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The quantum-mechanical formalism described in an earlier work has been applied to the case of a
Born-Mayer potential as the interaction between the emitted particle and the crystal atoms. The Debye

model for lattice vibrations and the one-phonon approximation for inelastic scattering of the particle by

the lattice vibrations are used, as done previously. The results have been compared with those obtained

using a screened Coulomb potential in the earlier work and it has been found that although the

attenuation continues to be small compared to that obtained in the other diffraction theories, its

dependence on the charge numbers of the emitted particle z, and the crystal atom z, changes. Thus,

the attenuation increases more rapidly for a Born—Mayer potential with increasing values of z, and/or

z„ than for a screened Coulomb potential.

I. INTRODUCTION

In a previous investigation (hereafter referred
to as I) a quantum-mechanical formulation was
developed for propagation of charged particles
emitted along the major crystallographic direc-
tions from sources embedded within the crystal.
It was found that the two-beam theory so developed
predicts correct behavior for the emission pattern
and that most of the qualitative features of the
blocking phenomena can be understood. It was
found that the attenuation of the emitted particles,
which comes out as a natural consequence of the
renormalization of the particle wave function due
to the inelastic processes, is small compared to
that, obtained in previous diffraction theories~'3
where the absorption is usually incorporated by
introducing a complex potential and finding the
value of the imaginary part phenomenologically.
In the present work that formulation is employed
to recalculate various parameters using a Born-
Mayer potential as the interaction between the
emitted particle and the crystal atom.

The choice of the interaction potential between
the emitted charged particle and the ions at the
lattice sites of the perfect crystal is crucial in the
description of the channeling and blocking phe-
nomena that take place during the propagation of
the particles in the crystal. The screened
Coulomb potential is frequently used in this con-
nection. "' However, it is well known that the
screened Coulomb potential is satisfactory only
for distances of the order of fractions of the
Thomas-Fermi screening length. On the other
hand, the Born-Mayer potential is applicable to
distances of the order of about a few times the
Thomas-Fermi screemng length (aTr) and has
been found6'~ to be good at least in the case of ions.
Actually, as, long as the particle remains at dis-
tances more than a few times a», the Born-Mayer
potential will be applicable. Since under channel-

ing conditions the particles do not come very close
to the lattice atoms and are mast of the time at
long distances from the crystal atoms in the steer-
ing process that takes place during their motion
along the major crystallographic directionsy 1'5.8, 11

it seems worthwhile to examine the predictions of
the quantum theory for the case of the Born-Mayer
potential and compare these with those obtained
by using the Bohr screened Coulomb potential. In
fact, such a comparison has been found9 to give
some new information for the case of channeling of
the particles incident from outside.

The validity of the quantum theory for heavier
particles such as protons, for which the Born-
Mayer potential applies more correctly than for
light particles such as electrons and positrons,
can not be ruled out. Newton and Chadderton'
have considered the limits under which the various
descriptions should be used. In the intermediate
range of emission angles. with respect to a major
crystallographic direction g, ( 4gz, where gq
is the critical angle given by the classical theory,
the quantum effects are very important even for
the heavier particles. The permissibility of ap-
plying an orbital picture for heavier charged par-
ticles over the range of angles which defines the
phenomena of channeling can be justified on the
basis of localization of waves into a packet in the
crystal. Over that range of angles, commonly as-
sociated with blocking, the scattering is to all
intents and purposes due ta single collisions and
quantum effects are predicted in the "near field"
even for heavier particles.

In Sec. II we have given the useful results of I
relevant to the present calculation, and in Sec.
III, the calculation has been made using the Born-
Mayer potential as the interaction between the
particle and the crystal atoms and the Debye model
for the lattice vibrations. The conclusions re-
garding the tern'perature and the energy dependence
of the process, in addition to those of mass and
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potential dependence, have been summarized in
Sec. IV. Comparison of the present results with
those obtained earlier in I has also been made in
Sec. IV.

II. FORMULATION AND RENORMALIZATION MATRIX
ELEMENTS

Consider a perfect crystal and a source (emit-
ting o, or P' particles, say) embedded in it. Sup-
pose the crystal is initially in a low-lying phonon
state In). After escaping from the source the
particles move through the crystal. Some of the
particles move in random directions and get lost
after multiple scattering. The particles that move
along or nearly along some major crystallographic
directions succeed in coming out of the crystal.
We are concerned with the motion of these par-
ticles and their distribution around the crystallo-
graphic direction after they emerge from the
crystal. We will neglect the interactions of the
emitted particle with the source itself (if any).
One may expand the total wave function of the
whole system (the crystal and the particle} 4 in
terms of the complete set of crystal eigenstates
In) as in I,

e(r, (R;j)=g In)y„(r) (1)

where r is the position of the particle, R; is the
actual position of the gth nucleus in the periodic
crystal (R;= o +u;, u; being the thermal displace-
ment of the oth nucleus) and Q„(r) represents the
particle wave function. Using this expansion in
the Schrodinger H4 =E4, where the total Hamil-
tonian of the system is H=Ho+H~+ V, Ho being the
crystal Hamiltonian (Holn) =E„ln)), Ha the free-
particle Hamiltonian, and V the interaction between
the particle and the crystal, with E„the energy of
the crystal in its initial state In) and E (=E„+Ea)
the total energy of the system, E~ being the par-
ticle energy at emission, we get the equation
satisfied by P„(r) as

p2
+&nl vln& Ea I&.(-r}=-~ &nlvlm&e-(r»

2mo j men

where mo is the mass of the emitted particle.
Now the procedure is, as described in I, to use

where

x =-'. [1+(y —I)(I+y')-'~2],

y =&a/24a )

(Re/a = ga'= [V„+ReCao]/Ea)

&a-4a 6'o

(Imga = ga" = Im Cao/Ea)

4=(&A') ' 4'=-(t.4'} '

(5)

and t is the distance of the emitting atom from the
crystal surface. V„ is the hth Fourier coefficient
in the expansion of V„„(r},

v„„(r)=(nl v(r) ln) =Z va(n)e'*a' .
h

In Eq. (5),

g„= (a'/2m, E,)(A', + 2R„k,),
= [V„+C~(n)]/E

the reciprocity relation, which states that the
intensity at a point r outside the crystal due to
emission at a point r, inside the crystal is obtained
by calculating the intensity at the emitter site
when the emitter has been placed at the observation
point r, i.e. ,

P„(r, r, ) =y„(r„r)
which holds as long as one neglects the reflections
at the crystal surface. Thus the problem is now
to calculate the intensity pattern at the emitter site
when the particles are coming from a far away
point r.

The problem of penetration of particles has been
treated in detail in previous investigations. "
The final expression for the intensity in the first
Born approximation, with proper boundary condi-
tions on the wave function at the surface of the
crystal and using the two-beam approximation for
the case when the emitter is located at the lattice
site'o is given by (see I for details)

I4.(t) I'= ~e~- [I-ea(I+y2) "2]t/5"]
+ (I -x)oexp[- [1+ea(1+y2) '~2]t/go(

+2x(I-x) exp(- t/go") cos[(1 y+')'~'t/g ]2,

and the renormalization matrix elements are given by

Cao(n) = —,o dr dr'exp[ —t(Ka+k„) ' r+ t(K2+ k„) ' r'] Q V„„.(r)V„.„(r') (8}

where 0„=2moEa/PP and k~ is approximately equal to k„with a small imaginary part (I) and V' is the volume

of the crystal. In deriving Eq. (4) the assumption of qa'=ImCao/Ea being small compared to ga' is es-
sential; this assumption will be justified when we calculate the real and imaginary parts of the renormal-
ization matrix elements.



The imaginary part of the renormalization matrix has been calculated in a recent publication using the
Born-Mayex potential. %'e follower exactly same method and similar approximations for evaluation of the
real part here. The expression for the real part in the one-phonon approximation~~ assuming the crystal
to have no isotopes and zero nuclear spin [Eq. (12) of I], is

m, l~
df V(f+ K„)V{&+K.)(7+K„)~ (I+K.), ; - 2m, g&,

'
I (2)' I ~ (I-e-«" ')ex (D[f+R}' g+R}']j I' )'

vo-s)««-s)«-K) o-s), .„;,-„«m.«)"
(es~as'- i)exp@[(F-R„)'+ (t - R,)]]

D = Q coth(~, /au, r)/g,

and e~ the volume of the unit cell. Here

V(R) = W.(R) = f V.(r) e'@'dr

and g, F are, respectively, the energy and the wave vector of the yhonon exchanged. P(1/x) represents
the principal-value operator, i.e. ,

=s'l —+)8(x) .x-sa I«x

Now me calculate this in the Debye model choosing the Born-Mayer potential as the interaction between the
particle and the crystal atoms.

III. RESULTS FOR DEBYE MODEL AND BORN-MAYER POTENTIAL

In the Debye model ( = Ref, where c is the velocity of acoustic vibrations in the crystal and the maximum
value of f can be fo. The Born-Mayer interaction potential may be written

v(r) =A Q exy( —plr —%,l),

v, (r —R,) ~A exp(- pl r —K, l) and v(R) = v, (R) =8vAp/(p +as)s,

where P
' represents the range of the interaction. Both the constants A and P depend upon the charge

numbers of the particle and the lattice atoms.
For this potential Eg. (9) becomes

8m+sP
~

df (f+K„) (f+R,) exp[ —D[(f+Ka)s+(f+R,) ]j
v~ecs, „I f (I-e """s)[p+(i+R„)J[p+(i+R) j'

2moe f I
' (f —Ra)+ (F'- R,) exp[ —D[(t —IT„) + (f —f )']].

j ac//asr 1)[ s
(f g )s]a[ps (f g )s]s

«e(g~, «r «„- «,"')' '

.
Now neglecting Fcompared to reciprocal-lattice vector Ra as in I (because the maximum value off is fo,
which is small compared to Ra), we write from Eg. (11}the expressions for ReCao(n) (droyying out the
index n):

8moyA Pe n
a

l

df I '(f+Ka} +~ s 2f 2mocf ' t" (f —Ra}ao-- mac(ps+Ifs)s I y (1 s ao~lasr)(ps-+ps)s l(f
' 4+ )I

+ (qaoIlasr 1)(ps ys)s

x6l,ys+2f h„- "~, (»)

where p = I/t, is the number density of atoms in the crystal. The angular integration involved in Eq. (12)
may be done by choosing k„as the 8 axis~ as in I. The results under the approximation of neglecting Bloc
compared to Sk„are

r8mo pA p e aI "fdf l~i Ka cose „Ref mocha cosn'
M@cI „(p'+SC,')' .I, (p'+f')' ~&

' 2n„" m, r '
Iu„
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xlo " —RÃscosocoth~
2k„+f ( Scf

2k' T (13)

where n is complementary to Bragg angle. The exact evaluation of expression (13) is possible only by
machine calculations. In order to get an estimate let us write ln(1+f/2k„) =f/2k„, since the maximum
value of f (i.e. , fp) is small compared to k„; and consider the situation at low temperatures so that
coth(kc f/2ksT) = 1+2e "'~1"er. Thus we get, after a few cumbersome mathematical steps,

SmppA p e & & mcpK„coso, ~f mpcfpKpcoso fp(1 +K„coso/2k)
M8'ck„(P +Kp) 28k„P P 28k„(P +fp) 2(P +fp)

1 ( K„cso n t'
fpP&

n

K cosa ~ & K cos 2K cos

where D, is the low-temperature limit of D and B=Pic/ksT. Now since, from the Bragg condition,
K„cosa/2k„= —(K„/2k„)P and (Kp/2k„)P is small compared to unity for high-energy particles, we get

ReC„p= — p» Q+ p
PpP,—,~ p + —,'ln11++1+ 1 —~P 1B[ci(B)sinB —si(B) cosB]

—1 —2[ci(B)cosB+ si (B) sinB] . (15)

Under these same approximations, ImC~0 has been found to be

D KSvA p mppe & p mpcK„cosnfp 1
K„coso.~1 1 t & fplp+(I+fp/p')' '-1

p +ci(B)sinB —si(B) cosB+B[ci(B)cosB+si(B) sinB] . (16)
2 1+ p

V„=, 1 dr(n1V(r) ~1n) e '"p"

with

SvAP
(Pz K2)2 P t

I p ~ coth(g, /2ksT)
4MN

1+41 „ I Kp=DgKp
31' (T &'

8k~ oDM 1t (~3D)
(18)

at low temperature, where SD is the Debye tem-
perature.

The expressions (15)-(18) for the renormaliza-
tion matrix elements and the potential Fourier
components are to be used for the calculation of

In these equations (14)-(16), ci(x) and si(x) are
given by

ci(x)= — df and si(x)= — df .cost sint
t x

The Fourier transform of (n I V(r) In) for the Born-
Mayer potential may be calculated similarly to the
case of the screened Coulomb potential in I; the
final result is

the emitted intensity from Eqs. (4) and (5). To
make comparison with earlier results, we evaluate
ReC„p/V„and ImC„p/V„ for the case of a copper
crystal at 0 'K and emitted particle (e' or e ) en-
ergy such that k„=2&&10' cm ', the values chosen
in I. The values of the constants A and P have
been calculated using Brinkman's version of the
Born-Mayer potential where

A. =2. 5SX10 'z,",, eV,

P zeff /1 5sp' (19)

where z,« = (z&xp), ap is the Bohr radius, and

s~ and s~ are the charge numbers of the incident
particle and the target ions. It is found on numer-
ical evaluation that for z, = 1 and z p

= 29 (P' par-
ticles being emitted from the copper crystal) one

gets ImC„p/V„-10 P and ReC„p/V„-10 '. This
shows that the attenuation of the particles is of the
same order of magnitude as obtained by using the
screened Coulomb potential, and the angular dis-
tribution patterns of the emitted intensity will
again be same as given by DeWames et al. ' for the
case of no attenuation. It is further confirmed by
the present calculation that the attenuation usually
assumed ((p"/P„'= 0. 1, which in the present case
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is to be compared with ImC, O/V, ) is an overesti-
mation. Although Humphreys and Hirsch have
given a detailed calculation fox' attenuation and its
vaxiation with the recipxocal-lattice vector and

the values obtained here
and in I are small compared to the results of these
authors, in spite of the fact that the behavior of
the attenuation with reciprocal-lattice vector and
the target atomic numbex' is similar in all these
theories including the px'esent one.

The intensity patterns that one mouM expect on
the basis of the present formalism in the two-beam
approximation, are ehomnl in Figs. 1-3. Since
the attenuation that me get in the present theory is
small, these curves are very similar to those ob-
tained by 08Wames et al. for the case of no at-
tenuation. Figure 1 shows the thickness averaged
intensity one obtains as a function of angle mea-
sured from the Bragg condition. [When expression
(I) is averaged over thickness, corresponding to
the physical situation of randomly distributed emit-
ters inside the crystal, the last term containing
cosine function vanishes Rnd in xest of the expres-
sion, t x"epx'esents the Rvex'Rge dlstRnce of emlt-
ters from the crystal sux face. The calculations
shown in Figs. I-3 correspond to f = 500 A. ] The
scale y is given by Eq. (5) and is approximately,
when expressed in terms of ang1es,

sin28s
( 8)

the value of y at 8 = 0 (looking straight down the
planes) depends on the magnitudes of g, and the
Bragg angle. Figure 2 shows the intensity pattern
one might expect from including the Bragg reflec-
tion on the other side of 8 =0 for electrons. It is
constructed by reflecting the curve of Fig. I about

8 =0 which for electrons occurs at y = —1.5 for the
condltlons shown ln the figux'8. Flgule 3 shows
the corresponding pattern for positions where 8 = 0
coxresponds to y = 1.5.

%8 see from these figures that the bvo-beam-
approximation results are in qualitative agreement
with the experimental results. ~o 33 The many
beam ca1.culation mill give rise to more detailed
structures in the intensity pattern similar to those
predicted by De%ames et a/. for the case of no
attenuation. The difference of the present results
with those obtained in I lies in their variation with
z& and ze, the charge numbers of the paxticle and
the crystal atoms. For the screened Coulomb
potential, both ReCM/V~ and ImC„O/V1, were found
to vary as spa, whereas in thepresentcase the vari-
ation of these quantities is approximately as (&g q)
Thus the attenuationmill increase much more rapid-
ly miths& and za than it does for the case of the
screened Coulomb potential. This means that if
the emitted pRrtlcle ls R heRvlex' ion~ the RttenuR'-
tion increases and ImC„O/V„becomes of the order
of 10 or even 10 . This also shows that. .the
Born-Mayer potential applies more corx ectly to
heavier ions than to electrons and positrons. The
dependence of the attenuation on z2, the charge
number of the crystal atoms, is also similar to
that obtained in the calculations of Humphreys and
Hirsch. Apart from the strength parameter A,
the range of the Born-Mayer potential has also a
dependence on s, and sa, although not as significant
[Po,(s,sa) I~]. Therefore the absolute values of
ReC„o, ImC„0, and VI, are still more sensitive to
z, and s& than for the case of the screened Coulomb
potential.

Other features of the present formalism are
similar to those seen in I. The dependence of at-

FIG. l. Angular intensity vari-
ation aSOQt Qle Bragg Rllgles,
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FIG. 2. Angular intensity var-
iation for electrons~ CNO wave So
lution ()I,

' = —3.0~).
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tenuation on mass and energy of the emitted par-
ticle is again (mo/E~)'~ . The temperature depen;
dence is again obtained in the form of a Debye-
Waller factor and some other factors containing
temperature directly such as the ci and si func-
tions~ as ln Ii The independent nature of ReCIto
and ImC„O with respect to the sign of the charge of
the emitted particle again shows some difference
in the emission patterns of the positively and the
negatively charged particles. Since the difference
is only qualitatively correct and of the same order
of magnitude as in I and cannot explain quantita-
tively the observed difference in widths of the
emission patterns of electrons and positrons, we
do not discuss this point any more. The condition
rh, 8z/8s «1 for the validity of the two-beam theory

is again mass and energy dependent in same way
as for the screened Coulomb potential, showing
that the two-beam approximation applies to light
particles more satisfactorily than to heavier par-
ticles, the energy dependence of the condition being
through the small quantity ReC„O/V„.

IV. CONCLUSION

From the calculations presented here some im-
portant conclusions regarding the emission of
charged particles from the crystal emerge. Some
conclusions are similar to those seen in I with the
screened Coulomb potential. The small magni-
tudes of ReC~O and ImC~O compared to the Fourier
transform of the potential shows that the renor-
malization of the wave function does not change the

& lg 12&

-l6
kq = 2x lO lo -I

0.8

-l.0 FIG. 3~ Angular 1nten81+ varia
tion for positrons, bvo-vrave solu-
tion (gq =104).

0.4-

0.2
-2 0

Y



intensity patterns appx'eciably and it also indicates
that the inelastic processes such as phonon emis-
sion Rnd absorption do not contribute very signif-
icantly to the attenuation of the particles moving
close to major crystallographic directions. The
energy dependence of Ret „0 as 1/E» and of ImC„O
Rs {tÃ0/E»)' ls also similar to the pl eviolls
results of I, showing that for low energies, the
correction factor 88C„O and the attenuation factor
I C„,bot 1ncrease.

These cRlculRtions px"esented her'6 Rnd 1D I give
the attenuation of the particles px'opagating along
the major crystallographic directions as a natural
consequence of the 1DelRstic processes Rnd one
need not i,ntroduce RQ imaginary part to the inter-
action potential for incorporating the attenuation as
has been done in other diffraction theories. '3 The
iIQpr'oveIQ6Qt OQ Ule quantltatlve vRlues is R IQRttex'
of more compbcated many-beam calculation on a
machine, but this procedure should perhaps be a
better way of exploring things than assuming R

complex lattice potential.
As regards the present potenti. al model, we see

thRt we get R d1fference 1Q dependence on the vRlues
of gI Rnd ga fr'OIQ thRt Obtained 1D the scr'68Ded
Coulomb potential case, This dependence sounds
closer to that seen by Humphreys and Hirsch,
although not exactly the same, quantitatively. The
sI and za dependence of the attenuation .also shows
that for heavy ions, the attenuation must become
significant as expected. The dependence of the
quantities ReC~O and ImCI, O through the range pa-
1'Rnle'tel' p also shows sonle dependellce oil gl Rlld

g~ in contrast to the screened Coulomb potential
where the screening parameter is determined by
the conduction electron density. But this depen-
dence is not very slgnificantbecause p~ (z,s2)'I»
and in view of the small magnitudes of ReC~O and
IIQC~O, we cannot perhaps attach any important
significance to this dependence.

It shouM be noted that the two-beam theory,
developed in the present work and in the earlier
one (I) to get the analytical results and for the
sake of simplicity, gives only an appx'oximate
qualitative behavior Rnd thRt R multiple-beRIQ cRl
culRtion which Deeds Qumex'1cR1 solut10D GQ a coIQ-
puter' is needed to predict the detailed behavior of
the emission pattern» Particularlyy the peculiRr
transmission peak observed in the broad trans-
mission dip in M8V electron propagation along
major crystRQographic axes is Dot explained in
the framework of the two-beam theory.

Since the Born-Mayer potential is suitable for
heavier masses, and the two-beam description
becomes approximate for heavier particles, it
may be stated that the present results will apply
most effectively to particles with intermediate
mass. The case of px"otons, about which ther'e has

been a lot of discussion regarding the vaMity of
%'Rve desex'lptlon Rnd dlffx'Rctlon theox'les, is
the marginal one. In spite of the fact that most
of the phenomena exhibited in proton channeling
can be understood by classical theories, there are
some observations~6 ~9 which require a quantum
description ' Rnd Deed fox' R wave theory cRQnot
be ruled out, .30 Actually it has been emphasized '3

that the "star patterns" are just another form of
Kikuchi pattex'ns and are manifestation of wave
behavior of protons. Lt may be again emphasized
thai the present results are useful only for an in-
termediate range of IQass and not very high ener-
gies. At energies of 100 kev and above, the one-
pbonon approximation and two-beam description
beceme very approximate. Moreover, the use of
Born-Mayer potential in the present fox'malism
excludes the appbcation of the results to close
collisions and gives description of motion of pax'-
ticles in open channels.

The deviation of the present results with those
of Hlx'sch RDd co-workers ' 18 pex'hRps contained
in the difference in the two approaches. Hixsch
et al. used kinematical diffraction theory, which
applies to small and thin crystallites, and one
must use the dynamical diffraction approach for
large crystals. Moreover, these workers assumed
thescatte i gof Slo hwa es' topla wa es
which RgaiD 18 only RQ approximate situation 1D

lRx'ge crystRls becRuse there is Do Q pt'$01'$ x'easoQ

why the scattex'ed waves should be plane waves.
The present formalism starts by considering whole
system of the incident particles and the crystal,
without imposing any restriction as regards the
size of the crystal. %'6 do not assume the
scattered waves to be plane waves. Another dif-
ference concerns the region of validity of the two
results. %'hile Hirsch et aE. calculate the absorp-
tion in the Einstein IQodel and include the multi-
phonon processesy px'esent wox'k 1ncludes only GDe

phonon processes in Debye model of lattice vibra-
tions. This feature restricts the px'688Dt x'esults,
IQRk1ng them RppllcRble Only io those pRx'tlcles
that move close to major crystallographic dixec-
tions, the so-called "channeled particles. " Ac-
tually the basic aim of the present work was to
study the behavior of the eIQiasion pattern around
the major crystallographic directions where the one-
phonon approxiIQation is reasonably satisfactory.
The SIQRU values of the attenuation factor obtained
here are for these nearly channeled particles only.

As a final comment we may point out the dif-
felences between the px'esent formalism Rnd the
one used by Hirsch and co-workers. ' These
workexs have calculated the absorption by evaluat-
ing effectively the imaginary part of the complex
interaction potential and thereby including the con-
tributions of different processes that give rise to
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absorption. In fact, they have made an important
improvement over earlier calculations by obtain-
ing the detailed variation of the absorption param-
eters with reciprocal-lattice vector instead of
taking it as f'I,'//II, = 0. 1. On the other hand the
present formalism starts with basic equations
governing the particle motion in the crystal and the
absorption due to phonon scattering automatically
emerges in terms of the imaginary part of the re-

normalization matrix C~, which has been then
calculated using the Debye model for lattice vibra-
tions. The values of absorption parameters ob-
tained in the present formalism are quite small
compared to those obtained by cartier authors,
as discussed in the last section. But the theo-
retical basis of the present formalism seems
better than the complex potential concept for cal-
culating the absorption parameters.
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