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The superconducting transition temperature of the pseudobinary A15 compounds V,Ga, „Sn„
(0& x (1) falls sharply from a peak of about 14'K at x =0 to about 4'K at x =1. In order to
understand the dependence of T, on the electronic structure, we have measured the spin-lattice
relaxation rate, isotropic and axial Knight shift, and electric field gradient of "V in the normal and

superconducting state at frequencies between 8 and 48.5 MHz. The composition dependence of the

relaxation rate and the electric field gradient are calculated by a tight-binding model and the theory of
Watson, Gossard, and Yafet, respectively. The results are in quantitative agreement with the d-subband

densities of states based on an interpolation of the augmented-plane-wave band-structure calculations of
Mattheiss. Symmetry considerations suggest that the difFerence in the electron-phonon coupling

parameter for V,Ga and V,Sn could be due to an anomalously large phonon renormalization in V,Ga
caused by a peak in the m'-subband density at the Fermi level.

N(0) (t )
M ((o)/((o ') (1.2)

where (P) is an average over the Fermi surface of
the electron-ion interaction and M is the ion mass.
In many high-T, materials, there has been grow-
ing evidence that soft-phonon modes are present.
This has been deduced from neutron-inelastic-scat-
tering, elastic-constant, nuclear-magnetic -reso-
nance, and Mossbauer-effect measurements. In
some materials a martensitic transformation takes
place above T, . In one class of particularly im-
portant high-temperature superconductors, the A15

I. INTRODUCTION

The problem of understanding the high-transi-
tion-temperature superconductors among the tran-
sition-metal alloys and inter metallic compounds
has in recent years been reduced to explaining the
variation of the electron-phonon coupling constant
X =m*/m —l. A generalization of McMillan's
equation for the superconducting transition tem-
perature T, is given by

(&2)l j8 1+x+
).20 0. QSZ —(g" + g„„)(1+0.8X))

(l. l)
Here p.* is the Coulomb pseudopotential, p,„„is
the effective electron-spin excitation coupling con-
stant, and ((d~) is a weighted phonon frequency.
is a slowly varying function of the bare density of
states at the Fermi level N(0), having values be-
tween about 0.1 and 0. 2 for most transition metals. ~

p,» can be approximately determined from spin-
susceptibility measurements and ((d )' canbe
estimated from phonon-specific-heat measure-
ments.

In McMillan's formulation X depends on both the
electronic and phonon properties and is given by

compounds VSX and NbBX, which have the highest
known T,'s, an extremely high narrow peak in the
density of states is thought to play an important
role. Of course, the separation of the electron
and phonon systems is somewhat artificial since
electron dressing of the phonon states-is probably
quite important. It seems that much of the dif-
ficulty in the detailed explanation of superconduc-
tivity in the transition metals in general, and the
A. 15 compounds in particular, lies in the need for
more experimental property measurements and
theoretical calculations of the normal-state prop-
erties; i.e. , the electron-phonon interaction, the
one-electron density of states, and the phonon spec-
tral densities.

In this investigation we present results of a nu-
clear-magnetic-resonance (NMR) study of "V in
V36aj „Sn„in both the normal and superconducting
state. This system was chosen because of the large
drop in T, on going from VGGa to VSSn and be-
cause of the extensive band-structure calculations
that have been made. 6'~ Since the vanadium atoms
sit on linear chains in the A15 structure, the first
band calculations were simple one-dimensional
tight-binding calculations in nature. The dominant
feature is very high narrow peaks in the density of
states. Later, Mattheiss used the augmented-
plane-wave (APW) method to calculate the band
structure of a number of VSX compounds. He
showed there were large differences from the lin-
ear-chain model. He also noted that for X, a non-
transition element, a rigid-band picture was fair-
ly good. More recently, Goldberg and Vfeger~ have
used a tight-binding interpolation scheme to extend
the high-symmetry-point calculations of Mattheiss
to many more points in the Brillouin zone. They
have calculated 'the four d-subband densities of
states for V, Ga and have argued that the APW
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bands must be shifted to bring the large peak in the
53 subband density of states &'z(&) to the Fermi en-
ergy.

The theory of spin-lattice relaxation in tetragonal
symmetry using the tight-binding approximation ap-
propriate for vanadium in the V3X compounds is
presented in Sec. II. Also presented in Sec. II is
a description of the method of extracting the spec-
trum parameters: isotropic and axial Knight shifts,
E„,and E,„, respectively, and the electric field
gradient q. The experimental procedure is de-
scribed in Sec. III. In Sec. IV, the experimental re-
sults are presented. In Sec. V, we discuss the
NMR results and argue that they are consistent with
the tight-binding interpolation based on the APW
calculation of Mattheiss. A rigid-band model is ap-
propriate for V3Ga, „Sn„, and a very high peak in
the p2-subband density of states at E~ is inconsis-
tent with the resonance results for V36a. In Sec.
VI, we conclude with some remarks about the tem-
perature-dependent susceptibility for V3 Ga. We
find that the large ~ and therefore the high T, for
the Ga-rich compounds is correlated with large
N'(0). This could result from a phonon softening
due to anomalous electron dressing of the phonon
states.

II. THEORY

A. Symmetry

The A15 (Cr30) structure in which the V3X com-
pounds crystallize is a cubic lattice with the X
atoms on a bcc sublattice. We focus attention on
the V sites that have tetragonal symmetry. The
point group is Dzz(42m) and the vanadium atoms lie
on chains arranged in three orthogonal families.
In Table I we list the irreducible representation of
the d wave functions (l = 2) for a vanadium atom on
a chain with axis parallel to the Z direction. Simi-
lar to the case of hcp metals, both Y'0 and Yz
atomic wave functions belong to the A, representa-
tion of D~„. Thus, the contact- and core-polariza-
tion interactions can interfer, provided these func-
tions are admixed in the conduction-electron wave
function at the Fermi surface. '

8. Spin-Lattice Relaxation

Following Narath, ' we calculate the relaxation
rate by treating the magnetic hyperfine interactions
in terms of an effective-spin Hamiltonian,

X=-y„a i h, (2. 1)

where y„ is the nuclear gyromagnetic ratio and f
is the nuclear-spin angular-momentum operator.
The effective-field operator h is composed of s con-
tact (h,), d-spin core-polarization (hz), d-spin
dipolar (h~„), and d-orbital (h„») terms:

h = h$+ hq+ hq) + h,~b (2. 2)

with

($) ~
hs = —2IIb~. s$ ~

(d) ~h„- 2Pbr, s„,
h«, = —y, kr"3[sz —3r z(r s„)rj,
h.,b= —y, h~ ' l,

(2. 3)

(2. 4)

(2. 5)

(2. 6)

where y, is the electronic gyromagnetic ratio, s,
and s~ are the s-spin and d-spin angular-momentum
operators (s = —,') for the conduction electrons, re-
spectively; 1 is the orbital-angular-momentum
operator for the d electrons (l = 2), and r is the
appropriate electron-position coordinate. We have
assumed that the electronic g value may be taken as
2. The effect of the dipolar interaction on the re-
laxation rate is generally small and we neglect it.
The effective s-contact and core-polarization (d-
spin) hyperfine fields per electron are denoted by
H„",,' and H„'"„', respectively. The expectation val-
ue of r z in Eels. (2. 5) and (2.6) can be expressed
in terms of an orbital hyperfine field per unit or-
bital angular momentum H»", ',»'= —y, h (r ).Straight-
forward application of first-order time-dependent
perturbation theory to Eil. (2. 1) yields a relaxa-
tion rate for a given site in the crystal

& '=(i//&)(r. @)' ~ ~ ~
I

&)i' 'o'I& l)iko')I'
p p gyt ofy

&& f,;.(1-f..-„...) 5(m), (2. 7)

TABLE I. Irreducible representation of D& (l = 2).

Bases Assignment
Spherical'

Atomic functions harmonics

A& v I/4z)'/'3z' i'/2r'-
(15/4z)'/'zz/r'

E O.5/4 )'I'&y/&' y fy$

Bg O.5/Z6&)' '&'-y'/~' r2'"

B2 (i5/4.)'/' &/2 y2

&y m, c —(Zt5+ p N)/~p. p'tlt&$ ~(pfs p'~)/~2.
~~ (8, qj)) are normalized-spherical harmonics. The polai
angle 8 is measured with respect to a s axis parallel to
the tetragonal or chain axis.

where p., k, and g are the band, wave-vector, and
spin indices, respectively, f;~, is the occupation
number of the one-electron Block state

~ pko), and
the 5 function 5(aE) expresses the energy conser-
vation requirements for the relaxation process. In
the tight-binding approximation, the conduction-
electron wave functions are constructed from atom-
ic orbitals. For a lattice with an arbitrary basis,
the result is

~
A

~
+

(~) ~ 1/2 Q Q ei»'8/ cik R~s „(r'R.
) y

i
(2. 6)
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a„h(r -—R»)=Q c,„h~&f&„(r -R»), (2. 9)

where N denotes the number of unit cells in the
crystal, 8& specifies the location of a given unit
cell, R~ specifies the atomic positions within, the
unit c611, and Rd&=Rd+R». The p, are spin func-
tions, while the a, h (r —R») are linear combinations
of atomic orbitals (LCAO) defined by

where R = (T, T) ',

s P+hfsy Ed (1 P)+hfl i
(s) (e)

F„„-(1—P) eh, .
(2. iS)

P is the fractional s character at the Fermi level,
8 is the angle between the tetragonal axis and the
applied field, and

r&m) r(m ) 2x ~/ E~~~, E~ihrpi &m OPf& mo''P)

(2. 10)
where k~ is Boltzmann's constant, E~ is the Fermi
energy, and the I' -„=—)c„»i are fractional ad-
mixture coefficients which have the same value for
all m forming a basis for a given irreducible rep-
resentation I'(m). By defining average values of

Dm)
the I',» according to

F,'"&=QZ Eg [6(z,„--z„)][N(0)N]-',
(2. 11)

where the product N(0)N is the total number of
states per unit energy interval at the Fermi level
for one direction of the spin, we can write Eq.
(2. 10) in the form

T,(p) ' = (»/&&&) (y„g)'k» T [N(0)]'

xh ZE'&"&E" '&i&m' pih-i p)i'
mm' eo'

(2. 12)
By definition, the factors E~r' ' are normalized to
unity:

Q

+Fr�(m&

Thus, we find

ft = (4»/5) (y„h)'k» [N(0)] ZE& (K,"'+Z, 'h'sin'e),
(2. 14)

(2. 18)

where the c„»are elements of a unitary trans-
formation and the &I&„(r —R») are atomic functions
which form bases for irreducible representations
of the point group appropriate for the position 8».
We also note that the functions [Eq. (2. 8)] are not
normalized unless all overlap-integrals between
LCAO functions centered on different sites vanish.

The matrix elements in Eq. (2. 7) can now be
evaluated by expanding the Bloch functions accord-
ing to the tight-binding prescription [Eq. (2. 8)].
Vfe assume that matrix elements between orbitals
centered on different atoms can be neglected. This
assumption is generally justified and is, moreover,
consistent with the neglect of normalization in the
tight-binding functions. Vfe find the following re-
laxation rate for the pth site:

T, (P)-'= (»/aN') (y„a)'u, T

If (1& (EA&)2+ z (F&&)h ~ (FB&)2+ (EBh)2

X"'=0 A.",'= 2E'(E'h+E'&+6E"&),

K '= —F (E 2+F &+6F"& 'E -)-

(2. 16)

Summing over the three orthogonal vanadium chains
in the cubic A15 structure, we find the 8-indepen-
dent orbital reduction factor

Z.„=fF'(F'3+E'&+6F"&+ ', E~), -
with

E"i+2I'+ E'~+ E'~ = 1

(2. 17)

If the A, functions are expressed as linear com-
binations of the form g„y, Yt + (1 —$„-„h) i Fz, the
s-d interference term is given by

Jt,~= (8»/i&) (y„)1) [N(0)l FIhfd Hn~fdd&

x «(Egh"&)'h ph'(I —hgh'))), (2 18)

where the angular brackets denote an average over
the Fermi surface. Since H„"„'and H„',",' are of op-
posite sign, this term interferes destructively with
(2. 14).

Although the relaxation rate for cubic-point sym-
metry is specified by a single d-electron orbital
admixture parameter, and for hexagonal symmetry
by two independent admixture parameters, the
tetragonal-point symmetry requires three inde-
pendent admixture parameters as a result of the
lower symmetry.

The foregoing analysis contains two tacit assump-
tions. In the first place, it was assumed that the
exyansion of the conduction-electron wave functions
at the Fermi level could be limited to l = 0 and E = 2
atomic functions [i.e. , N(0) =N, (0) +Nd(0)]. It is
likely, however, that the E = 1 admixture is often
comparable to the l = 0 admixture. Nevertheless,
the E = 1 hyperfine interaction may be safely ne-
glected, since p hyperfine fields are generally quite
small compared to s and d hyperfine fields. The
major effect of an appreciable p admixture at the
Fermi level is therefore to reduce N(0) relative to
the total bare-electron density of states by an
amount which is proportional to the fractional P
character. This reduction is probably small since
the density of states is dominated in transition met-
als by the d-band contributions. A yotentially
more serious defect in the analysis is the assumy-
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tion that the four d orbitals have identical radial
dependences. In other words, the d-spin and @-

orbital hyperfine fields in Eqs. (2. 4) and (2.6), re-
spectively, are assumed to be constants. This as-
sumption is reasonable only if the potential within
the atomic volume is nearly spherically symmetric.

We have consciously ignored effects of electron-
electron exchange enhancement on T„because the
relaxation rate is dominated by the orbital hyper-
fine interaction (see Sec. V). The enhancement ef-
fect is spin coupled and would only enter the orbital
relaxation rate via spin-orbit coupling, which is
probably small in vanadium. In the absence of
spin-orbit coupling, electron-electron enhancement
would enter the relaxation rate through 8, and 8& as
well as through 8, .&. As is well known, phonon re-
normalization effects do not enter the relaxation rate.

C. Nuclear Electric Quadrupole Interaction

In order to extract the electric field gradient
(efg) q from the measured nuclear electric quadru-
pole interaction, a value of the nuclear quadrupole
moment Q must be known. In our discussion we
will use the value of "Q = 0.052 b determined by
Childs and Goodman. ' Following the treatment of
Watson, Gossard, and Yafet" (WGY), we write
the measured efg as

q=(1 —y„)q„„+(1-Itq)q', (2. 19)

where (1-y„)and (1-Ro) are the Sternheimer
antishielding and shielding factors, respectively;

/patt is the point-charge contribution given by"

q~«, =(1/ao) (15 6Sv 5 9Zx), (2. 20)
where ao is the lattice parameter, gv and S~ are
the point charges of the vanadium and X sites, re-
spectively, and q' is a local field gradient caused by

the redistribution of occupied conduction-electron
states near the Fermi surface. (We neglect qo and

q" of WGY that arise from nonspherical potential
and orbital distortion, respectively. ) The reader
is referred to the paper by WGY~' for detailed dis-
'cussion of q'. Briefly, q' is the shielding response
of the conduction electrons within the spherical po-
tential of the AP% sphere to the external potential
imposedbythefield gradient of point charges. It is
therefore linear in -q&,«and relatedtothe densities
of states at the Fermi level for the various bands.

D. Analysis of Nuclear Electric Quadrupole and Anisotropic Shift
Interaction on Powder-Pattern Line Shapes

In the following discussion we examine the ef-
fects of an axially-symmetric efg and an anisotrop-
ic Knight-shift interaction on the absorption pat-
tern of a, powder with random orientation of crys-
tallite axes. We then describe a computer code
for calculating synthetic absorption profiles by con-
voluting the powder patterns with a Gaussian line
shape. Finally, we allow for a distribution of efg's
and, axial Knight shifts K~. The calculation is

made to the second order in the nuclear electric
quadrupole interaction for both the central (+-,'
———,') transition as well as all satellite transitions.

Jones et al. ' have shown that the nuclear Zee-
man levels are obtained by adding together the ex-
pressions for the anisotropic shift (in first order)
and for the nuclear quadrupole interaction (to sec-
ond order). We shall suppose that the efg tensor
and the magnetic shift tensor are both axially sym-
metric and that the major axes of the two tensors
are parallel.

The zeroth order, or pure Zeeman, frequency
is just the resonance frequency in the metal,

vo= vs(1+K'.a) (2. 21)

Here p~ is the resonance frequency in a diamagnet-
ic reference compound and K„,= —,

' K„+-,',K„where
K„and K, are the Knight shifts parallel and per-
pendicular to the major axis of the magnetic shift
tensor, respectively.

The satellite frequencies are given in first order by~

v(m-m —1)= vog+(3p'-1) [a+!(vc/vo) (m - o)1)
m &-,' ~ (2. 22)

Here g =—cos8 where 8 is the angle between the ex-
ternal magnetic field IIo and the g axis of the prin-
cipal axis system, a=-K~(vs/vo), where K„=& (K„
-K,), and vc=3eoqg/2I(2I-1)h, For a random
polycrystalline sample the principal maximum in-
tensity for the satellites occurs when p, = 0, so that
resonance peaks appear at

v(m m —1)= vo {l.-[a +—', (v& /vo) (m ——', )]j, m 0 —,'.
(2. 23)

These peaks are shifted in second order by

1)= ie (vo / v)a[3m(m —1)-I(I+1)+-,'],

m x-,'. (2. 24)

The central transition in a single crystal is giv-
en to second order as

v (o' ——,') = vo(1+(vo /16vo ) [I(I+1)—4]

x(l —iL') (1 —9p, ') +a(3p'- 1)}.
(2. 25)

To compute a line shape appropriate to a polycrys-
talline sample, we have, fol'.owing Cohen and
Reif, ' the shape function

P(v —vo)d (v vo)=P(8)d8= a~ sin8d8= —,'dp, ,
(2. 26)

so that
P(v - vo) = -,' id v/d p i

', —1& g & 1. (2. 2'1)

The synthetic resonance is generated for each
of several values of the efg and K,„by folding the
intensity distribution function P(v —vo) correspond-
ing to Eq. (2. 22) and (2. 25) with the resonance
shape function g(v), which is taken as a Gaussian
function with second moment (n, vo). Each reso-
nance corresponding to a particular value of efg and
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FIG. 1. Composition dependence
of the superconducting transition
temperature T, tcircles) and the
77 'K isotropic Knight shift X (tri-
angles) . T~ measurements were
made on a Faraday balance; the bars
indicate the width of the transition.
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2(C& po) |~ g~ 2(p Co)G(gg)=exp
( )

e
(~ )

~ ~

~(2. 28)
where qo is the mean value of the efg distribution
and (~)2 is equal to four times the second moment
of the efg distribution (K is distributed in a sim-
ilar manner). All of the resonance curves are
placed upon a common frequency scale and summed.
Typically, 11 to 25 values of q and E~ are used in
the final fits.

III. EXPERIMENTAL PROCEDURE

A series of pseudobinary compounds VSGa,„„Sn„
were prepared by arc melting (and levitation melt-
ing in the case of V, Sn). The ingots were annealed
at 1200 'C for 1 meek followed by a 3-week anneal
at 1000 'C and water quenching. Metallographic
examination was made to determine the existence
of second phases. In all cases, second phases ac-
counted for less than 10-15/q of the sample. Lat-
tice parameters were determined from x-ray pow-
der patterns. The superconducting transition tem-
perature T, was measured on a Faraday balance.
The results are shown in Fig. 1. The vertical bars
indicate the breadth of the transition. Vfe note a
rapid drop in T, as Sn replaces Ga up to about x
= 0. 3 and then a much more gradual drop in T, .

The NMR measurements were made on powders
crushed from the ingots. Two phase-coherent
pulsed spectrometers employing phase-sensitive
detection were used. Measurements at 8 and 12
MHE were made on a fixed-frequency spectrometer
with radio-frequency magnetic field amplitude H,
between 100 and 150 Oe. The magnetic field was
supplied by a Varian electromagnet with Fieldial
control. Measurements near 18 and 48 MHz were

made on a variable-frequency spectrometer with

H, between 25 and 60 Oe. The magnetic field was
supplied by a westinghouse superconducting sole-
noid. Signal averaging was accomplished with both
a Princeton Applied Research boxcar integrator
and a Fabritek 952/1052 digital signal averager

NMR measurements were made at room temper-
ature, at 64 and 77'K with the sample immersed in
liquid nitrogen, and between 1.6 and 4. 2 'K with
the sample immersed in liquid helium. The 'V

nuclear-resonance profiles were obtained by in-
tegrating the echo following a tmo-pulse sequence.
A boxcar gate much greater than the free-induc-
tion-decay time was used while the magnetic fieid
was swept. T, measurements were made by
saturating the nuclear-spin system mith a comb of
rf pulses and measuring the recovery of the longi-
tudinal magnetization M(v) at a time 7 later. Sin-
gle-exponential recovery mas found in all cases,
and nearly complete saturation was obtained (see
Fig. 2).

The susceptibility of V36a was measured in a
temperature range from 16 up to 100 'K by the
Faraday method. Although we found the suscepti-
bility to be temperature dependent, it has a, slight-
ly weaker temperature dependence than that found

by Clogston et u/. ' The weaker dependence may
be due to the fact that our Vs Ga sample deviates
from stoichiometry. Our V3 Ga has a somemhat
lower value of T, compared to the highest T, re-
ported for V36a. '

IV. EXPERIMENTAL RESULTS

The NMR spe'ctra of the 'V nucleus mas obtained
for the V3Qa, „Sn„system. The spectra were tak-
en at 77'K at three different frequencies, 8, 18,
and 48. 5 MHE. Figure 3 shoms typical line shapes
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FIG. 2. Recovery curve of the longitudinal magnetization to its equilibrium value M() for V&Gao ~Sno 9 at 77 'K.

of V3 Sn at 18 and 48. 5 MHz. The difference in
spectral shapes at these two frequencies is a re-
sult of the relatively large anisotropic Knight
shift experienced by the 'V nucleus. At 48. 5 MHz
the effect of this anisotropic Knight shift on the
line shapes is about 2. 7 times larger than at 18
MHz. Using the computer-generated line shapes,
we find the anisotroyic Knight shift K~, and the
electric field gradient q seen by the "V nucleus
for the V3Ga, „Sn, system. The efg resu1ts are
given in Fig. 4. K~ is constant across the system
and equal to —D. D6 j~, while q is changing.

The peak of the line position was measured
relative to Al metal. Using the computer-calcu-
lated line shift that results from the second-order
quadrupole interaction and the anisotropic Knight
shift, we get the isotropic Knight shift for the sys-
tem. Figure 1 shows the isotroyic-Knight-shift
results at 77 'K.

T, of "V was measured in the V36ag Sn
tern in the normal and in the suyerconducting
states. In the normal state, T, shows the general
temperature-dependent behavior previously found

for the V3X compounds, i.e. , the higher-T, com-
pounds have stronger temperature dependencies. '
Figure 5 shows the behavior for three different
alloys. Figure 4 shows a plot of 1/T, T for the

V3Ga,„„Sn„system as a function of X at 77'K. We
see that there is moderate change in T, as a func-
tion of X at the Sn-rich side, while at the Ga-rich
side there is a much faster change.

The temperature deyendence of T, in the suyer-
conducting state was measured for all the alloys
except V3Ga. Two things characterize the behav-
ior of T I in the superconducting state. First,
there is a sharp decrease in the relaxation rate
just below T, c'ompared to its value above T, . Sec-
ond, the relaxation rate depends exponentially on

recipx ocal temperature. Figure 6 shows a plot of
T, ' as a function of 1jT.

We were not able to obtain reliable T, data for
V3Ga in the superconducting state; heating effects
due to long rf saturation pulse trains prevent us
from getting data above 4. 2 'K where the sample
is not immersed in liquid He. Below 4. 2'K
(far below T, of V~oa), T, is long and there are
spin-diffusion contributions to T~.

V. DISCUSSION OF RESULTS

A. Normal State

In the discussion of our experimental values of

q and R = (T,T) ' we will rely on the band-structure
calculations for V3Ga by Mattheisse and on the
tight-binding interpolation scheme of Goldberg and
Weger based on these energy bands. Goldberg
and Wegerv have argued that the first-principle cal-
culations of Mattheiss can be in error by as much
as 0. 2 Ry due to the choice of muffin-tin potential.
In this section we will show that the d subbands
calculated by Goldberg and Weger from the unad-
justed bands of Mattheiss do, in fact, yield cal-
culated values of the efg's and relaxation rates in
excellent agreement with experiment.

In Fig. 7 we present the 5~ and g d-subband den-
sities of states calculated by Goldberg and Weger~
from the original APW calculation of Mattheiss on
V36a. The theoretical 5& density is zero andthe o
density is low and flat near E&. Mattheiss's calcu-
lation is based on a 3d 4s' vanadium configuration.
A choice of 3d34s~ yields results that are shifted by
about 0.05 Ry. Mattheiss observed that when vari-
ous nontransition elements X are used in the cal-
culation of the V3X band structure, the resulting
densities of states nearly follow a rigid-band be-
havior. We will pursue this point of view and as-
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FIG. 3. Absorption spectra for VSSn obtained by inte-
grating the echo following a two-pulse sequence as the
fieM is svrept at VV K. Top: experimental spectra (100
Oe scale). Bottom: computer-generated synthetic spectra
(major division=16. 28 Oe). (a) v=18 NHz. (b) v -= 48.6
MHz. Magnetic field increases to the left.

dCAJAA
—5 96t& /&

AIAJAA 15 6~y/~ (5.2)

whichyields for g„=1.8, g„=3.5, anddZ„=0. 5,

TABLE D. Spin-lattice relaxation in Vsoa and V38n.

fieMs are those used for vanadium metal by Yafet
and gaccarino", ~„"„'=1.12x10' Oe, a„&,",
=-0 117x10 Oe yy'o'"'=0 19x10'08
contributions from spin-dipolar and -quadrupolar
terms to the relaxation rate are negligible. jn

Table H, we comyare the measured and calculated
rates for MSGR and V3 Sn for p= 0 and p= 0. 1. %e
see that even for p= 0 the calculated rates exceed
the experimental rates by 12% for V~ Ga and 43%
for VSSn.

5 %8 now consider the measured VRlues of Q for
V~Ga and VISn, we see [EAI. (2. 19) and (2. 20)]
that in order to calculate q ere must have values
for the Sternheimer factors 1-&„and 1-R@as
mell as a reasonable point-charge assignment.
%'e can set 1-R+ equal to unity with no

greater than 20%%uq uncertainty. However, the other
factors are difficult to calculate in a metal. %'e

will turn the problem aroundLe That is, for the
theoretical d-subband densities, the dominant q'
term is that involving the 5~ and g subbands. This
is referred to as case e of Fig. 4 of %GY. Re-
arranging Eti. (2. 19), we find

=
QeAAA/AIAAAA -If /CaatA ~ (5.1)

Using the values of -AI'/AI, «of Fig. 4 of WGY for
the 4-subband densities of TRMe Q, yields R VRlue
of (1-y„)= 27 for both V~Ga and VSSn if we assign
point charges of gv-=1. 8, goa —3, and Zs, —4 in
EAI. (2. 20). The values of Z are ayyroyriate if the
s and p conduction electrons are considered to be
ionized and the d electrons localized on the atomic
sites.

If we consider the distribution in efg's found at
intermediate compositions to be dominated by the
variation in g„from site to site we find

sume that the replacement of Qa by Sn adds one
additional conduction electron and merely shif ts
the Fermi energy E~ to higher values consistent
arith the total number of states required. This as-
sumption places E~ for V3QR at O. 10 Ry and E~
for V~Sn at 0. 12 Ry (see Fig. 7).

Focusing Rttention on the terminal compositions
Vsoa and V38n, we find that the use of the theoret-
ical subband densities of states togethex vrith Eq.
(2. 14) yield values of R in fair agreement with the
measured values, if we assume that the 8 fraction
at the Fermi leve1 p is near zero. The hypelf inc

y 11

N(0) St teeAA/R vy

p
&orb'
Bg
B~
&s~

8 in [sec-t'K)]

0.162
0.273
0.0
0.303

33

0 ~ 1
2.62
0.361
2.61

-0.113

0.0
3.40
0.433
0.0
0.0

6.47 3.83

0.206
0.333
0, 0
0.128

19.6
0.1
1.32
0.09
0.91

-0.07

0.0
1.63
0.113
0.0
0.0

2.26 1.76

1.22
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FIG. 4. Composition dependence
of the electric field gradient q (cir-
cles) and the spin-lattice relaxation
rate divided by the absolute tempera-
ture (T~T}+ (triangles) at 77'K.

0.8

VpGa

I

O. I

I

0.'3 0.5

Xs„

I

0,7
NiI 2

0,9

V3Sn

a value of dq/q= -0.40. This is in reasonable
agreement with the width of the distribution re-
quired in the synthetic spectra to fit the experi-
mental line shapes. The point-charge assi~punents
are somewhat arbitrary and suffer from lack of
theoretical support. However, they have the vir-
tue of self-consistent agreement with the mean
efg's and the width of the distributions of efg's.

In Table ID we list the calculated values of q„«
and q' assuming (1-y„)=27, Zv -—1.8, Zo =3, and

S8,= 4. Also listed in Table IH is the value of
4F'3E'N(0) determined from case a of Fig. 4 of
WGY for the calculated values of —q'/q„«.

Because the theoretical A&(o) subband density of

states, between 0.10 and 0.12 Ry, is small and slow-

ly varying, ~ we take N'(0) to vary linearly fromfive
states/Ry V at V, Ga to four states/Ry V at V, Sn.
We now solve Eq. (2. 14) withthe additional assump-

tions that p=0 and N'~(0)=0, ~ andusing the values of
4F'~F'(0) from Table IIL

Table Df lists the calculated densities of states
at E~ that brings the calculated relaxation rates in
agreement with the experimental rates. We have
used a value of H„",, '=0. 14x10 Oe. This value is
75% of the value used by Yafet and Jaccarino'7 for
vanadium metal; their calculated relaxation rate
exceeds the experimental rate. Use of Bhfg"'
=0. 1S&&106 Oe yields an overestimate of R at
x=0. 3 and 0. 5 by 20% and 50%, respectively. The
use of a smaller value of H~,' ' results in a quan-
titative increase in N'(0) and N(0) but no qualitative
change in the shape of the densities of states. The
cf-subband densities and total densities of states
are plotted in Fig. 8 and are in surprisingly good
agreement with the shape and magnitude of the
band-structure values (Fig. 7), assuming rigid-

IO,
I I I l II II I l I l Ill I I I I I (

hC
4 l.O
I-

FIG. 5. Temperature dependence
of the spin-lattice relaxation rate
divided by the absolute temperature.

4 V~Sn
a Vp Sn 5605
~ V~ Ga

O. l
I

I I I I I III I I I I I III I I I I I IIII 100 IOOO

TEMPERATURE ( K)
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FIG. 6. Spin-lattice relaxation rate as a function of
reciprocal temperature in the superconducting state.
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band behavior, between 0. 10 and 0. 12 Ry.
In Table IV and Fig. 8, we have shown only one

branch of the derived subband densities. The other
solution would approximately reverse the roles of
N'(0) and N'&(0). This reversal, of course, would
be in qualitative disagreement with the calculated
subband densities of Fig. 7. Furthermore, in dis-
cussing the axial Knight shift we will show that the
branch shown in Fig. 8 is the reasonable choice.
We also note that the solution corresponding to
high N a(0)'on the tin-rich side yields values of
N(0) & the renormalized density of states deter-
mined from the electronic specific heat, which is
an unphysical result. The branch we choose as
most reasonable corresponds to the orbital term

dominating the relaxation rate. The other branch
results in the d-spin core-polarization term domi-
nating the relaxation rate.

The isotropic Knight shifts in the V36a,„„Sn„
compounds are characterized by a rather constant
value of the Van Vleck orbital term Kv~. This is
the part of the Knight shift that remains unchanged
in the superconducting state since it does not de-
pend on the unpaired-electron density at the Fermi
level. The constancy of the value is further justi-
fication of the rigid-band approximation, since the
Van Vleck term depends on all the conduction band
states both below and above the Fermi level. In
the normal state, we would expect the s-contact
and the d-spin core-polarization term to yield pos-
itive and negative Knight shifts, respectively. In
fact, for VSGa assuming the contact term is zero
(consistent with p= 0 used to calculate the relaxa-
tion rates) leads to a core-polarization term of
Zt„= —0. 14% and a total isotropic Knight shift
Z«, =Ztaa +Zt». +Zt„of 0. 509o compared to the
experimental value of 0. 56(2)%. The discrepancy
could be removed by assuming incomplete quenching
of the spin susceptibility inthe superconducting state.
removed by assuming incomplete quenching of the
spin susceptibility in the superconducting state.
VSGa also has a temperature-dependent Knight
shift that results from the temperature dependence
of the core-polarization term. This term is re-
lated to the d-spin susceptibility by K,"„
=&hV' (a X'"')I2&a

The axial Knight shift E~ is found to be roughly
independent of concentration and equal to —0. 06'I/q

in the V3Ga, „Sn, compounds. The main contribu-
tion to the axial Knight shift comes from (a) the
spin-dipolar interaction and (b) the anisotropy of
the orbital susceptibility at the tetragonal sites.

To estimate the spin-dipolar contribution to K~,
we follow the treatment of Boon. ' His treatment
leads to

TABLE III. Calculated qtatt and q
' for VBGat~n„.

ap (10 ' cme)

~exyt

Vto) 6'latt

~sl at t

4F 2E'N(Q) states/Ry V

q in10 4 cm

0.0

4.8155

ill. 7

1.72

0.093

2.511

—0.791

+8.5

0.1
4.8355

113.1

1.35

0.087

2.349

—0.999

+11.5

0.3
4.8730

115.7

1.18

0.074

1.998

-0.818

0.5
4.9030

117.9

0.86

0.063

1.701

—0.841

,13.3

10

0.9
4.9610

122.1

0.86

0.042

1.134

—0.274

6.5

1.0
4.9600

122.0

0.86

0.037

0.999

—0.139



48'70 F. Y. F RADIN AND D. ZAMIR

70 5 l I I I ~ I l ~ l I

60—

V)
LL

O

I-
Z'
LLI
Cl

Io

.03

I- 50-0

D
Cl+ 40-x

Vl
4J
+~ 30-

I

.05

Sp BAND

I

~07 .09 .I I

ENERGY ( Ry }

K
20—

OI-

X

Ch

I5-K

laJI-

co l0—
CO
LLII-

CO

o
I-
CO
K
4l
Cl

7r BAND

0 l / l l l I l l l I I

.05 .05 .07 .09 .I I .I 5
ENERGY (Ry)

FIG. 7. The 62{B2) and gN) subband densities of states in energy obtained from a tight-binding interpolation (Goldberg
and cger Qef, 7)] of the APW calculations of Mpttheiss (Ref. 6). (a) p2 subband. (b) x subband.

40

30

I

~ 20

I5

FIG. 8. Derived bare d-subband
densities of states at the Fermi
energy as a function of composition.

IO—

0

V3 Ga

I

.2
l

,4
I

,5
l

.6 .7
I

~8 I.O

V33n



BARE DENSITY OF STTE S AT THE FERMI. . . 48'71

Calculated densities of states, relaxation rates, and isotropic Knight shifts at 77 'K for V&Gaf ~Sn„.

~62y'N(0) a

No(0)

N'(0)

N'2(0)

N(0)

&orb

~total

~ewe

& (Vo)"

&g(Wo)

x +x, (%)

0.0

5.0

31.5

4.5

41.0

3.0
0.44

3.4
3.43

0.64

—0.14

0.50

0.1

4.9

23

34.7

2.2

0.35

2.6

2.59

0.66

-0.12

0.54

0.3

4.7

7.8
29.5

1.6
0.31

1.9

—0.13

0.5

10

4.5

12.5

28.3

1.3
0.44

1.7
l.71

—0.13

0.9

16.6

24.4

1.3
0.17

1.4
l.43

0.72

—0.08

0.64

1.0

4.0

15.5

2.1

21.6

0.13

1.2
1.22

-0.07

0.80{2)&~t(%) 0.56{2) 0.65(2) 0.71(2) 0.76(2)

Densities of states in states/Ry V spin; R values in [sec-{'K)j ~.
"Knight shift in the superconducting state assuming complete quenching of the spin susceptibility.

0.76(2)

d'r' „P,'(cos8'),s- &'(r') o (5.3)
8. Superconducting State

with

&'(r') =g'u'. &,'~. l &.(r') I' (5.4)
lt

Here Pss(cos8') is an associated Legendre poly-
nomial, tP„(r') are eigenfunctions of the electron
Hamiltonian-, g is the usual electron magnetic mo-
ment assumed equal to 2 for our case, p, 3 is the
Bohr magneton, and f is the Fermi function.

It is clear from the orthogonality of the Legendre
polynomials that the angular part of E'(r') must
transform as Psa' for K~" to be nonvanishing. For
purposes of our estimate, we will ignore the cross
terms in

~ P(r') ~

s derived from a product of I = 1
functions.

We consider instead the d-d terms. The result is

Z'„"= 2i ', (r-'pr(O) (2Z'- Z'- —,
' Z'~ ——,

' Z's).
(5. 5)

Note that for equal d-subband occupation, all the
F""s=0.2 andes~"=0. Approximating 2ps (x ')
by lf„",,'b'= 0. 14x 10s Oe, we find that K~e"=+ 0. 15%
for V&Ga and +0.06% for 'V3 Sn. Thus, we require
a negative value of Ev~v to fit the experimental
values. If instead of using the subband densities
of Fig. 8, we use the large I'3 solution for V, Ga,
we would get a value of X~"'= —0. 10/~ for Vs Ga.
This would require a change of sign of K~ be-
tween V3 Ga and V, Sn to explain the constancy of
the experimental value of E,„. We believe this is
unlikely since K~ depends on states well removed
from E~.

2n(0) = 3.5I,T, . (5.6)

In Table V we list the values of T, , 26,(0), and the
ratio 2d (0)/ksT, for the different alloys. We see
that 26(0)/AsT, is below the BCS value for X= 0. S
and 1.0, equal to the BCS value for X=0.5, and
greater than the BCS value for X= 0. 1 and 0.3.
The low values of 2L(0)/ksT, for X= 0.9 and 1.0
is probably due to the fact that the experimental
temperature is not sufficiently below T, to use the
simple exponential asymptotic form for T,.

Geilikman and Kresin3 have recently shown that
the relation between the energy gap and transition
temperature in a strong-couyled superconductor

TABLE V. Superconducting transition temperature and
energy gap in VSGag+n„.

Tc(K)

2Z(0) (meV)

00 .'01 03 05 07 09 10
13.8 10.7 7.2 5.6

' 4.8 3.8 3.4
~ ' ~ 4.4(6) 2.3(2) 1.8(1) ' ~ ' 1.03(5) 0.84(5)

24(0)/kgb ' ~ 4.7(7) 3.7(3) 3.6(2) ~ 3.2(2) 2.9(2)

Our T, data in the superconducting state show the
typical behavior found for T well below T„namely,
1/T, A exp [-b, (0)/'ItsT], where 2h(0) is the super-
conducting energy gap at T = 0. Figure 6 is a plot
of 1/T, vs 1/T. From the slopes of these lines we
determine the energy gap of the alloys.

The Bardeen-Cooper-Schrieffer (BCS)'
theory gives a simple relation between T, and the
energy gap:
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l.2 X= Xo[1-hv'(T/T )']. (6. 1)

I.O-

0.8-

N(O) q'&

M&~&/&~ ') '

where &t ) is the average over the Fermi surface
of the electron-ion matrix element, M is the ion
mass, and &&o "& are appropriate phonon averages,
with the McMillan~ equation

(6. 2)

Our low-temperature susceptibility results on V36a
yield a value of T~ of about 210'K.

If we calculate the electron-phonon coupling pa-
rameter X ~

8n 1.04(1+X)
1.45 Z —p,*(1+0.6a) I' (6.3)
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N(0) (states /eV spin}

3.2

FIG. 9. Electron-phonon coupling parameter A. as a function
of the bare density of states at the Fermi level.

It appears from the agreement of our results with
the calculated densities of states that the large
peak at 0.04 Ry in the 5s subband (see Fig. 7) does
not fall at the Fermi level in VSGa. Although the
sharp peak was derived from the linear-chain
model and the high value of N(0) was necessary
to explain early electronic specific-heat data' (ex-
trapolated from above T,), our relaxation data
does not allow for such a large peak in the density
of states at E~. The relaxation result is a strong
limitation on N(0) since relaxation rates are addi-
tive. In fact, the peak inN(0) found for VsGa is
probably due to the g subband.

Based on the peak in the tt(E) subband at Vs Ga
we find a value of Tz = (170+40) 'K, Tz.
= —,'f- ds ln[N'(E)]/dEs]s. e . This can be com-
pared to the low-temperature susceptibility using
the equation, valid for small Coulomb enhancement

is given by

2b (0)= 3. 52 T,[1+5. 3 (T, /tde ) ln (&gs /T, )],

where +0 is the frequency of the lower of the two
model-phonon peaks and not equal to the Debye
frequency. It seems that in the VSGa, „Sn„system
a phonon softening (decreasing &os) occurs close to
the Ga-rich side.

VI. CONCLUSIONS

we find the values of X plotted in Fig. S. Here we
have taken p,*=0.13 and 0. 20 and Q~=310 'K. The
dependence of X on N(0) for constant p, * is approxi-
mately given by X. =0.16+0.31 N(0) for p, *=0.20
and X=0.09+0.27N(0) for p, *=0.13. Qf course,
the use of a constant p, * is probably incorrect, as
is the use of the McMillan equation for the A15
compounds, which have anomalous phonon spectra.

We may compare our derived value of N(0) with
that determined from specific-heat measurements.
Spitzli ' has found the electronic specific-heat
term of V3 Sn to yield a phonon-renormalized val-
ue of 1.65 states/eV V spin. Compared to our
N(0) value this yields a X =0.17. For VsGa, Junod
et al. ' find the enhanced value of 7. 035 states/
eV V spin. Thus we find X=1.33 for VSQa. How-
ever, recent specific-heat measurements by Knapp
and Jones on a sample of V36a with a T, of
14.5 'K and NMR parameters essentially un-:
changed from those reported in this paper yield a
renormalized density of states of 5.65 states/eV
V spin. Compared to our derived bare-density of
states this yields a value of X = 0. 87, which is in
good agreement with their value of X. = 0. 64+0. 3
derived from extrapolation to T = 0 'K of the high-
temperature bare-density of states.

It has been argued's that for fairly high N(0)
metals the numerator in Etl. (6.2) is approximate-
ly independent of N(0). In fact, Allen and Cohenss

have shown that for two similar materials A and

B, where A has a high T, and anomalous softening
of the phonon spectrum, and B a low T, and
normal-phonon spectrum, the difference in elec-
'tron-phonon coupling parameter &A. =- X„—X~ can be
written

ny=(C/N) Q[~ (a)/~ (A) —1], (6.4)

where C is a constant of order —,
' and N is the num-

ber of phonon modes. Although in Fig. 9 we f ind

an approximately linear dependence of X on N(0),
the difference X(VsGa) -X(Vs Sn) can be understood
in terms of phonon softening, i.e. , a decrease in
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toaa(Vs Ga) in Eq. (6.4). We note the correlation
of high x, with large N'(0) .From Table I, we see
that the g subband corresponds to cf-wave functions
whose lobes point in the [011]and [101]directions,
where we are focusing on a vanadium atom on a
Z-axis chain. This spatial direction corresponds
to the direction of atomic motion for a phononprop-
agating in a [011]direction with transverse po-
larization along [011]. This is the so-called soft
phonon found in 415 structures. A high g-subband
density corresponds to a greater localization of the
d electrons of this symmetry, i.e. , effectively
smaller atoms in the [011]directions and thus
softer phonons. In other words, the bare-phonon
frequencies are renormalized by electron dress-

ing effects which tend to diminish the phonon fre-
quencies as the p-subband density of states in-
creases towards VSGa.
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