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Some important thermodynamic (specific-heat and magnetic-susceptibility) and dynamic

(nuclear-spin —lattice relaxation) properties of the half-filled-band Hubbard model are calculated by a

high-temperature expansion. In the strong-correlation limit U/t &1, the expansion remains useful

through the metal-insulator transition, breaking down only when pt becomes of order unity. Excellent
agreement is found with exact calculations for finite linear chains and qualitative agreement is obtained

with nuclear T, measurements in N-methylphenazinium-tetracyanoquinodimethan (NMP —TCNQ).
Although these comparisons are made for linear chains, the theoretical predictions are made for three-

as well as for one-dimensional systems.

I. INTRODUCTION

Continued interest in the Hubbard Hamiltonian
stems from its simplicity as a physically reason-
able model for exploring the consequences of
short-range Coulomb correlations between elec-
trons in a crystal. Growing attention has been paid
to its thermodynamic and transport properties, in
anticipation of meaningful comparisons with exper-
iment. Indeed, it has recently been suggested~ that
the organic charge transfer salt N-methylphenazin-
ium tetracyanoquinodimethan (NMP-TCNQ) is a
realization of the half-filled-band (one electron per
site) case for this model, with the electron dynam-
ics further confined to mell-separated linear
chains. The present study is partially motivated
by a desire to make some well-defined predictions
of temperature-dependent quantities with which
comparisons with experiment can be made. It ap-
pears in this context that the nuclear-spin-lattice
relaxation time T& is a sensitive function of the lo-
calized versus delocalized electronic behavior, 3

which is temperature dependent in the Hubbard
model. In this paper we shall restrict ourselves
to the half-filled-band systems of a uniform linear
chain (suggestive of NMP-TCNQ) and of simple
three-dimensional lattices. The extension to arbi-
trary electron densities is currently under investi-
gation.

In its simplest form the Hubbard Hamiltonian can
be written

H= t+C&~~,,C«+ Ugn&, n&, =-H, +H„, (1.1)

where C,~, creates an electron in the (orbitally non-
degenerate) state at lattice site i, h is summed
over nearest-neighbor vectors, and n&, = C&~ Cq, ~

Since we are mainly concerned with strong corre-
lation effects, we shall only consider this limit;
in fact our method is to include the intra-atomic

Coulomb repulsion U exactly and treat the transfer
integral i by perturbation theory (with smallness
parameters f/U and f/A~T) in calculations of the
grand partition function and local electron-spin-
correlation function. We are thus working in the
regime of strong corr lations and temperatures,
high compared to the electronic bandwidth. The
"fully atomic limit" t= 0 is, of course, exactly sol-
uble for its thermodynamics4 and, because it is a
purely static situation, it does not exhibit any in-
teresting spin dynamics of relevance to nuclear re-
laxation. Earlier calculations of thermodynamic
properties include exact calculations of finite rings
and chains in the canonical' and grand canonical
ensembles, 6 and also include an approach based on
the functional integral method for infinite systems.
In Sec. II we shall compare our well-defined per-
turbation results for infinite systems with these
previous studies. For our high-temperature studies,
the basic quantities available to us are (a) the high-
temperature peak in the specific heat near U/4k'
when the electrons begin to delocalize, and (b) the
leading term in the Curie-%eisa expansion for the
spin susceptibility. The low-temperature (ksT
«U) properties of the half-filled-band Hubbard
model are known to be equivalent to those of a Hei-
senberg antiferromagnet. Thus, because our ex-
pansion is good until k&T- t «U, the results should
overlap into the paramagnetic regime of the anti-
ferromagnetic system.

The transport properties of the Hubbard model
have been rather less studied. Brinkman and Rice
have investigated the mobility of a hole in an other-
wise half-filled band in the limit t/U- 0. Bari and
Kaplan~o treat the finite bandwidth by high-tempera-
ture perturbation theory to lowest order in a calcu-
lation of the conductivity. In this work, we have de-
cided to concentrate on the nuclear-spin-lattice re-
laxation rate, which is a microscopic probe of the
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electron dynm11ics and is furthex more expex'imen-
tally less sensitive to structul al defects thRD are
resistivity .meRsurelnell'ts. AgR111 'tile llltel'estlllg
observed" bel avior of T, ln NMP-TCNq motivated
our interest in this regard. The physical behavior
which we expect foi the local electron-spin-corre-
lation time v, is {a)at high temperatures kaT» 4 tf, the system is R QGDdegeQGrate electx'oQ gas
with a hopping rate of 7,- 5/f, and (b) for ABT« ~ U, the electrons condense onto the lattic8 sites
and only spin fluctuations occur with ~,- 5/Z, where
4'is the Heisenberg exchange energy which in the
Hubbard model is 8- t~/U. Thus we expect a short-
ening of the relaxation time T& below the localiza-
tion temperature U/4ka, which is indeed ob-
sex'ved. Section DI is devoted to a justification of
these physical arguments.

II. THERMODYNAMKS

The simplest application of our methods is to the
thermodyQamic properties of the Hubbard model.
In particular, the magnetic susceptibility y and the
specific heat C are obtained dix'ectly from the par-
tition function S, for which %8 can obtaiD directly
a high-temperature expansion. As the unperturbed
Hamiltonian we choose

Zo= X —llew -yB,Z(N„- s„), (2. I)
where 8 is an external unifox m magnetic fieM Rnd

Ro is diagonal in the lattice-site representation.
Although the chemical potential p, can be deter-
mined in the usual manner by fixing the average
Dumber of particles~ we caD set it iMQlediately at

. —,
' U for the px'esent case of the half-filled band.
Particle-hole symmetry implMs that p, is 3.ndepen
dent of temperature, and it is clear both physically
and by direct calculation in the high-temperature
llllli't pt&& I tllRt ll =

p U. Tile dellslty opel'R'tol' ls
expanded in the standard way:

e " '=8 hT exp[- j'de%, (X)], (2. 2)
%hex'8

X,(a)=-8~OX,e '80

-=fZexp[XU(s. ...-s..., ,)] Ct.C„„. (2.2)

Then the logarithm, of the partiti. on function can be
written as a sum of cumulant averages of succes-
sively higher order in f (see Appendix). The nec-
cessary traces axe readily calculated in the repre-
sentation vrith g„diagonal, and the integrals over
X xnvolve only low-order polynomials and exponen-
tials. %'8 find to lowest nonvanishing order

ln —= N —
i

—
i (l+e"ilcoshPyB) ~(x)

Z 8 (t&

go 2 lUj

x (xe""coshyyB+8" —l), (2.4)

where z is the number of nearest neighbors to a
site and x= pU. The unperturbed partition function
Zo is

~0= {2+2e"~ coshtlyB)" {2.5)

" (2. 6)
At very high temperatures, jgT & U' or g & 1, the cor-
rections to R simple CQrie lav/ Rxe small. TIM sys-
tem is metallic and the. temperatux'e is well above
the chemical potential p, =-,'U, ,so the electrons are
nondegeDex'Rte and the Curie law ls to be expected,
Iq. fact, since we are in the narrow-band regime
(f/U) «I, the conduction electrons remain nonde-
generate p,s the temperature is reduced and there
is no Pauli behavior in the susceptibility. At low-
er temperatures, vrhere the system becomes an in-
sulator, approximately described by a Heisenberg
Hamiltonian with exchange constant J= 2t1/U, we
exye«« find R Curie-Weiss susceptibility, and for
x» l Eq. (2. 6) does indeed take the form

X = Pv'(I —9/T) = y'/(T+O),

where the gneiss temperature (~) has the expected
value

(2. a}
In Fig. l these px"edictions Rre compared vrith the
xesults of exact calculations for finite linear chains
which have been ext;rapolated to chains of infinite
length. The agreement is excellent for kllT & t,
&&here oux expansions are expected to be useM.
This is so even for U/t as small as 4, where we
1111gllt llave Rll'ticipR'ted sonle diff lcultJJ wltll tile Re-
sumption of small f/U. Our expansion breaks down
completely at temperatures of order O, where
there develops long-range antiferromagnetic ordex
in three-dhmenszonal systems and short-range or-
der in lower-dimensional 'structures. To second
order in t oux' calculation can take into account hop-
ping only to nearest neighbors and back, and the
crystal geometry therefore appeax's only trivially
in the factor of 8 in the (f/U)3 term. This is clear-
ly insufficient to describe the onset of any collec-
tive phenomena involving long-. range order, ox' even
to account for the essential topological differences
between one- and three-dimensional crystals. For
comparison the results of the functional averaging
approach of KimbaQ and Schrieffer ax'e also shown
in Fig. 1. Although those results clearly seem
worse for larger values of U/f the comparison is
more easily nmde fox' the specific heat, vrhich we

We have immediately the magnetic susceptibility
Pex' Particley

j. e'
,Ins = py'(I+e-"") '

EBB 'g 0



discuss next.
From Eqs. (2.4) —and (2. 5). we have for the spe-

cOic heat

C x e g I (f I&

Nk~ N ex, lns=~ cosh- u i+4~~-I (2-5~tanh~
~UJ

-3uPcosh-'u+2u'), (2 9)

where cv=-,'x=-,' pU. The leading term is just the
Schottky anomaly. to be expected in the limit f-o,
where the bands coQapse into two sharp energy lev-

els separated by an energy U. The peak occurs
roughly at a temperature 4 U, where the metal-insu-
lator transition takes place for small f/U. As
s(t/U) increases the peak position shifts to higher
temperatures and the shape of the peak. is modified.
%hen the temperature is reduced belongs- Jz, vir-
tual hopping processes give spin-wave-like excita-
tions which should contribute another low-tempera-
ture peak to the specific heat, as was pointed out in
Ref. 5. %e should not expect to see evidence of
this collective behavior in our treatment, since to

I I l
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FIG. l. Inverse susceptibQity
for values of (2/z) ~2(V/t) of 4, 6, 8,
and 12. The curves represent the
predictions of Eq. (2.6), the crosses
are the finite linear-chain extrapo-
lations of Ref. 6, and the triangles
al e tbe linear-chain pre(bctions of
the functional average approach of
Ref+ 7.
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order (t/U)~ only exchange between a single pair of
spins is included. The shoulder which appears in
our specific-heat curve (Pig. 2) for U/t=6, and

which develops into separated peaks for U/t= 4, is
associated with a breakdown of the expansion rather
than with the spin-wave peak. Certainly the very-

OA—
x

X

0.3—

0.2—

0.2—

xxx
~X

X
X~x~xx

O.I—

0
0 O. l O.P.

I

0.3
I I I I

0.4 0.5 0.6 0.7

k~ T/U

0.3—

0.2—

O.I—

X~Xw X x

OA X I g X I I

xx x
X

LX
~X

I I

0.8 0.9
FIG. 2. Specific heat C/A%~ for

I 0 values of {2/z)~ {U/t) of 4, 6, 8,
and 12. The curves represent the
predictions of Eg. {2.9), the cross-
es are the finite linear-chain ex-
trapolations of Ref. 6, and the tri-
angles are the linear chain predic-

— tions of the functional average ap-
proach of Ref. 7.

0C
Nk

0.4— xXX=-&(,
X X

X

—=l2U
t

0.2—
X

O.I—

0
I

O. l 0.2
l

0.3
I I

0.4 0.5
k~T/U

I I

0.6 0.7
I I

0.8 0.9 I.O



HIGH- TEMPERATURE PROPERTIES OF THE. . . 4893

low-temperature exponentially small specific heat
predicted by Eq. (2. 9) is grossly incorrect. There
can be no evidence of the power-law behavior (lin-
ear in one dimension) expected from long-wave-
length spin waves. Again the good agreement at high
temperatures of our results with exact calculations
for finite linear chains is shown in Fig. 2. Also
shown are the results of the functional averaging
scheme employed by Kimball and Schrieffer. The
failure of this approach in the atomic limit t = 0 has
been discussed by Bari, ' and for U/f = 8 we see the
shift of the peak from the correct value by about a
factor of 2, characteristic of that limit.

III. DYNAMICS: NUCLEAR-SPIN-LATTICE RELAXATION

Although the high-temperature peak in the specif-
ic heat found in Sec. II can be viewed as a reflec-
tion of the metal-insulator transition, we would ex-
pect the most dramatic manifestations of that tran-
sition to be found in the dynamical properties of the
system. In particular, as behavior characteristic
of a metal changes to that of a Heisenberg paramag-
net with decreasing temperature, we can anticipate
drastic changes in the spin dynamics. These will
be observed most simply and directly in the nu-
clear-spin-lattice relaxation rate 1/Tq . In fact,
there already exist experimental results for T& of
protons in the organic linear chain crystal NMP-
TCNQ which exhibit the expected structure some-
what below the metal-insulator transition tempera-
ture.

We assume that the nuclei (of spin I) relax to the
lattice primarily via an isotropic hyperfine interac-
tion $C~ = A g I, S, , each nucleus interacting only
with electrons in the %annier states at its own site.
In the interaction picture the g component of nuclear
spin I'(v} satisfies the integral equation

I'(~) = I'(0) + i fo' d&' [3:h,(&'), I'( ')7], (3.1)
where the time dependence of the operators is gov-
erned by the Hubbard plus Zeeman Hamiltonians.
Iterating this equation once we find for the longitu-
dinal nuclear-spin-correlation function

&I'(~)I'(0)& =((I')'& f;d~' f— d7"

xj; d~'(~ ~—') &S,'S, (~')+ S;S,'(~') &], (3.3)

which is equivalent to Eq. (3. 2) to second order in
A [note that to this order I'(7') = I'in the commuta-
tor] I.n fact, the argument of the exponential in
Eq. (3.3) is the first nonvanishing term in an exact
cumulant series, and all higher-order terms vanish
if the fluctuating hyperfine field at the nucleus cor-
responds to a Gaussian random process. The
electron-spin-correlation function in Eq. (3.3) de-
cays in a time set by the electronic interactions, so
that for the much longer times ~, of interest for
nuclear spin decay, we can replace 7 —7'by ~ in the
integrand and we can let the upper limit on the in-
tegral go to infinity. This is just the standard
technique for treating strongly narrowed resonance
systems; here the narrowing arises from the rapid
fluctuations of the electron spin on a site. The re-
sulting exponential decay then corresponds to the
relaxation rate

(T,) '=A'f "d&&C ', C„C t,.(~)C„(~)cos(o,~

=A f d7'( (7') cos(dz7' (3.4)

where we have explicitly extracted the Zeeman time
dependence in the final cosa&, factor (&u, is the elec-
tron Zeeman frequency), so that the remaining time
dependence of the operators is given by the Hub-
bard Hamiltonian alone. %e have also written the
spin operators in terms of electron creation and
destruction operators C, and C~, and we have used
time-reversal symmetry to arrive at the final sim-
ple form of Eq. (3.4). The approximations neces-
sary to give the simple exponential decay are equiv-
alent to the assumption of the validity of a spin-
temperature description for the nonequilibrium spin
system, and the final result for Tj agrees with the
result of calculations by this latter approach.

Although we are unable to calculate the electron
correlation function P(7) exactly, we can make a
short-time expansion to determine its initial decay
rate. Making the standard assumption that this de-
cay is approximately Gaussian,

4( )=k(0)exp[-l 'Ip'(0) j/p(0)]

x&( [I'(~"), X„,(~")],X (v')) I'&
= y(0) e "~'~, (3. 5)

= &(I')') —j'd7'(v —~')

x&[(I',R„,), R (~')]I'&, (3. 2)

where we have used the fact that the correlation
function under the integral depends on 7' and 7"
only through. their difference, ~' —v", in order to
obtain the final equality. After doing the indicated
commutations explicitly we replace Eq. (3. 2) by an
approximate exponential form,

(I'(7.)I'(O)& =((I')'& exp[ ——,
' A'

and taking cos~,~=1 for these short times, we ob-
tain an explicit expression for T& as a function of
temperature:

(T )-'=A'&(0) [~(0)/( j(0)(]"'. (3.6)

The Gaussian assumption is expected to lead only
to small errors which will be of particularly minor
importance in the temperature dependence of Tj if
the shape of g(7.}, Gaussian or not, is relatively in-
sensitive to temperature, As we will show below,
g (0) contains rapid modulations at frequencies of
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order U which are not characteristic of the decay
rate of g. so that g (0) in Eg. (3. 5) must be inter-
preted as an average of P (v) over times long com-
pared with 1/U.

Thus the calculation has been reduced essentially
to the determination of two static correlation fugc-
tions, P(0) and g (0). These still cannot be found
exactly at finite temperatures, because we cannot
diagonalize the density matrix appropriate to the
Hubbard Hamiltonian, but we can make use of the
methods of Sec. II employed under similar circum-
stances to make a second expansion in the small
parameter t/U. The results are easily interpreted.
Static effects are contained in g(0) =(S;S,) = 2((Sf)a)
in a convenient spin notation. The relaxation rate
is naturally proportional to the mean-square elec-
tron-spin density at the nucleus, as reflected in the
factor g(0) in Eg. (S.6). To lowest (zeroth) order
in t/U we calculate directly

4(0)=(st(1-&I))
1 a(t/U)'

2(l+ e *~') 4(1+e "")'

x[2+e "ia (x' —2x+ 2)

—e "(x'+2x+ 2) —2e-'""], (S. 'I)

where we have continued to use the notation x= PU.
For large U/t the contribution of the second term

in (3.V) is negligible at all temperatures (e. g. , a
maximum of a few percent for kaT/U& 0. 2 when U/
t=6). The dominant first term directly reflects
the simple essential physics of the static correla-
tions. At high temperatures (x«1), well into the
metallic region, the up- and down-spin occupancies
at a lattice site are effectively uncorrelated; (nl,)
= —,

' and $(0)= —,'. With the onset of insulating be-
havior (x» 1) each site is restricted by Coulomb
correlations to single-electron occupancy and g(0)

The (t/U)' corrections reflect the develop-
ment of coherent admixtures of up- and down-spin
states in a site with the establishment of short-
range antiferromagnetic order. The expansion to
this order does not exhibit the shallow maximum in
$(0) at small but finite temperature discussed in
Ref. 5. However, Eg. (S. 7) agrees very well with
the finite-chain results above the temperature of
this maximum.

The dynamical effects are contained in the final
factor of Eq. (3.6). In fact, from Eq (3.5.) we see
that [2$(0)/I g (0) I ]'+ is the electron-spin correla
tion time v, . We expect, and we will find below,
that v, goes from an electronic hopping time v;- I/f
in the high-temperature metallic region to the
much longer exchange, or spin-flip, time v, - RU/.

zt in the lower-temperature paramagnetic insula-
tor phase. To calculate ~, we require

'j(~) = -([C,', (~)C„(~),X(~)][X,C,', C„])

. X(Cf+6 tCfsl $&CI+g 4)) yl ( )

where b, and 6' are to be summed over nearest-
neighbor vectors. It is now important to examine
the time dependence of these operators a little
more closely before simply setting 7 equal to zero,
as our formula for T& would suggest. Again we ex-
pand the time development operator exp [-i(ie„
+Ã, ) v] in powers of X, as an ordered exponential.
On the very-short-time scale of order 3'/U, only
the leading term is important and we have

j(&) 2fa P (esU(n~q-n~ygg)T

1

O.I

—= IOO
U
t

I

0.2 0.3 OA 0.5
kBT/U

FIG. 3. Nuclear-spin-lattice relaxation rate 1/T~, as
givenby Eq. (3.6), (3.7), and (3.11), for values of U/t
=4, 8, and 100 and g=2. As discussed in the text the
curves are also appropriate for larger g with a suitable
choice of U/t in each case.

))~ (3 9)

where we have used particle-hole symmetry to com-
bine some of the terms. Thus we see that for (n„
-n„~,) 0 0 there is a rapid oscillation at the fre-

'

quency U modulating the decay of $(r). Since it
is the over-all decay rate rather than these oscil-
lations in which we are interested, we want to
average over times long compared to 1/U (but still
short compared to the decay time). The net effect
is clearly just to eliminate from the average those
states for which (n„-n„~,) w 0, which we can do by
writing the short-time average of Eg. (3.9) as
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j(0) (g(I'))„=- 2t E ((1- III, -II„~,) NI, C„g,C,~.,
hyh, g

R is this Iluantity which must be used for g (0) in
the exyression for v, to get a meaningful result for
the decay xate. The calculation of this static cor-
I'elat1011 fllIlctloII as a powel' sel'les III t/U Ilow pro-
ceeds exactly as before: We expand the density op-
erator to second order in 3C, and compute the traces
directly in the representation edith g«diagonal.
The numbex of different terms which arise in this

expression is large, but one can devise suitable di-
agrammatic or other means to account for them
systematically. Then the calculation is lengthy,
but straightforward. Because the result here con-
tains texms of fourth order in the hopping Hamilto-
nain K, , it can be affected by more of the topology
than the simple number of nearest neighbors z.
However, if no bvo nearest neighbors to a site axe
also nearest neighbors of one another (which ex-
cludes the fcc lattice, for example) then the answer
can be expressed in terms of z alone:

(0) (P ('T) )gy. 4 g I ~/g g (Qg 10 +8 * [(4 5g 1)g (5g + 2)g 4g +4]

+ 8 "[(6-&g)& + (sg - 2)g - 22g+ 24]+e~"~g [(6.5g - 3)xg+ (Qg - 2)g+ 4g -4]+8 [(g - 2)x+ isg -14]],
(s. ii)

where, as before, g= pU. We then have directly
as the correlation time 7', in the limits of lour and
high temperatures

I;= [2((0)/ I j(0) I ]'I

:6(1 gt'/U') —II~'. U
(

g(Qg -10),P f

As was anticipated above, v, is set by a hopping
time of ox'der t ~ at high temperatures. As the
temperature is reduced Coulomb correlations ex-
ponentially diminish the hopping rate, so that for
pU» 1 the first term in EIl. . (3. 11) becomes
damped by a factor e~+, whereas the second term,
which is associated with virtual hopping ox ex-, .

change -induced spin Quctuationsy approaches a
constant. In this limit 7, is set by an exchange
time of order U/gt, again as anticipated above on
physical grounds.

The full temperatux e dependence of the nuclear-
spin-lattice relaxation rate 1/Tl for the cases U/f
=4~ Sq and 100 fox' g = 2y appx'opriate to a one-di
mensional system, is given in Fig. 3. Of course
&re must again recognize that the expansion breaks
down at sufficiently low temperatures; certainly the
resui«can no longe»e trusted by the time P«'/U
=1. At lower temperatures the reduction in ex-
change-induced spin Quetuati. ons is expected to lead
to a reduction in the relaxation rate, leaving a peak
in 1/T, at a temperature of the order of Z= gt /U.
These effects can perhaps be treated most readily
by direct consideration of the effective Heisenberg
Hamiltonian. However, for large U/t our results
do remain valid vrell below the metal-insulator
transition, and the nuclear-spin-lattice relaxation
is sensitive to that transition. %e have seen that

U
kin(U/f }

(s. is)

This reduction from T„, is relatively weak, and it
has a simyle physical origin. There are very few
effective carriers at these low temperatures, but
they contribute an anomalously large amount-f,
rather than f /U-to v

' as compared with localized
exchange-coupled electrons.

Although the curves of Fig. 3 are explicitly
drawn for the linear chain (g = 2), they reflect very
accurately the Tz predictions for suitably chosen
three-dimensional crystals. For gt /U«1 we can
neglect the g dependence of p(0) and from EIl.
(3.12) we find that the ratio of high- to low-tem-
pera»8 asymptotic values of 1/Tl depends on g
only through the combination (Qg —10)t /U . Simi-
larly, we find from Eq. (3.11) that for general g
EIl. (3.13) must be modified to give

U

2 in[(Qg —io}fa/6U'] '

As this suggests, the T& predictions for g = 8 and
U/t= (496)I~~, for example, are virtually indistin-
guishable from those for g = 2 and U/t = 6.

From Fig. 3 we see that the sharpness of the
rise in T I near T, increases with U//t. One might

I

there is a sharp rise in 1/Tl as the dominant elec-
tron dynamics change from hopping in the metallic
to Heisenberg exchange in the insulating phase.
This rise does not occur at quite the same temper-
ature as that at which the electrical conductivity
changes from characteristically metallic to insulat-
ing behavior. " For linear chains in the large U//f

limit the latter occurs at T» = ~ U. From Eq.
(3. 11)we see that for g = 2 the exchange contribu-
tion to the inverse cox'relation time v, becomes
comparable to the hopping contribution at
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FIG. 4. Comparison of the nuclear-spin-lattice re-
laxation data (Ref. 11) for NMP-TCNQ with the predic-
tions of the present theory (solid line). The vertical scale
factor has been fitted, as described in the text.

required, and we must also point out that the tem-
peratures available are all less than t (= 575'K),
and even for the most part less than 2t /U, where
we know that the theory can no longer be trusted.
Furthermore, the experimental evidence leaves
some question as to the usefulness of the simple
Hubbard Hamiltonian in describing NMP -TCNQ.
The low-temperature data are best fitted by a value
of U/t = 8 rather than 4; the high-temperature sus-
ceptibility is approximately constant rather than
taking the Curie form predicted by Eq. (2.6). But
the system does undergo a metal-insulator transi-
tion, and we believe that the change in correlation
time on passing through this transition as described
above contains the important physics of the temper-
ature dependence of Tg.

Finally, we point out that there exists recent in-
dependent work on a high-temperature expansion
of the partition function to study the thermodynan-
ic properties of the Hubbard model.

anticipate a similar sharpening with increasing di-
mensionality oi the system, a familiar feature of
many phase transitions. However, we have just
seen that for a fixed value of (Se —10)t /U the form
of 7.'& is practically identical in one and three di-
mensions. In this regard, the important physical
feature of the metal-insulator transition associated
with the Hubbard model is that it represents a lo-
cal ordering, and as such is not expected to be
sharp even in three dimensions. As we discussed
earlier, we cannot expect to predict actual cooper-
ative phenomena, such as true phase transitions,
by our technique, whose validity through the metal-
insulator transition region then rests on the rec-
ognition of the local character of this phenomenon.

Finally we compare our results with the T, mea-
surements on protons in NMP-TCNQ. The exper-
iments suggest that the electronic properties of
this material may be well described by a one-di-
mensional Hubbard Hamiltonian with U/t= 4 (U
= 0. 18 eV, t = 0. 05 eV), at least in the metallic-
temperature range. This value is rather small for
our expansion in t/U to be trusted, but if we com-
pare our predictions with the experiment, we find
the excellent agreement indicated in Fig. 4. We
point out that the low-temperature decrease in the
relaxation rate anticipated above seems to be indi-
cated by the experimental data. However, the val-
ue of the hyperfine constant A/gpe required for
this quantitative agreement is about a factor of 3
larger than the 1.5'7 6 obtained" from hyperfine
splittings for TCNQ in solution. We must view the
agreement with the present theory as only qualita-
tive, and this is hardly surprising in view of the
marginal nature of this system as a candidate for
comparison with the present theory. We have al-
ready mentioned the smallness of the value of U/t

K —PN=X0+K' .
We write the desired average in the form

(Al)

(A2)

and make use of standard cumulant expansion the-
orems. Thus we write

'"' = ((e""&)p T, exp [ —j,'dM'(z)),
where we have defined

(&g»= Tl e- OX

(AS)

(A4)

so that p is a normalized density operator, T„de-
notes the usual ordered exponential, and

K'(X) = e OR'e

Then we have

(A6)

)tn-i
x d X (X~). . .R (g)e (A6)

.„0 curn . 'm=0

where the first few terms in the large parentheses
are given explicitly as

b, « „~» Jo'dX«Ã'(X) e""&)
(&e""»

, «X'(X)Z'(~') e""&&
+ dA. dx'

«&'(~) e""&& '
'

((e""» (AV)

APPENDIX: CUMULANT EXPANSION THEOREM

We are interested in thermodynamic averages of
operators in a system governed by the general
Hamiltonian



HIGH- TEMPERATURE PROPERTIES OF THE. . .
In the examples discussed in this paper we fre-
ttuently have ((K'(X))) = ((R'().)A)) = 0. Under these
circumstances the result to second order in X' is

—(R'!(X)'x',(X'))Q(A) 0 ], (As)

where we have employed the standard notation for av-
erages with respect to the unperturbed Hamiltonian:

(A) =(A), + g'd~ f,'d~'[(&'(X)K'(~')A), (X),= T-r (e -oX)/Tr e (A9)
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It is known that in a well-defined high-spin limit, the properties of systems of quantum spins
approach those of a corresponding system of classical spins. In this paper we give a method for
computing corrections to this limit. We give the first nontrivial corrections to the partition function and
spin-spin correlation function for a linear chain of Heisenberg-coupled spins. We briefly discuss possible
comparisons with experiment.

I. INTRODUCTION

Several materials have been found in recent years
which behave magnetically like one-dimensional
crystals. These crystals consist of chains of
strongly coupled spins with a much weaker inter-
chain coupling. At low enough temperatures the
weak interchain coupling produces a phase transi-
tion to a state with three-dimensional long-range
order, but above this temperature these systems
appear one-dimensional in character.

One such material is (CH~)~NMnCl~ known as
TMMC. There is experimental ' evidence that
TMMC behaves as a, one-dimensional system down
to j. K. This system appears to be an isotropic
spin- —,

' Heisenberg antiferromagnet. Birgeneau et
uE. have found that Fisher's solution of the classi-

cal Heisenberg chain fits the measured staggered
susceptibility of TMMC from T= 1 'K to 7=40'K.
This classical model was also used by Dingle et ul.
to fit susceptibility data for TMNC.

It is surprising that a classical spin model can
be used at low temperatures. One might expect
quantum effects to be important when kT is smaller
than the energy required to change the state of a
single spin, that is, when ZS/kT & l, where Z is the
Heisenberg coupling constant and 8 is the magni-
tude of the spin. Th1s parameter ranges between
l and 50 for TMMC at temperatures between 40 and
1 K.

In this paper'we describe a calculatj. on of the
first nontrivial quantum correction to the classical
Heisenberg model. The method we describe is a
general one suitable for high-spin systems and


