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It is known that in a well-defined high-spin limit, the properties of systems of quantum spins
approach those of a corresponding system of classical spins. In this paper we give a method for
computing corrections to this limit. We give the first nontrivial corrections to the partition function and
spin-spin correlation function for a linear chain of Heisenberg-coupled spins. We briefly discuss possible
comparisons with experiment.

I. INTRODUCTION

Several materials have been found in recent years
which behave magnetically like one-dimensional
crystals. These crystals consist of chains of
strongly coupled spins with a much weaker inter-
chain coupling. At low enough temperatures the
weak interchain coupling produces a phase transi-
tion to a state with three-dimensional long-range
order, but above this temperature these systems
appear one-dimensional in character.

One such material is (CH~)~NMnCl~ known as
TMMC. There is experimental ' evidence that
TMMC behaves as a, one-dimensional system down
to j. K. This system appears to be an isotropic
spin- —,

' Heisenberg antiferromagnet. Birgeneau et
uE. have found that Fisher's solution of the classi-

cal Heisenberg chain fits the measured staggered
susceptibility of TMMC from T= 1 'K to 7=40'K.
This classical model was also used by Dingle et ul.
to fit susceptibility data for TMNC.

It is surprising that a classical spin model can
be used at low temperatures. One might expect
quantum effects to be important when kT is smaller
than the energy required to change the state of a
single spin, that is, when ZS/kT & l, where Z is the
Heisenberg coupling constant and 8 is the magni-
tude of the spin. Th1s parameter ranges between
l and 50 for TMMC at temperatures between 40 and
1 K.

In this paper'we describe a calculatj. on of the
first nontrivial quantum correction to the classical
Heisenberg model. The method we describe is a
general one suitable for high-spin systems and
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lattices of any dimensionality. It appears to be a
series expansion in the parameter 1/S (S + 1), al-
though we have not been able to prove this. It is
in this property that our method is different from
previous methods' which do not seem feasible for
high spin systems.

The actual computation of corrections requires
knowledge of the exact solution of the corresponding
classical model and therefore can be carried out
only for one-dimensional spin systems. Even in
this case the calculation is so long that we cannot
give the details here. We shall give the method and
the results. The complete calculation can be
found in the thesis of Harrigan' which is available
upon request.

II. METHOD OF COMPUTING QUANTUM CORRECTIONS

We take the Heisenberg Hamiltonian in the form
3

3C= ——Z 5~ J()S)s~-gy, sg R' Sq,

where J,'& is the exchange coupling between 8, and

8&, the 0.th components of the spin operators on
lattice sites i and j. g is the gyromagnetic ratio,
p~ the Bohr magneton and II an external magnetic
field. The classical Heisenberg model is obtained
by replacipg the quantum spin operators 8; by
classical unit vectors X, . The classical model is
a high spin limit of the quantum model in the fol-
lowing sense. Millard and Leff' have shown, as
suggested by Fisher, "that if one takes a limit in
which S (the maximum projection of the quantum

S,) becomes large but holding 8,&
S and gs fixed,

then the quantum and classical partition functions
are related by lim~ „S Zo=(2v) Zc. This re-
sult suggests that we look for an expansion of Z@
{or other quantities of interest) in which the first
term is the classical Z~ and higher terms vanish
something like 1/S" at fixed 8,&

S and gs.
In order to accomplish this it is convenient to

define spin states which are as "classical" as pos-
sible. The state I 8, p) is defined to be such that
the spin "points" in the direction of the polar an-
gles (8, p). More exactly, if X is a unit vector in
the direction (8, P), then the state I 8, p) is defined
by

x sge, y)=s~e, y). (2)

It follows that the expectation value of the normalized
spin operator, t= 5/S, inthe state Ie, p) is given

by

(e, y ~t
~

e, y) =X. (3)

These states are used by Wigner' in his con-
sideration of the classical limit of certain angular-
momentum matrix elements. He has shown that
the normalized states can be written

where I p, ) is an eigenstate of S~ corresponding to
eigenvalue p, and the D ' are 2S+ 1 dimensional
representations of the rotation group. [The third
Euler angle is not important for the (S, p) elements
of D' '. ] Using Eq. (4) and either the group or-
thogonality relations or the explicit expressions'
for the D~ '„(8, P), it is easy to show the trace of
any operator A can be written'6

+$
TrA. = 3 (p~A~ p)

dP sine de (8, P A~ 8, P).
0 0

(5)

(e, y~~f'~" ~t+ e, y) s- n even

-S-'"+"" odd

We have explicitly computed all quantities of this
form up to n = 6. For our calculation of the first
nontrivial quantum corrections we shall need them
to n = 4. These are given in the Appendix.

Now suppose we want to compute the large 8 be-
havior of trace A(t), where A is a function of the
normalized spin t. Equations (3), (5), and (6) sug-
gest that we write t= X+ it and. attempt to expand
A about X in powers of ht. From Eq. (5) the first
term in the expansion will be just an integral of the
classical function A.(x). From Eq. (6) we would
expect higher order terms in the expansion to van-
ish with increasing powers of 1/S.

To apply this idea to systems of many spins we
use direct products of single spin states. Let
l&~) = Ie, , P,) define the state of the ith spin. Then

we define a normalized N spin state IA) =
I f1~ ~ ~ &N)

=
I ei, $~)e I ea~ Qa)' e I 8N, pg). Set dA

=II;., sine, de, dg, . Then Eq. (5) generalizes to

2S 1TrA(t„. .. , tN)=( —
[ ) (&(A(&)d&. (7)

4

Jf we put 8;= St, =S(x, +Et,) in the Hamiltonian (1),
we can write

A property of the states I8, p) which is important
in this paper is that the dispersion of the normal-
ized quantum spin operator t in these states is
small for large S, so that these states are nearly
classical for large S. This is most easily seen for
the state IO, 0) along the z axis. If hf=t
—(0, 0iti0, 0)=t —X, then one easily finds
(0, 0I(~f') IO, O)=0 and (O, OI(&t") IO, O)
= (0, 0 I (ht") I 0, 0) = 1/2S. For an arbitrary state

I 8, P) the dispersion of t depends on 8 and P, but
the 1/S dependence remains. We can also consider
higher order dispersion. We can argue, in general,
that
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+c+y +

where

Xc= ——EZ(&(~S )X(X~,2f,g a

X, = —F~ 5 (J''()S X', +gSPeZ') rM),
a

X))= ——Z +~ (&~g S ) bP, rM~ .
2$,J a

(Sb)

(6c)

(6d)

We have checked these calculations by comparing
the high-temperature limit of this method with the
high-spin limit of the Rushbrooke and Vfood' '
high-temperature expansion.

m. RESULTS

If we set K=PS(S+I)/kT and 1.(K)= cothK-1/K
then our results can be written

ln(2S+1)"
o(~)n,

g= Tre-~,

(8, ~ S„,)= Z ' Tr(e "S, ~ S,+,).

(Qa)

We will use the partition function to illustrate the
method. Using Eqs. (7) and (6) we can write the
partition function as

r
g Q N(Lg+Xg+I)Iep) Q gQ

X~ is the corresponding classical Hamiltonian. $C,

and X)) are, respectively, linear and quadratic in
the deviation b,t, from the classical X, .

We are interested in computing the partition func-
tion and the spin-spin correlation functions given by 6 X'

(((; sg„)= 8 (8 + ) )
I
t. '(Ã) +

il. r-' iL, '

6 dK 6K 4K

(-I '~(l —3L/K)
3

t' 1 1 )(dl, '

I t+1
g Lrri

6K 6E

K() 1~I,(K)
(K)

L,m(K)~(12S(S+1) K

Since K~ commutes with X& and X& we can expand
the exponential operator in powers of 3.', +$C& to ob-
tain

O.e

0.2

g + e83!| Q ~ ~ n Q dQ
4n ) „.0 nt

(10)
The zeroth-order term is the classical partition
function and higher order terms generate correc-
tions in powers of 1/S. If we want to compute cor-
rections up to order 1/S we should, in view of Eq.
(6) and the fact that X, is linear in nt and X3 qua-
dratic in rM, keep terms in Eq. (10) where the sum
of the subscripts is no greater than 4. That is, to
order 1/S terms of the form Xi Xi X)( X)
X„X))X&,..., Xm will contribute. The diagonal ma-
trix elements of these terms can be computed us-
ing Eq. (6) and the matrix elements listed in the
Appendix. We must then integrate the result over
all angles Q. These angular integrals in Eq. (10)
can be reduced to integrals over certain multiple-
spin correlation functions of the corresponding
classical model. Therefore, the corresponding
classical model must be manageable if we are to do
these calculations. For this reason, the results
given from here on apply only to the isotropic
nearest-neighbor chain in zero external field. For
this system we have used the above method to com-
pute, to order 1/S, the quantum corrections to
the free energy and the spin-spin correlation func-
tion. The 1/S corrections can be absorbed ' into
the classical result by replacing ZS by JS(S+1).
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FIG. 1. Internal energy of a ferromagnet: (A) classi-
cal limit; (8) corrected classical (our result); (C) high-
temperature series of Rushbrooke and Wood.
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The internal energy and the heat capacity can be
found from Eil. (11)by the usual differentiations
with respect to temperature. Susceptibilities and
staggered susceptibilities can be found from Eq.
(12) using the usual sum rules" relating susc pt'-
bilities and spin-spin correlation functions.

To show the character of our results we have in-
cluded a number of graphs of internal energy and
both staggered and normal susceptibility. On each
graph three curves are shown, the classical re-
sult A), our result (8), and the high-temperature
series of Rushbrooke and Wood (C). In all of the
graphs the three curves agree at high temperature
as they should. The Hushbrooke-Wood'7 series
xs exact xn I/8 and contains six terms in powers
of 1/T for the susceptibility and five terms for the
internal energy. Vfe have truncated the series be-

for
yond these terms and numerically evaluated the em
or various 7 on the computer. Our results are

to second order in 1/8 but the T dependence is more
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FIG. 3, Susceptibility of an antiferromagnet: {A) clas-
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i; 8 corrected classical (our result). (C) h t-
emperature series of Rushbrooke and Wood, Xo Ãg

&g

xp, &6 t J'),

012

I I I I I I

0.4 0.8 I.R I.S 2.0 2.4

+
y) «O.S

CII

~ -0.8

-I.O

-0.2—

I I I I I I

0.2 0.4 Q.S 0.8 I.O l.2

-0.4

-0.8

-0.8

-I.O0
I I I I I I

O, R OA Q.S 0.8 I.Q l.2

kT/I J I s(s+ I )

FIG 2. 2. Internal energy of an antiferromagnet: (A)
classical limit; (8) corrected classical (our result); (C)
high-temperature series of Bushbrooke and Wood.

complicated. In going from Eq. (9) to Eq. (10) we
jgh temperature expans jon

g{X«3!g)
8 3

=e ~ so we would expect our method to go bad
at low enough temperatux es. However, since we
are expanding in the difference 3C-Q~ between the
true and the classical Hamiltonian we might expect,
for large 8, our method to converge at louver tem-
peratures than the usual high temperature expan-
sions. One can see from the curves, at least for
8= —52, 10, that the two terms of our series appear
more accurate at low temperatures the f' t
in the Rushbrooke-Wood series. One can find, in
many of the graphs (Figs. 1-4), ranges of tempera-
ture in which curves 8 and C are nearly identical
but different from the classical curve A. Since 8
and C are obtained from quite different expansions
we take this as a strong indication that 8 and C
are accurately gmseng the quantum correct t
A xn these temperature ranges. Another indication
that the corrections are accurate in this region
comes from taking the high-spin limit of the high-
temperature-series curve C. In these temperature
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possible that the classical and quantum curves
come together again at low temperatures. In any
event, our calculations seem to indicate a quantum
correction to the classical result becoming signifi-
cant at about the temperature one mould expect.
This makes the agreement between very low tem-
perature experiments and the classical model seem
even more strange.

It is disappointing that our method will not reach
the temperatures involved in the TMMC experi-
ments. One might try to extend the temperature
range of these calculation by computing higher-
order terms in the series. The amount of labor
involved seems large enough to make this unat-
tractive. The S dependence of the terms in the
high-temperature series expansion is always in
powers of S (S+1). This suggests that the next
nontrivial correction in our method is of order
1/S . It would be better to find a way to calculate
the high spin quantum corrections which was valid
at low temperatures, that is, which avoided the
expansion involved in Eq. (10). The low-tempera-
ture problem, however, presents difficulties we
have not yet overcome.

Our present calculation could better be compared
with experiments at higher temperatures where one
would expect the classical model to be nearly cor-
rect and where the prediction of our calculation
might be accurate. There are a number of experi-
ments which are natural candidates for such a com-
parison, and we are currently engaged in this.

FIG. 4. Staggered susceptibility of an antiferromagnet:
(A) classical limit; (8) corrected classical (our result);
(C) high-temperature series of Rushbrooke and %'ood,

X,=Ng' p&S(S+1)/3k'.

ranges this limi't accurately reproduces the classi-
cal curve A, indicating that the high temperature
series is converging.

On the graphs of internal energy we have plotted
the exact ground-state energy, where known, as
a point on the ordinate. The true internal energy
curve must pass through this point with zero slope.
One can see that curves 8, neglecting the low tem-
perature regions where they are obviously diverg-
ing, have a rather natural extrapolation to these
ground-state energies.

The spin- —', staggered susceptibility curve is of
interest with regard to the experimental data on
TMMC mentioned in the introduction. The tempera-
ture range of these experiments corresponds to a
range of K"' of 0.007~kT/S (S+1)I/I =E'~0.3.
It is clear that our correction cannot be trusted
below E '=0. 4. However, the agreement of our
curve with the Rushbrooke-Wood result in the re-
gion just above this suggests there is a significant
correction to the classical curve. It is of course

S = S~R~BS'~.

& we define ht =1/S [S —(8, .Q IS I8, p)) and bt'
= 1/S [S"—(8, P l

S '
l
8, P )), then one can easily show

from (Al) that

(Al)

(8, plat'i tt l8, y)

(8 plat" ~" t t ~l8, @).
Bl

(A2)

In the primed frame (8, @) is a state of maximum
projection along the z' axis so (8, P I t '18, P) = 1,
(8, P It'*I 8, P)=0= (8, P It" I 8, P). Hence

t t'"= t"=s'"/s, t t'"= t'=s'"/s,

APPENDIX

In this appendix we show how the matrix ele-
ments (6) are found and list them up to fourth order.

To compute quantities of the form (8, P I ht ' ~ ~

dd™&I8, p), it is convenient to introduce a rotated
set of coordinate axes (x', y', s') such that the s'
axis is in the direction (8, P). Spin components in
the two frames are related by the usual' orthogonal
matrix R z according to
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td ' = t —1 = ( s' —s)/s.

These relations simplify the computation of the ma-
trix elements in the primed frame. Beyond this
we just grind it out by expanding S'" and S'" in terms
of raising andlowering operators and using their
known properties. One must consider many special
cases, find a formula fitting all of them, put these
results in (A2), and do the sums. We give here the
results of this procedure up to n = 4. The detailed
calculations are found in Ref. 13.

Let 5„zbe the Kronecker 5 and & „ the usual
completely antisymmetric tensor. Then

(8, tt(&t™bt(8, $)= —(5,-X X +i&,„X"), (A3)

where X is a unit vector in the direction (8, p):

(e, y(tt ~t'tt"(e, y)= (x-'/s)(e, y(ts ts (e, y),

(8, p (
bt t t b,t"b,t"( 8, p)

=(8, y(tt tt'(8, y)(e, @(tt'~t"(8,y}

+2(e, y tt tt" e, y)(e, y(tt'tt"(e, y)

+ (1/s) [(x'x"/s) (8, y( u' nt" (8, y)

—(8, y(bt' lt" (8, y) (8, y(bt~bt" (8, y)]. (A5)
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The conduction-electron contribution to the electric field gradients in the heavy rare-earth metals has

been calculated using a modified orthagonalized-plane-wave approach. Experimental results can be easily

explained within the confines of the model and the amount of 5d character mixed into the

conduction-electron wave function (characterized by a parameter e„) agrees well in both magnitude and

sign with previous independent methods of determination. An attempt is made to correlate the

magnitude of the 5d admixture with the d density of states in the conduction band.

INTRODUCTION

It is to be anticipated that the presence of con-
duction electrons in a metal may substantially
modify the crystalline electric fieids (CEF's) and
electric field gradients (EFG's) f rom those which
one might expect on the basis of insulator theory.
One could envisage strong screening effects which

would reduce the effective fields to below the point-
charge values. However, experimental evidence
shows that the point-charge fields may be enhanced
and even changed in sign. ' ' It is therefore clear
that conduction electrons must play an important
role in this respect. A growing experimental in-
terest in the determination of CEF's and EFG's by
susceptibility, neutron- scattering, and Mossbauer-


