables III and IV). This is a consequence of the
fact tha& at high-temperature the number of spin
deviations in the systems is larger and the local-
syin kinematics becomes very important. On the

other hand, this improvement is responsible for
the spurious term 7 in the magnetization (Table
II) which shows up in our treatment. These re-
sults seem to indicate that in a first-order decou-
pling procedure one cannot improve the spin kine-
matics to obtain better results for all thermo-
dynamics quantities in all ranges of temperatures.
In this respect we point out that the first-order
decoupling proposed by Dembinski reaches an
equilibrium yoint in treating the spin kinematics
at lorv-temperatures. As a consequence it has no
spurious T term in (he low-temperature spon-
taneous magnetization. However, this equilibrium
is not maintained at high temperatures.

To understand better the decoupling introduced
we have applied it to the two-spin system coupled
by exchange. This model is very convenient be-
cause it can be solved analytically in the whole
range of temper'atures. Of course its limitation
is that it is not a realistic model for an infinite
ferromagnetic crystal. . Compared to other first-
order decouplings, the one of the present work
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gives better results for the magnetization, the
susceptibility, and the transverse correlation
function over a wide range of temperature (Figs.
1-3). Figure 4(a) shows that the spin kinematics
is also treated better in the whole temperature
range. Figure 4(b) reveals that the improvement
of this property results in a variation of the low-
temperature renormalized energy. This fact also
occurs in the Heisenberg model, but it has no

influence in the evaluation of the low-temperature
spontaneous magnetization up to order T .
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The effects of the crystal field on the magnetocrystalline anisotropy energy are investigated. The
matrix elements of (a'/4)cr ~ [KX(—i+ )], the general coupling term between spin and orbit, are

derived for nonspherical types of potentials. In the case of cubic transition metals, the anisotropy is

shown to arise only from the d electrons; it is found that the nonsphericity at a lattice site of the

crystal potential cannot give significant changes to the theoretical values of the' ferromagnetic anisotropy

derived with only the L ~ S coupling term. However, this might not be so in other crystals.

I. INTRODUCTION

In ferromagnetic materials, the crystalline en-
ergy depends upon the orientation, relative to the
crystal axes, of the magnetization. In cubic crys-
tals, symmetry considerations require that the en-
ergy has the form'

2 2 2 2 2
@(nt y nap ns) ~0+I(1(nt ns+ ns s+ s 1)

+K&(n, ns ns)+ ~ ~ ~, (1)
I

where n„n2, and 0.3, are the direction cosines of
the magnetization. The coefficients K, and K2,
which depend upon the material and the tempera-
ture, have to be determined from the differences
between energies measured at various orientations
of the magnetization. For nickel at 4. 2 'K, Kor-


