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The impurity excitations characteristic of a single impurity in a paramagnetic induced-moment crystal
are examined in a model that includes second-neighbor exchange coupling. All ions are assumed to
have a singlet crystal-field ground state and singlet lowest excited state. Earlier calculations assuming

only nearest-neighbor exchange found only s-type impurity modes in this type of system. It is found
that the more complex exchange coupling may introduce additional s-type modes, and under certain
conditions modes of other symmetry may appear. The qualitative results are valid for a general lattice.

I. INTRODUCTION

Recently, Wang and Cooper' discussed, using
Green's-function theory and a pseudospin formalism,
the collective excitations that may 1.e characteristic
of pure induced-moment crystals. For the crystals
in the paramagnetic phase, these excitations are

magnetic excitons. More recently, several pa-
pers '" examined the changes in the magnetic exci-
ton spectrum when substitutional impurities are
placed in a paramagnetic induced-moment system.
The problem has also been discussed for the sys-
tem in the ordered phase. In Ref. 3, hereafter
called I, it was found that only s-type impurity
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modes may appear in the paramagnetic system con-
taining a single isolated impurity, under the as-
sumption that only nearest-neighbor exchange cou-
pling was important. This remained true regard-
less of lattice symmetry, as long as the only ex-
change coupling that changed upon substitution of
the impurity was the coupling between the impurity
and its nearest neighbors.

The present paper extends some of the work of I
to second-neighbor exchange coupling. It is found

that impurity modes of symmetry other than s(p,
d, etc. ) may appear; this occurs when more com-
plex exchange coupling near the impurity is con-
sidered and/or the deviation of the expectation val-
ue of the s component of pseudospin, from the host
value, is important on lattice sites other than the
impurity site itself (this expectation value is a mea-
sure of the population of elementary excitations at a
given site at a given temperature). We note that in
I only the deviation at the impurity itself was in-
cluded. A significant difference between the s-tyye
modes and those of other symmetries, when examin-

ing the single isolated impurity problem, is that the

s-type are the only modes in which the impurity it-
self participates. In the other modes, owing to

symmetry considerations, only various neighboring
ions have nonzero amplitude. This difference can
manifest itself, for example, in inelastic neutron
scattering, where modes that involve the isolated
impurity have both coherent and incoherent con-
tributions to the scattering cross section, while
those that do not involve the impurity have only a
coherent part ' (the coherence is a result of scat-
tering from two or more equivalent spins). We

comment here that the farther neighbor effects can
be important in induced moment crystals, since the
rare-earth ions that form the magnetic lattice char-
acteristically have long-range exchange coupling.

As in I, we employ the thermal Green's-function
method in the random-phase approximation (RPA},
using the yseudosyin formalism, and consider only

two-state systems for both the impurity and the

host ions. Only the single isolated impurity prob-
lem is studied; as shown in Ref. 5 for fixed-mo-
ment systems and discussed in Ref. 7 for a para-
magnetic induced-moment system containing va-
cancy impurities, the single-impurity solution
forms the basis of a solution, linear in the impurity
concentration, for small impurity concentrations.
We assume that the crystal is in the paramagnetic

phase, which may include not only those systems
that remain paramagnetic down to zero tempera-
ture, but also those systems, above their critical
temperatures, that order at low enough tempera-
tures. Exchange coupling to second-nearest neigh-
bors is included in the calculation, and for sim-
plicity we assume that all pure crystal exchange is
ferromagnetic. The effect of even further-neigh-

bor coupling is discussed briefly. Also we assume
that the expectation value of the z component of
pseudospin (S;) differs from the pure host value
(S') only on the impurity site i = 0 and on the near-
est-neighbor sites i = 5. Extension of the detailed
calculations to exchange coupling between ions fur-
ther apart than second neighbors and/or to devia-
tion of (S;.) at sites further from the impurity than

its nearest neighbors only greatly increases the
algebraic complexity but does not significantly add
to the discussion of this paper. A general lattice
is considered in the initial calculations, and the
linear chain is discussed in detail as an illustration.

As expected, additional impurity modes appear
when further-neighbor exchange is included. We
find that, in our model, modes of other than s sym-
metry may be present when (S6)—(S') is nonzero
and/or when the strength of the exchange coupling
between two host ions in the vicinity of the impurity
differs from the pure crystal exchange strength for
the same pair of ions. Impurity-ion-host-ion ex-
change itself produces only s-tyye modes, as in the
case of only nearest-neighbor exchange. We do not
expect (S',) to be very much different from the host
value (S'), so that impurity excitations that depend

only on the parameter (S5) —(S') will not be expected
to be localized. In contrast, the deviated host-
host exchange parameter may in principle be quite
different from the unperturbed value and may pro-
duce local modes. Certain experiments, for ex-
ample neutron scattering and Raman scattering, can
detect the number, the energies, and the sym-
metries of the modes (this is true even in those
cases where the quantitative results cannot be ex-
amined precisely due to the large number of param-
eters and/or lack of knowledge about the system}.
This information may then be used to learn some-
thing about the exchange mechanisms in both the

pure and the impure systems. For example, if the
exchange coupling is of the Ruderman- Kittel- Kasuya-
Yosida (RKKY) type, as in the rare-earth metals,
we would expect any local modes to be only of s
tyye, since the presence of the impurity may signif-
icantly affect the coupling between two host ions
only if the coupling mechanism involves a path via
the impurity (superexchange). In contrast, if a
type of superexchange is important, local modes of
non-s-tyye may be expected in certain systems.

In Sec. II we present the Green's-function for-
malism for a general lattice, and solve the equa-
tions iri detail for the simple case of a linear chain.
The results are discussed in Sec. III.

II. GREEN'S+'UNCTION FORMALISM

The Hamiltonian for an induced-moment sys-
tem with zero applied external field, where only

nearest-neighbor exchange between sites separated
by vectors 5 and second-nearest-neighbor exchange
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between sites separated by vectors 8 are consid-
ered to be important, is

I'.i -~~&i,i.» ~
' J&,e

-~ & g, s.e 7 s J g.e

{2.1)
V„ is the single-ion crystal-field potential at ion I,
which gives a singlet ground state and a singlet ex-
cited state separated by energy gap 4 for a host ion
and 60 for an impurity ion. The 4, are the ex-
change coupling parameters for the various pairs
I, m, which are positive for ferromagnetic exchange.
We assume that in the pure crystal the nearest-
neighbor exchange has the value 8, and the second-
nearest-neighbor exchange the value g z. When we
substitute an impurity at site l = 0 the following ad-
ditional parameters are needed:

$3' couples two ions, second neighbors to each
other, that are both nearest neighbors to the im-
purity; this additional perturbed coupling cannot be
ignored in a calculation that considers second-
neighbor coupling to be important. Equation (2. 2)
is sufficient for many crystal lattices. In certain
other crystals, for example hexagonal, an addi-
tional perturbed coupling, that between two ions
that are nearest neighbors to each other and also
nearest neighbors to the impurity, must be in-
cluded. This latter term will lead to qualitative
conclusions similar to that form the $3 coupling,
so for simplicity we will not include it, and dis-
cuss in detail only crystals that fall in the first
category. The Hamiltonian (2. 1) becomes

~ ~el ~1~ ~l J j+e ~a~ ~g ~l+e
S,5 $,8

—2(4,'-8g)K gg Ze -2(Qa-&a)Z Jo' Je
5

-(&a'-&a) ~ Je Se {2 8)
5e

(5+8 5')

We assume the system to be in the paramagnetic
phase; it can be shown that the criterion for order-
ing in the pure crystal (vanishing of the k = 0 mode
energy, assuming a second-order phase traneitIon)
is that

(2.4)

where n = (0, )8'~1,) is the matrix element of J' be-
tween the crystal-fieM ground and excited states
on a host ion, and s& and sz are, respectively, the
numbers of first and second neighbors to an ion.
Equation (2. 8) may be expressed in pseudosyin
operators, ' where, for the two-state systems, we
define 8', =-,' or 8', = ——,

' for ion / in the crystal-field
ground state or excited state, respectively. We
obtain, analogous to the correspondigg expression

&= —&ZSg —(ho- rh, ) So —4$~ na 5~ S~)S~),e
l, 6

-4ean'&S;S"„, 8-n(g, 'n, a, n) g S;S,*
g,8 5

- 8 n(ga no ga-n)Q SeoSee

-4 (8"-8 ) 5 SS;,, (2. 8)

where eo is the off-diagonal matrix element at the
impurity site.

As in I, we require the Green's function

g;((f) = ((S;(t)+St(t)l S)(0)))

= —ie(f) &[Sg(f)+S;(f),Sg(0)]), {2.8)

+8n(&ino-&i n) &~ t:(1+ac)go) «»

+(1+ao)g'„a,o]+8 (8a o-Jan) C[(1+a ) go) ~

+()+ao)ge~~~o]+» (&a -&a)

(1+ac)ger &ie =&«(1+a&) &r ~

5,5'
(5+8=5')

(2. 7)

We have defined the yarameters a, = (S;.)/(S*) —1,
8,=(Z+~, )/(v~, ), b,'=(Za-~a)/(~, (S')), and ~„
is the Kronecker h. Since g, may, in general, be
nonzero for i arbitrarily far from the impurity,
Eq. (2. 7) will lead to a set of N equations in the N
unknowns g, , (for i on any of the N ions in the crys-
tal). The yroblem is made soluble by taking o, oO
only for i confined to a certain small region near
the impurity. In I we assumed a, = 0 for i wO, i.e. ,
restricted this quantity to the impurity site only;
this should be a good approximation when only near-
est-neighbor exchange coupling is considered.
Reference 9, for example, calculates the quantity
anajogous to g5 for fixed spin systems with only
nearest-neighbor exchange and shows it to be small.
For ayyreciable further-neighbor coupling, one
should expect g, to be important on some of the
host sites near 'the impurity. In the present work
we take g&=0 for F40, |) and therefore must deter-
mine self-consistently, the quantities go and g5
(note that awing to symmetry all ae are the same).

chere e(t) is the unit step function and the angular
brackets denote the thermal average. Using stan-
dard procedures, we write the equation of motion
for g«(t), decouple in the RPA, Fourier-transform
to energy space, and obtain a set of algebraic equa-
tions for g«= g«(E):

8,'g,', +84~ ,n'(1+a, ) &~ g'...)+ 88a n (1+a;)Z g;,e g
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This should be a good approximation for our model,
and in any case will be sufficient to illustrate the
appearance of additional impurity modes. The set
of equations becomes, after separating the impurity
parts from the pure crystal parts, with [g'=(&+&)/

(vz ) and h'= (Z'- 2)/(~ (S'&),

8'Q', g+88, n'&~ Q';.. .+885n +Q';.[g, g= &gg+Pgg
6 e

(2.8)
where the perturbation term P;, is

p~, =&n[(&+a)g -g]+(g'-g[)g;& —&~ vn&o[g&) 8'.sr+gsGg] sI
—881 n o5~ md. ;5. ~Q„5 I 8$5n n5 7~ bg5. QQ. 5 g

-Bn(gg n[)-ggn)I

6' 8

"&~ [(1+[g5)Q5g &;5+(I+o[))Q51&;5] —8n(&5n[) —&5 n) +~ [Q[)g &g5+ (1+gg5)Q5g ~g[) 1

—8 n (g5' -8,) (1+gg5) Z Q', , Lg5. . (2.9)
6 6'

(6+ti~6')

For P, , = 0, the solutions to (2. 8) are the pure crys-
tal Green's functions g „which have the form

(g+ ~) (Ss& egl [I-I)

„-
z'-z'-'

where the sum is over the first Brillouin zone,
Z„-'= ~'-8zg gg n'~ (S*&y-,"'-8z,g, n'~(S'&yl" ls
the dispersion relation for the pure crystal, z1 and

z3 are the number of first and second neighbors,
respectively, yf[') = &5eg '/z„and y„-'5) = Z5e' '/z5.

We can now express g'„ in terms of 8,;:
Q', , = (1/h (S'&) Z Q',

g (h b.g g
+Pg g). (2. 11)

Qving to the restrictions on the spatial extent of

j in Pg 1 for our localized perturbation, (2. 11) is,
when j is restricted to the perturbed cluster of
ions, a finite set of algebraic equations in the un-
1Qlowns ~il ' We obtain, w1th &1=pl no —4y a,
Kg=pa Qo-$3 Qy aIld 63 =gp Ot -$3 Qy

g&&')5'I=glo+~l)8~II+(g' g[[)[)l+Dggl 8~ &IIBII) g + Rl +&8]"[))I)
6 9

—8nag (1+[g5) +~Q, 5 Q[')g+(1+[I[))Qg5HQ;g -Bne5 S~Q5g5 Q5g+(1+n[g)Q555~Q5g'
6 6 8 e

I

[g5 ~ Q15'Q5'+5, g ~2 n5 ~Q '5Q5+[g, g 5 ( +5) ~ 5'Q5g '
6,6' 6,8

(6+8=6')

(2. 12)

Vfe note here that the lattice has not yet been speci-
fied If this expression 1s symmetric with respect
to the nearest-neighbor indices 5 and also with

respect to the second-nearest-neighbor indices 8,
only 8-type impurity modes may characterize the
system. In I the corresponding expression dis-
plays this symmetry, as can be seen by examining
the expression T« in that work for the case (Sg&
—(S') = 0 for i 4 0. In the present work the required
symmetry holds only if the last three terms in

(2. 12) are zero; in that case the inclusion of sec-
ond-nearest-neighbor coupling introduces only
additional s-type modes. Modes of other symme-
try may appear only if gg5gg 0 and/or c5' o0.

A detailed analysis requires that the lattice be
specified. As an illustration we examine the sim-
ple ca,se of a linear chain. The perturbed cluster
consists of seven ions, the impurity at site 0, the

nearest neighbors at Q= 1, 2, the second neighbors
at 8 = 3, 4, and the third neighbors at sites v = 5, 6.
The ions at sites y are included because these sites
are coupled to the sites 5 by the host exchange cou-
pling 43, so that the former are directly affected

- by the perturbed population term g,. The impu-

rity exchange parameter gg collples the lmpurlty

with site 1 and with site 2, the parameter 8z cou-
ples the impurity with site 3 and with site 4, and

parameter 43' couples site 1 with site 2. The set
of equations (2. 12) thus has dimensions Vxv; it
can be written in matrix form

(2. 18)

Xg g
= Sg Qg g (1+ag)/8 (S') .

The solutions are
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O =E'(-1) '"" «' X .
det )M I

(2. 14)

The impurity modes are found at the poles of g,',
that are not common to the pure crystal, that is,
at the energy zeroes of the real part of det )M ).
To facilitate the separation into the various modes
it is usual to transform from a basis of individual
lattice sites to a new basis consisting of linear

combinations of the sites, these linear combina-
tions having the symmetries of the various impurity
modes. We use group theory to find the unitary
matrix v, where M'= g 'Me is block diagonal.
det iM' [ (=det ~

M )) is then easily factored, and
equating the various factors individually to zero
allows determination of the impurity mode energies.
We find for g

2-x /a

2 0 0 0 0 0 0

0 1 0 0 1 0 0

1 0 0-1 0 0

0 0 1 0 0 1 0

0 1 0 0-1 D

0 0 0 1 0 0 1

(2. 15)

:0 0 0 1 0 0-1
e has four 8-type basis vectors and three p-type vectors. M is then

I
Mpp

Mgo

I
Mgp

I
Mp~

I
Mgj

I
Mgg

I
Mgg

Mo3 0

M)3 0

Mgs 0

0 0

0 D

0 0

M3g

0 0 0 0

0 0 0 0

0 0 0

M44 M4s M4e

M,'4 M,', M,',

(2.16)

0 0 0 0 Me4 Mes Mee

where

(2. 1V)

Moo= 1+ b boo+(n/n)(21P1 ~os+225:260e),

Mlo=&2&&~o5+(n/n) [52~1'+pl(~oo+~oe)]],

Mao= ~2 (h ~oe+ (n/n)(21/22 pÃ1 + 28a ))~

Mso ~2(~~2S+ (n/n) [ Pl(~08+ ~KB) + ~2(805+~36)] )t

Mol ~2 (o/n) (P1~00+P2 ~0~5)

Mll= 1+(n/n) [2 pl~o5+P2 (~0~0+~08)]

M21 (n/n) (2Pl~0 P82+~1 )s

Msl (n/n) [2P1~23 P2 +(~08+~16)]t

M,', = v'2 (n/n)(p, 900+&,osn805),

M12 (n/n) [2P2~05+ lo sn(~00+~08)]

M,', = 1+ (n/n)(2p2808+81oen 81 ),

M32 (nln) [2pa~as + ~105 n (~08+815)1,

Mos ~2 n ~2 &5~05.~

Mls n ~205(800 08)t+

Ma3= &z06 ~i'~

M„=1+n 8205(908+816),

M56=1 —(n/n) pa (~00-~08)i

Mes= (n/n)P2 N-05 ~23)
I

Me4=
I

M4s =

IMss=
I

Mes=
I

Mce=
I

Mse=
I

Mes=

—(nln) pa' (Boe -91"5),

n ~1&5(~00 ~08)~

1+n &so'5(90~5-has)

n &1&5(~oe-816)

n &2~5 (~oo -Boe),

n&aoe (~os -823).

1+»aos (~08- ~16)~

We have defined the additional parameters pz
=&lno(1+llo) -&ln~ Pa=&ano(1+00) &an~ Pl-
=&lno(1+F5) -&ln pa'=&a'n(1+os) -&an
= (h 0

—8 )/8 (8'), n = 8n /8 (8'). The quantities
8~, g&, and g~ can be expressed in terms of gpo
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and 806 as follows:

9o»= (st &t/ss&s) (& [I
—(E —4)v9 /(S')]/8z, 8, o.

' -9',;),
h 9oo/8' e —(8, /8 s) (Bo~s+9s~»), (2. 18)

92 —& ~i9se»/«s&s+ (~&&&/~a~ 2)9&

We see that a quantitative analysis of the results
requires numerical calculation of the pure host
Green'sfunctions&8ooy ~ooy ~23' ~xey and ~se ~

det)M') can now be expressed

det~ M'
~

= detD, (E)&&det D»(E), (2. 19)

where D, (E) is the 4&&4 matrix in the upper-left-
hand corner of (2. 16) and D»(E) is the 3x 3 matrix
in the lower-right-hand corner. Equating det D,(E) to
zero determines the four s-type impurity modes;
if 0,=0 orQy three s modes appear, that is, one
new s mode in addition to the two s modes char-
acteristic of nearest-neighbor-only exchange cou-
pling. 3 The p-type modes are determined by
detD» (E) =0. If c,= 0, then p,

"=ca', and we get

detD» (E)=1 —(a/o. ) es (9es-9s»), (2. 20)

the zero of which describes one p-type mode on the
sites p =1, 2. Obviously if we also take c2'=0 there

are no, p-type modes. If o, 0, then all elements
in D» (E) are in general not zero and not unity, so
that three p-type modes may appear, each of which
are admixtures of the three p-type basis vectors.
We discuss the linear chain, and the general case,
in more detail in Sec. GI.

III. DISCUSSION

The work of Sec. II shows that, when second-
nearest-neighbor exchange coupling is considered,
several new s-type impurity modes, in addition to
those found in I for only nearest-neighbor exchange,
may appear in our model. Also, Eq. (2.12) indi-
cates that impurity modes of other symmetries,
modes that involve only the neighbors of the impurity
and not the impurity itself, may appear only when o, 4 0
and/or 4s'4 gs. This is true for a lattice of general
symmetry. The results can be explained by invok-
ing a semiclassical picture of precessing pseudo-
spins, similar to that used in Ref. 10 for a fixed
spin system. To facilitate the detailed discussion
we specify the lattice; the unrealistic case of a
linear chain is chosen for simplicity. As shown in
equation (2. 5), the exchange Hamiltonian involves
products of only the x component of pseudospin, in
contrast to the dot product of real spin char-
acteristic of the Heisenberg model of an ordinary

t.4- ~
0&& E~Emin.

0.9

0,8-

0.7
;.245)

0,6

0.5 (.4S7;49')

0.5-

I

I.O 2.0 3.0 4.0 5.0 6.0 0.2 I gs I I gt I

-575 -57($ -5.60 -5.N -2.05

pIQ. 1. Energy of local p-type mode in the linear chain lattice, at zero temperature, as a function of parameter
g~'~g2-1. The curves are labeled by representative values of the pure crystal parameters (4z& 4 &e /a, 4~28 2O, /z).
(8') = (Pq)= (S$)=s is taken as an approximation. (a} Local modes above the host band, where E ~ is the upper band
limit; (4) local modes in the energy gap below the band, where E~« is the lower band limit. The pure crystal Green's
functions were calculated numerically using a simple series approximation that is valid only outside the host band.



IMPURITY EXCITATIONS IN INDUCED-MOMENT SYSTEMS. . . 4937

ox'dered magnetic system. Consider the g z cou-
pling between the impurity and its nearest neigh-
bors, in the. linear chain, for the case @6=0. For
the p-type motion, the spins at sites 1 and 2 are
180' out of phase with each other and the net pre-
cesslQg fleM Rt the impurity site ls zeroy the im-
purity then does not participate in the motion, and
the cz-dependent term in the Hamiltonian is zero.
Thus in our model we cannot have a p-type impurity
mode dependent on e&. Similar reasoning applies
to the exchange coupling 9z between the impurity
and its second-nearest neighbors. An impurity
mode, whose energy must depend on perturbation
parameters such as && or &3, therefoxe, cannot
have P symmetry if only host-impurity exchange is
considered. In contrast an s-type mode does de-
pend on these parameters, Now consider the cou-
pling 4 q' between the sites 1 and 2, andtheperturba-
tion parameter sz'. In a p-type mode on these two
sites since the two coupled px'ecessing pseudosplDs
are 180' out of phase, the mode energy is strongly
dependent on &3'. ID that case we may have one
p-type mode. We now examine ver 0 (but let c~" = 0
for clarity). A p-type mode on the two nearest-
neighbor sites can now exist owing to the exchange

ga since its eDergy will depend OD the Qukntity
06. Two other p-type modes may appear on the
pairs of sites 3, 4 (second-nearest neighbors) and
5, 6 (third-nearest neighbors), which are coupled
to sites 1, 2 via the couylings ~& and 43, respective-
ly, since modes of this type will also depend on 0, .
These three P-type modes all have the same sym-.
metry, so that the resulting three modes will in
general be admixtures of the above, as is shown by
the appearance of the Sx 3 matrix D~ (&) (the four
s-type modes will also be admixtures). We also
note that all four s-tyye modes may appear only if
0640, even if cl, cz, and%& are all nonzero. The
energy of an s-tyye mode on the sites 5, 6 depends
on the impurity yarametex's only through o, . The
arguments above can easily be extended to other
lattices, where, in addition to p-type modes, d, f,
etc. may appear, but only if s~ 0 0 and/or cr, 40.

The modes, when they exist, can be either local
or resonance modes, depending on the values of
the various perturbation parameters. Local modes,
which may appear above the host band and/or in the
energy gay below the band, are in general easier to
detect and measure. Experimentally one can usual-

ly detect the number of modes and their energies
and symmetries, even in those cases where the
large number of parameters and/or lack of a suit-
able model for the given system make a more de-
tailed interyretation of the results difficult. In
this way useful iIlformRtlon may be obtRlDed Rbout
the system even in adverse situations. As an ex=
ample, suppose a P-type local mode were detected.
O„which is not an adjustable parameter but is a
self-consistently determined quantity depending on
other perturbation parameters, will in general not
be expected to be large enough to cause, by itself,
an impurity mode to become localized. In contrast
the parameter &3' can, inyrinciple, be large, so
that the local mode would be due to a large dif-
ference between 43' and. 43. Figure 1 shows the
energy of a local p-type mode in the linear chain
lattice as a function of 42 /ga —l, for zero tem-
perature in the approximation (S')= (So) = (S',)=-,'.
Modes both above the host band and in the gap be-
low the band are shown. W'e recall that g 3' couples
two host ions in the vicinity of the impurity; there-
fore the detection of the p mode may give informa-
tion about the mechanism, or the relative imyor-
tance of various mechanisms, of exchange couybngs
in the crystal. If the coupling is of the RKKY type,
as in the rare-earth metals, we would not expect
gz' to be as large as it may be if superexchange via
the impurity site (or via ligand ions near the im-
pui lty whex'8 the outex' elec'tx'on wRve functions
can be greatly altered owing to the presence of the
impurity) is the important mechanism. The de-
tection of the local p-tyye mode would favor the
superexchange model.

%'8 have discussed in detail only exchange cou-
pling to second-nearest neighbors. The qualita-
tive ax guments can be extended to further-neigh-
bor coupling, as can be most easily seen in the
semiclassical plctux'8 discussed above» IQ coQ-
elusion we comment that the results of this paper
may be valid only for small impurity concentrations,
where only effects linear in the concentration are
imyox tant. At somewhat larger concentrations,
pair effects become important. These effects need
to be considered on their own merit; for example,
a P mode deyending on impurity-impurity cou-
pling appears for impurities that are themselves
nearest neighbors, ' ~ and this p mode has Donzero
amplitude on the impurity sites.
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It is shown that in systems with single-electronic ground states the simultaneous diagonalization of a

hyperfine, as well as an exchange interaction, gives rise to an interference between these two effects

which has important consequences on the properties of such a system. It is found, for example, that

long-range order is now possible for values of the exchange below that previously thought necessary.

Calculations are presented for the magnetic moment, heat capacity, susceptibility, and collective modes

for a system involving praseodymium.

Considerable attention has recently been given
to rare-earth systems whose electronic ground
states are singlets. There are a variety of reasons
for such interest, including the successful demag-
netization~ of hyperfine-enhanced nuclear systems,
the appearances ~ of electronic ordering above a
critical value for the exchange interaction, and the
possibility ' of observing cooperative nuclear or-
dering in systems with exchange interactions less
than this critical value. Furthermore, inelastic-
neutron-scattering experiments suggest that the or-
dering infcc Pr and Pr3Tl, and possibly dhcp

Pr, "'"does not exhibit the expected soft-mode
behavior.

Recently, Katila etaL ~ have reported calcula-
tions on an electronically ordered singlet-ground-
state system within the molecular-field approxima-
tion (MFA) including the magnetic hyperfine inter-
action which show a surprisingly large hyperfine
enhancement of the electronic moment at low tem-
peratures. Since crystal-field effects which tend
to destroy the ionic moment are comparable in
size with the exchange forces which have the op-
posite effect, the calculation in Ref. V suggests
that the hyperfine interaction may play a crucial
role in determining the magnetic properties of
these systems. %e report here an investigation of
the properties of such systems, including the heat
capacity, the magnetic susceptibility, and collec-
tive modes. In particular, it will be shown that
the hyperfine interaction can induce long-range or-
der even when the exchange interaction between
ions is well below the critical value generally con-
sidered necessary for such ordering. Further-
more, under certain conditions the temperature
at which ordering occurs is much higher than that

associated with indirect nuclear coupling, a result
that has recently been observed in PrCu, .

Let us consider a system characterized by the
Hamiltonian

+arvstal field ++exah

+I~i'Q ' Ji+g„g„H ~ I~), (1)

where the terms in the summation are the hyperfine
interaction and the electronic and nuclear Zeeman
terms, respectively. We shall assume that the
crystal-field states consist of two low-lying singlets
separated by 4. For the moment, we shall also
assume I= —,', so that the unperturbed nuclear eigen-
states are }+-2). Our basis states, therefore, con-
sist of the four products of the crystal-field states,
and these nuclear states which we shall write as
i y, m). We shall also adopt the usual assumption
in the induced-moment problem that we can define
our coordinate system such that the matrix ele-
ments of J have the form

(y, m
~

J'
~ y ', m') = o,li„,(l —5 „,)|i„~ (2)

and that the magnetic field can, in fact, be applied
along this g axis.

It is convenient to introduce the following param-
eters:

44(0)n q (J' ) 2@n

g~ p, gH 2ggp gQH
t

If we apply the molecular-field approximation to
the exchange interaction, the resulting 4&4 matrix


