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High-temperature expansions for the zero-field susceptibility and specific heat to seventh
order in K=V/k&T are reported for ferromagnetic Heisenberg-model simple-cubic-lattice
"films" of n=1, 2, . . . , 61ayers. Extrapolation of the series yields reliable estimates of the
susceptibility X (and of the specific heats) down to temperatures at which Tx =30(TX)z . Firm
conclusions about possible two-dimensional critical behavior cannot be reached, although the
data are consistent with an exponent F2=3.0+ 0.5. The shifts of the apparent critical tempera-
ture T,(n) from the d=3 bulk value can be described by a power law n ~ with &=1.1+ 0.2.
The surface susceptibility in the bulk limit diverges with an exponent y = 2. 18+ 0.02 which ap-
pears to exceed the scaling prediction y" =y3+ v3 =2.08; this could indicate the existence of a
surface correlation length ("(T) with exponent v" &v3.

I. INTRODUCTION

It is well established that the dir ensionality of
a system plays a crucial role in determining its
critical behavior. However, in order for the sys-
tem to exhibit precisely the critical behavior char-
acteristic of its dimensionality, it must be of in-
finite extent in all its dimensions. Restricting the
size in one or more dimensions will affect the posi-
tion and nature of the critical singularity (and may
cause it to disappear). In the present investigation,
which forms part of a general study of the effects
of finite size on critical-point behavior, ' numeri-
cal results are obtained for ferromagnetic "films. "

We consider a film consisting of yg square-lattice
layers stacked upon one another. The n && ~ && ~
section of a simple cubic lattice so formed is in-
finite in two of its dimensions but of finite thick-
ness na in the third dimension (where a is the
nearest-neighbor lattice spacing). Two types of
boundary conditions will be considered: free sur-
face,, where the surface spine each lack one neigh-
boring site; and periodic, where the first and nth

layers are considered to be adjacent neighboring
layers.

Allan2 studied the corresponding spin- —,
' ferro-

magnetic Ising model and derived series expan-
sions for the susceptibility g„(T) and specific heat
C„(T). We have performed similar calculations
for quantum-mechanical spins S, , on sites i, in-
teracting through the isotropic Heisenberg Hamil-
tonian

where the first sum runs only over distinct pairs
of nearest-neighbor sites. We restrict attention
to ferromagnetic (Z&0), nearest-neighbor coupling,
but consider general values of the spin S. A pre-
liminary account of this work has been published. '

We have extrapolated the series to study the
"crossover" from three-dimensional behavior at
high temperatures to two-dimensional behavior in
the critical (or pseudocritical) region. The sur-
face contribution to the susceptibility has also been
calculated and its critical properties compared
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with the general theories developed. ' Assuming
there is a true critical point in two dimensions (at
which the susceptibility diverges) the shifts in the
critical temperature T, (n) for the n-layer film,
from the bulk value (n= ~) have been estimated.
These shifts have also been examined in the light
of the general theory, which we sketch very briefly
in Sec. II.

II. GENERAL THEORY OF FINITE-SIZE EFFECTS

Suppose that the susceptibility )( (T) for the n-
layer system diverges at a finite inverse critical
temperature K,(n) = J/k~T, (n). The divergence will
be characterized by a two-dimensional critical
exponent y2 for all finite n, according to

)(„(K)-{I-[K/K, (n)]] "2,

as K = J/ksT-K, (n) (n fixed) .

However, for increasingly larger values of n the
susceptibility will at first appear to diverge with
the three-dimensional exponent y3 and will only
"cross over" to this two-dimensional behavior
closer and closer to the critical point T, (n). The
effect of the finite thickness also appears in the
deviation of the (inverse) critical temperature K, (n)
from the bulk value K,(~). We may define a frac-
tional shift

~(n) = [K.(n) —K.(-)]/K, (-)
which, asymptotically for large n, is expected to
vary as3

e(n) =k/n' (n- ) .
With free-surface boundary conditions, there

will be a surface contribution y" (T) to the total
susceptibility per spin, X„(T). It is defined by the
rel.ation3

y„(T)=y„(T)+2n 'l("(T)+ ~ ~ ~,
as n- ~, T fixed. The surface susceptibility will
diverge at the bulk critical point, K, =K,(~), ac-
cording to

q"(K)-[I —(K/K, )]-" as K-K,—,
The corresponding exponent r" will, in fact, be
larger than the bulk exponent y3.

Arguments can be advanced'3 to relate the ex-
ponents 3 and y3 to other known exponents. Thus
a thorough-going scaling viewpoint suggests that
the only relevant length with which to compare the
film thickness L =na, is the bulk correlation length
5(T)- IK, —Kl "3. For free-surface films this
leads to the predictions'

(&)

(8)

The first of these relations appears to hold quite

accurately for Ising-lattice films (with X = 1.56).'-s

On the other hand, one can also argue' for the
alternative (coupled) possibilities

&=1,

y"=y3+1.
(9)

(10)

where g" = (BM'/BH)r, and M' is the z component
of the magnetization. Seven terms in a power se-
ries in reduced inverse temperature, K=8/AT,
have been'obtained for the susceptibility

g„(K)= 1+Z a, 'K'
~=1

and for the specific heat,

~)K(2= C) Kk~E, p

of an n-layer lattice with free surfaces, for n=1,
2, . . . , V. The film with periodic boundary con-
ditions is effectively "close packed" for small n
and only six terms have been obtained in this case.
The coefficients a,'"' and c,"', which are poly-
nomials of degree I in K = S(S+1), are tabulated in
Tables I and II. We will present only an outline
of the calculation.

The specific heat is related to the partition func-
tion ZN for Xspins by

8 2

C(K) =N 'ksK (InZ„) . (14)

A formal expression for the zero-field partition
function is obtained by expanding the exponential

These latter relations are, in fact, realized ex-
actly in the spherical model and in ideal Bose gas
films which can be analyzed rigorously for general
dimensionality. However, in those models the
values of X and y" seem to be determined by some
fairly special features of the models (namely, the
existence of an over-all "constraint"). It is, thus,
likely that (7) and (8) will apply more generally
than (9) and (10). We shall compa, re our estimates
for the Heisenberg films with these various ex-
pectations.

III. SERIES EXPANSIONS

The high-temperature expansions for the sus-
ceptibility and specific heat for general spin 8 have
been calculated following the diagrammatic methods
developed by Rushbrooke and Wood. ~ The defini-
tions (with regard to normalization with respect
to spin) of a previous paper' are followed here. In

particular, the zero-field reduced susceptibility
(for an n-layer lattice) is normalized by the pa-
ramagnetic susceptibility so that it approaches
unity as T-~, that is, we take
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factor e where

about K=O in the form
where (8 ) = Tr(6+(2$+1)" denotes a reduced trace
over the spin variables. Similarly, using the

TABLE I. Susceptibility coefficients. The polynomials f&" (X) are listed; the susceptibility coefficients a&", defined in
Eq. (12), are related to these by a&~ =f&~"(X)/2'S ' with ao '=1 and X=S(S+1).

Lattice X

(i) Free surface
n=1
(sq)

2.666 667
1 ~ 333 333
0.711111

—0.444 444
0.325 079

—0.272 593
0.257354

5.333 333
—6.044 444

6.400 000
—6.217 143

6.254392
—6.723 725

9.955 556
—17.856 790

27. 600 141
—39.126 349

52.' 358 359

16.908 642
—43. 208 466

87.331 593
—159.709 912

27. 240 447
—90.359 020
227. 832 174

42. 212 158
—172.898 878 63.067 002

n —2 3e 333 333
—l.666 667

0.888889
—0.555 556

0.406 349
—0.340 741

0.321 693

8.888 889
—9.777 778
10.296 296
-9.993 651
10.058 554

—10.822 434

22. 814815
—39.160 494

58.564 374
—81.802 681
108.803 085

55. 308 642
—132.338 154 131.393768

254. 033 533 —403.029 935
—446. 878 050 . 940.823 712

301.729 837
—1147.073 576 680. 075 597

3.555 556
—1.777 778

0.948 148
—0.592 593

0.433 439
—0.363 457

0.343 139

10.370 370
11.318 519
11.901 235

—11.548 783
11.625 350

—12.511041

29.471 605
-49.975 309

74. 140 106
—103.155 885

136.976 329

80.065 844
—188.262 591

356.679 287
—621.477 299

214.080 815
—643.919012 557.017 138
1477.480 854 —2067. 203 071 1429.185 966

n=5

3.666 667
—1.833 333

0.977 778
—0.611111

0.446 984
—0.374 815

0.353 862

3.733 333
—1.866 667

0.995 556
—0.622 222

0.455 111
—0.381 630

0.360 296

3.777 778
—1.888 889

1.007 407
—0.629 630

0.460 529
—0.386 173

0.364586

11.111111
—12.088 889

12.703 704
—12.326 349

12.408 748
—13.355 344

11.555 556
—12.551 111

13.185 185
—12.792 889

12.878 787
—13.861 926

11.851 852
—12.859 259

13.506 178
—18.103 915

13.192 146
—14.199647

32.948 148
—55.555 556

82.132 910
—114.080 685

151.364 868

35.084 074
—58.908 704

86.928 593
—120.635 485

159.997 991

36.424 691
—61.185 802

90.125 714
—125.005 385

165.753 406

94.024 691
—218.977 072

412.097 637
—714.717 805

102.479 012
—237. 511111

445. 481 651
—770. 828 474

108.115226
—249. 867 187

467. 737 660
—808. 235 586

265. 314051
—788.056 281
1789.626 202

297.107490
—876. 554 384
1980.087 617

818.347 012
—935.618 880
2107. 066 840

732.138428
—2673.825 938 1998.246 804

845. 133507
—3058.106416 2384. 070 686

921.165 892
—3315.756 593 2647. 471 031

3.809 524
—1.904762

1.015 873
—0.634 921

0.464 399
—0.889418

0.367 649

12.068 492
—13.079 365

18,785 450
—13.326 077

13.415 974
—14.440 877

37.417 989
—62.780 159

92.409 373
—128.126 742

169.864 417

112.141094
—258. 692 870

483. 634 810
—834. 954 952

333.518099
—977.807 842 975.499 821
2197.801 999 —3499.834 239 2886. 082 356
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TA BLE I. {Continued)

Lattice X

(ii) Periodic boundary conditions

X' X7

n —2 4.0
—2.0

l.066 667
—0.666 667

0.487 619
—0.408 889

12.444 444
—13.511111

14.192 593
—13.770 159

13.862 716

37.155 556
—64.069 136

94.516 261
—131.374 815

103.190 123
—250. 504 879

479.963 128
275. 349 559

—873.871 056 704. 867 380

4.0
—2.0

1.066 667
—0.066 667

0.487 619
—0.408 889

13~ 333 333
—14.696 296 42.785 185

15.377 778 —73.896 296
—14.931640 110.016 508

15.063 704 —152.484 938

132.029 630
—316.920 024 398.238 777

604. 108 642 —1231.716 433 1174.362 250

n=4 4.0
—2.0

1.066 667
—0.666 667

0.487 619
—0.408 889

13.333 333
—14.4 43.377 778

15.111111 —72.493 827 135.901 235
—14.659 048 106.387 866 —312.648 089 421.700 176

14.758 942 —147.263 774 582.477 131 —1234.878 181 1281.262 191

n=5 4.0
—2.0

1.066 667
—0.666 667

0.487 619
—0.408 889

13.333333
—14.4 43.377 778

15.111111 —72.296 296
—14.659 048 106.111323

14.758 942 —146.854 885

136.296 296
—311.778 954 424. 281 246

579.215 238 —1231.564 930 1299.607 102

fluctuation relation, the zero-field susceptibility
can be expressed as

K) = (2S+1) l
g f e

where X = S(S+1) and

(18)

The coefficients (P' ) can be represented as the
sum over all l line graphs of the traces of theprod-
ucts of the spin operators (S,. S&) multiplied by
the total lattice constant, i. e. , the number of oc-
currences on the lattice of the graph formed by the
bonds. The graphs for the susceptibility coeffi-
cients (P'Q ) require two additional spin labels
arising from the factor Q . (These spin labels may
be represented by two crosses on the graphs. )

The calculation then separates into two parts.
Only spin traces with the two crosses on the same
connected graph enter into the calculation of
(P'Q ): These are related to the coefficients (P')
for unlabeled graphs (with lines only) by Theorem
IV of Ref. 6. One can then utilize tables of sums
of spin traces to calculate the required (P'): We
are indebted to Dr. P. J. Wood (of the University
of Newcastle) for kindly sending us his unpublished
data on the spin traces up to order l =8.

As usual, the dependence on lattice structure en-
ters only through the lattice constants. For the
connected graphs these were calculated with the
aid of a computer program developed by Dr. J. L.
Martin (of King's College, London). In this flexi-
ble program the lattice is specified by the set of
nearest-neighbor vectors for each nonequivalent
class of lattice points. Since one element of trans-
lational symmetry is lost in a finite layer lattice
there are quite a few of these classes. The pro-
gram then first generates a catalog of the self-
avoiding walks (or chains) of one to four steps in
length. This information is used to construct the
various embeddings of the required graph in the
lattice, by building up the graph in terms of the
catalogued walks (rather than by adding single
steps one at a time).

The separated diagrams were expressed in
terms of connected graphs, by the standard sym-
bolic techniques which determine the number of
ways of overlapping the constituent pieces to form
various connected graphs. s In such extensive cal-
culations every possible check must be made to
avoid error. We were able to check our results
against existing series6'~ for the regular (~=1 and
z=~) lattices (sq, tri, sc, bcc, and fcc). Our
data (to seventh order on the loose-packed lat-

'tices and sixth order on the close-packed lattices)
check precisely in all cases. (A small discrepancy
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was detected with the results given in Ref. S for
the coefficient of X in ~ for the bcc lattice, which,
however, the authors inform us is a misprint for
42334. 1448. Qur results confirm this and also
agree with the S=~ calculations of Stanley, ' for
this case. ) We have also calculated the coefficients
a,"' for S=~ using, where possible, Stanley's gen-
eral relation in terms of the lattice constants of
the appropriate (regular) lattice. This checked our
general spin calculation and also served to lengthen
the series for S=~. These additional series are

given in Table III.
Many of the lattice constants for the separated

graphs could be checked individually against the
published tabulations. Several of the lattice con-
stants, including the finite film chains, were
checked against previously calculated values (ob-
tained by Allan for his work in extending Ref. 2).
Finally, to sixth order we verified explicitly the
cancellation of the contributions to lnZ„and y pro-
portional to higher powers of N (Ns, Ns, . . . ),
which arise from the separated graphs.

TABLE D. Specific-heat coefficients. The polynomials gi"'@) are listed; the specific-heat coefficients c&"', defined
in Eq. (13), are related to these by c~p' = zX2gm"'(X)/3(3'+i S '+4), where z is the mean coordination number which takes the
values z = 4, 5», 2, 5, 3, . . . , 6 for ~= 1, 2, 3, 4, 5, 6, . . . , ~.

~=1 0

(sq) 1
2
3
4
5
6

1.0
—1.0

0. 8
—0. 666 667

0.609 524
—0.613 333

0. 675 556

X

0.0
—4.8

8.0
—10.323 810

12.8
—16.327 111

X

1.866 667
—2.074 074 0.0
25.120 635 —12.867 725

—57.388 148 28. 855 309
101.869 037 —159.069 235

—0.677 249
0.948 148

78.110200
0.0
1.778 305 —2. 415 320

n —2 1.0
—1.0

0.8
—0. 666 667

0.609 524
—0.613 333

0.675 556

0.0
—6.133333
10.222 222

—13,212 698
16.408 889

—20. 963 556

3.466 667
—3.851 852
41.209 524

—93.56
166.097 541

0.0
—31.949 206

67.709 630
—338.661 715

15.204 233
—21.285 926 0.0
286. 463 052 —179.121 901 41.143 028

1.0
—1.0

0.8
—0.666 667

0.609 524
—0.613 333

0.675 556

0.0
—6.633 333
11.055 556

—14.296 032
17.762 222

—22. 702 222

3.866 667
—4.296 296
48.037 302

—109.392 963
194.481 778

0.0
—39.460 318

83.254 815
—426. 402 733

20.656 085
—28.918 519 0.0
390.132 433 —272. 494 442 88.413 410

0
1
2

5
6

0
1

. 2
3
4
5
6

1.0
—1.0

0.8
—0.666 667

0.609 524
—0.613 333

0.675 556

1.0
—1.0

0.8
—0.666 667

0.609 524
-0.613333

0. 675 556

0.0
—6.860 606
11.434 343

—14.788 456
18.377 374

—23.492 525

0.0
—6.990 476
11.650 794

—15.069 841
18.728 889

—23.944 127

4.048 485
—4.498 317
51.221 645

—116.778 316
207.713401

4.152 381
—4.613757
53.041 270

—120.998 519
215.274 328

0.0
—42. 874 459

90.320 808
—468. 064 467

0.0
—44. 825 397

94, 358 519
—491.903 153

23, 134199
—32.387 879
439.077 271

24. 550 265
—34.370 370
467.045 750

0.0
—316.724 260 110.793 825

0.0
—341.998 442 123.582 633

1.0
—1.0

0.8
—0.666 667

0.609 524
—0.613 333

0.675 556

0.0
—7.074 510
11.790 850

—15.251 914
18.956 340

—24. 236 340

4.219 608
—4.688 453
54, 218 674

—123.729 237
220. 166 693

0.0
—46. 087 768

96.971 155
—507.328 186

25.466 542
—35.653 159 0.0
485. 143 001 —358.352 324 131.857 744
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TABLE III. Susceptibility coefficients a&
' for 8= ~.

(sq) n=1

1 1.333 333 33 1.666 666 67Free-
surface
conditions 2

3
4
5
6
7
8
9

2. 222 22222
2. 851 851 85
3.456 790 12
4. 106 055 26
4. 714 528 71
5.313090 60
5. 858 300 69
6. 355 69926

n=4

1.333 333 33
l. 244 44444
1.056 790 12
0.851 263 96
0.659 564 96
0.492 710 95
0.358 061 79
0.252 923 16

n=3 n=5

Periodic
boundary
conditions

1 2.0 2.0

2 3 ~ 333 333 33 3e 333 333 33
3 5. 348 148 15 5.422 222 22
4 8. 251 85185 8.493 82716
5 12.444 96179 13.178 130 51
6 18.349 410 15 20. 019 721 73
7 26. 532 900 65 30.182 323 08

2. 0

3 ~ 333 333 33
5.422 222 22
8.518 518 52

13.258 788 95
20. 306 360 96
30.875 799 60

y"(K) = Z age
g=i

can be determined exactly using the definition (5)
formally with n equal only to 7. This follows
from the observation that for any graph G, of l
lines, the difference between the bulk value of the
lattice constant per site (G, )„, and that for n layers
(G, )„, must satisfy

(G )„—(G ) =2(G, )"/n for n l .
The surface lattice constant (G, )" represents the
number of ways a partially embedded graph can in-
tersect the surface of a semi-infinite lattice, and
hence fail to contribute to the over-all lattice con-
stant. Thus when G, is a connected graph the con-
stant (G, )" is negative.

IV. SURFACE SUSCEPTIBILITY

The surface susceptibility is defined in (5) as-
ymptotically for large n, however, the first seven
terms in the high-temperature expansion for the
(reduced) surface susceptibility

This prescription was employed for g=1, 2,
. . . , 7 and in all cases led to identical values of
the surface coefficients g", for /&yg. The resulting
coefficients for l=1, 2, . . . , '7 are listed in Table
IV. Watson" has calculated the same series for
spin S = —,'; unfortunately, his last two terms dis-
agree with ours by small amounts. In view of our
various crosschecks we believe our results are
more trustworthy.

V. ANALYSIS OF SUSCEPTIBILITY SERIES

The first question to arise is the nature of the
phase transition, if any, in two dimensions.
Stanley and Kaplan' ' have concluded, from an
extrapolation of the high-temperature susceptibil-
ity series, for various plane (n= 1) lattices that the
susceptibility diverges at a nonzero temperature
T, (l), even though there is known to be no long-
range order below this "anomalous" critical point. ~4

From our analysis of the susceptibility series for
the square lattice we do not feel able to reach such
a definite conclusion. In particular, we find that
the special expansion variable, u= cothK- (1/K),
adopted by Stanley, does not seem to give appre-
ciably better convergence. Thus, in Fig. 1 the res-
idues of Pade approximants to (d/du) inyq(u) and

(d/dK) in', (K) are plotted against the value of the
dominant pole in u and K, respectively. Data for
the spin values of 8=1, —,', —,, —,, and ~ are ex-
hibited (S =-,' being too ill-behaved for analysis).
As can be seen, the residues, which should pro-
vide estimates of ya, range from values of 1.5 to
4. 5. Ratio plots are equally unsatisfactory: Fig-
ure 2 is a graph of the estimators g, = l(p, , /g„—1)
for the exponent (y2 —1) for various assumed val-
ues of p,„which give a reasonably horizontal plot
for g, vs 1/f. (The expansion variable u is used
here. ) There is some indication of the spin depen-
dence reported by Stanley and Kaplan'~ but, be-
cause of the large uncertainties, we do not believe
it is very significant. Accordingly, we would esti-
mate

y&
= 3.0 + 0. 5 for all 8 .

We must emphasize that this estimate is obtained

TABLE IV. Surface susceptibility. The polynomials f&"(X) are listed; these are related to the surface-susceptibility
coefficients a&", defined in Eq. (19), by a& =f

&
(X)/2i&n ~ith ao = 0.

0.666 667
—0.333333

0.177 778
—0.111111

0.081 270
—0.068 148

0.064339

X

444 444
—4. 622 222

4. 814 815
—4. 665 397

4. 700 388
—5.065 820

20. 859 259
—35.481 481

47. 956 825
—65. 548 501

86.331231

84.543 210
—185.340 388

333.840 141
—561.106 687

318.592 828
—885.968 191
1905.438 343

X

1141.012 518
—3865. 630 567 3961.247 513
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FIG. 1. Plot of the
residues of the loga-
rithmic derivative of
the sus ceptibility
series on the square
lattice vs the corre-
sponding pole. In the
first column the expan-
sion variable u(T) was
used while in the
second the variable
K= J/k&T was employed.
The estimate ultimate-
ly adopted (y2 = 3.0) is
indicated by a hori-
zontal line. The cor-
responding estimated
critical points are
shown by a vertical
arrow. The label
[D,N] indicates the
particular Pads ap-
proximant employed.

from only the first seven terms of the series; the
erratic behavior of the series casts some doubt
on whether the susceptibility actually diverges at
any nonzero temperature. Assuming, however,
that T,(1) is positive, and that the divergence of
y„(T) resembles a pure power law fairly closely,
then (21) is a reasonable estimate of the exponent.

Once a value y~ =3.0 is assumed for all finite
thickness films (n& ~) it is straightforward to ob-
tain consistent estimates for the critical tempera-
tures T, (n). The convergence (granted ya) is now

comparatively good and the Pads and ratio tech-
niques give consistent results in both variables u
and K. A typical case is shown in Table V which
lists the poles of Pads approximants to [~(K)] ~ "a

for n =4 (free surfaces). The estimates from the

A. (K) = X.(K) I:I —(KiK.(n))]"2. (22)

Direct Pade approximants to A„(K) are found to be
quite smoothly varying and hence provide explicit
approximation formulae for y„(K). In Fig. 2 plots
of the inverse susceptibility [y„(K)] for spin

ratio plots are compared with the corresponding
estimates from the Pads tables in Table VI. Our
over-all conclusions for the dependence of K, (n)
=8/kaT, (n) on n and S for both free-surface and
periodic boundary conditions (assuming always that
ya= 8. O) are presented in Table VII.

Convenient numerical expressions for the sus-
ceptibility can now be obtained by dividing out the
singular part of the susceptibility to obtain the
amplitude function
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5= 1, which were obtained using y2= 3.0 and the
appropriate K,(n), are shown for free-surface
boundary conditions with n = 1, 2, . . . , 6, and ~.
Figure 4 gives an idea of the accuracy of such plots
by comparing results obtained under the range of
assumptions y2=2. 5, 3.0, and 3. 5. Again the in-
verse susceptibility (now for spin S= ~) is plotted
using Pade approximants to the amplitude func-
tions A„(K) appropriate to the various approximate
critical points K,(N; ya). The curves coincide until
the temperature has dropped to a value such that
[1 —(KjK,(n))] = 0. 2, corresponding to a suscepti-
bility of magnitude X„(K)= VO. [Recall that by (11)

the reduced susceptibility is normalized such that
y„(~)= 1.] Furthermore, the direct Pade approxi-
mants to the inverse susceptibility do not depend
on any assumptions about the singularity but never-
theless coincide down to temperatures correspond-
ing to y„(K) = 10. We conclude, then, that one can
calculate the susceptibility reliably over an ap-
preciable temperature range without making any
significant assumptions about the existence or na-
ture of the singularity.

Figure 5 is a plot of logtay„(T) vs logts{[T/T, (n)]
—1}for spin S = ~ in the case of free surfaces to
study the appearance of the crossover from three-

4
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5 6789
I ) I I
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PIG. 2. Estimates gi = l(pt/p„—1)
for the susceptibility exponent
(&2-1) of the square lattice. The
value for the critical temperature
adopted is indicated on the plots.
(The expansion variable u eras used
for this graph. )
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3

0.1652 0, 1613
0.1607 0.1623

5

0.16280.1683
0.1584
0.1609
0.1634 estimate g =0.162

0.1903
0.1811
0.1814
0.1822

0.1864
0.1814
0.1809

0.1822
0.1820

0.1820

estimate g =0.182

TABLE V. Estimates of critical temperatures by
Pads approximants. Roots of the approximants to

[y {u)]' & and [X(K)]' 2 with y& =3.0 are listed for a lat-
tice of ~ =4 layers with free-surface boundary conditions.

[D Ã] 2

(~)

2.02
l. 79~
1.58

1.41
1.17

2. 02
1.79„.
1.58

1.41
1.16)

(c)

1.98
1 e 775
1.56;
1.40
1.16

l. 98
1.77
1.565

1.39
l.14

Average

2. 00
1.78
1.57

1.40
1.16

TABLE VI. Critical temperatures for four-layer film.
Results of the analysis of the four-layer (free-surface)
series. Estimates of k&T,/J are listed from (a) Pads
to [X(K)], (b) Pads to [X(g)] 3, (c) ratio estimate from
X {K), and (d) ratio estimate from X (g).

0.2166
0.2068
0.2061
0.2059

0.2418
0.2311
0.2299
0.2291

0.2885
0.2758
0.2742
0.2728

0.5117
0.4816
0.4890
0.4986

0.5815
0.5536
0.5534
0.5579

0.6652
0.6363
0.6320
0.6340

0.2122 0.2071
0.2061 0.2059
0.2059

0.2063

estimate g = 0.206

0.2369 0.2311
0.2298 0.2290
0.2282

0.2298

estimate g = 0.229

0.2821 0.2756
0.2742 0.2722

0.2739

estimate g, = 0.273

0. 5046 0.4908
0.4885 0.4942

0.4966

estimate K =0.494

0.5719 0.5565
0.5534 0.5570
0.5536

0.5570

estimate K, = 0.557

0.6553
0.6319
0.6334

0.6362
0.6340

0.6344

, estimate Kc=0.634

dimensional, behavior at high temperatures (~, = I.33)
to two-dimensional. behavior at I.ower temperatures
(yz

——3.0). Evidently onthisplot, a clear changeover
phenomena does not develop until larger values of
z are reached than those for which we have com-
plete data. Nevertheless it is clear that the char-
acteristic two-dimensional slope sets in closer to
T,(n) as n increases. (However, one must bear in
mind that this plot will not be reliable numerically
close to the estimated critical temperature. ) Fig-
ure 6 shows how the critical amplitudes A.,(n)
=A„(K,(n)) fall off with n. In fact, the scaling the-
ory prediction that the reduced amplitude

W,', = [If,(n)/f~, ( )]'~W„(Z,(n)) (23)

should vary as n ~, with ( = (y2 —y3)/v, = 2. 3 (in this
case), is found to hold fairly closely. Thus the
solid lines in Fig. 6 correspond to values of ( = 2. 0
and 2. 3 for S= ~ and 1, respectively, with free-
surface boundary conditions. The data for periodic
conditions tend to suggest a larger exponent but
they extend only to n= 5 and are subject to stronger
"small-n effects" (see the following).

&A BLE VEI. Critical-temperature estimates.

Estim-

atess for the inverse critical temperature K~(n), based
on the assumption f2'=3. 0 (with F3=1.375 for the n =~
lattice, Ref. 7). All entries in this table, except for the
g =~ values, have an uncertainty of + 0.01.

{a) Free-surface Boundary Conditions
8 @ =1 2 3 4 5 6

0.7469
0.7157
0.7090
0.7098

0.7369
0.7086
0.7097

0.7140
0.7099

0.7110

estimate K = 0.710

3
2
5
2
9
Y
00

lo lip
1.19'
1.29)
1.416
l. 70(

0.645
0.717
0.80,
0.89)
1.08)

0.543
0.61p
0. 69p
0.76'
0. 92(

0.50,
0.56)
0.63)
0.714
0.862

0.472
0.53'
Q. 608
0 68o
0.823

O. 456
0.515
0.588
O. 66)
0.79'

O. 383
0.4385
0.506p
0.571
0.6916

(b) Periodic boundary conditions
n=2 3

0.9029
0.8659
0.8565
0.8566

0.8916 0.8627
0.8559 0.8566
0.8566

0.8586

estimate K~=0.857

0.60,
0.663
0.74)
o 82o
0.99p

0.474
0.532
0.606
0.68(
0.823

0.438
0.498
0.57p
0.64(
0.772 O. 75,
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f.oo

0.75

1/XA(K)

0.50

0.25

FIG. 3. The (reduced)
inverse susceptibility
1/X„(K) plotted vs inverse
temperature K = J/k&T
for spin $=1 and n=l
(sq), 2, 3, 4, 5, 6, and
~ (sc) layers with free-
surface boundary condi-
tions. These plots as-
sume a divergence with
an exponent F2=3.0 (and
F3=1.375 for the sc lat-
tice).

0 0.25 tt0.50
t

K

0.75
I
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VI. SPECIFIC-HEAT SERIES

Specific-heat series are normally quite difficult
to analyze convincingly. Indeed we found it impos-
sible to estimate the exponent n2, characterizing
the (presumed) two-dimensional singularity, on the

basis of the standard straightforward methods.
However, it is still useful to plot the specific heats
since they can be measured experimentally. Direct
Pade approximants to C„/ks K~, which a.re plotted
for spin- —', and free-surface conditions in Fig. 7,
will be reliable only at the higher temperatures.

I.O

0.8

0.6

04

0.2

0.)

0 0.25 0.50
K

0.75 &.00 I 1 I

I

1.25

FIG. 4. Inverse
susceptibility 1/X„(K)
vs K for S = ~ and
free-surface condi-
tions. The accuracy
of various approxi-
mants can be gauged:
The solid line assumes
a divergence with p2
= 3.0, the higher
dashed line with y2
=3.5, and the lower
dashed line, with y2
= 2.5. The correspond-
ing estimated critical
points are indicated
on the axes. In all
these cases the best
Pads approximants to
the amplitude A„(K)
=X (K)[1- (KIK )]
were used. Finally,
the dot-dashed curve
represents the direct
Pads approximants to
1/X„(K).
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FIG. 5. Plot of
log~op„(KJ) vs
log10OT/T~(n) ) —1] for
S= ~, todisplaythe

' "cross-over" effect.
[Pads approximants
to A„{K)withp2= 3. 0
were used. ]
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These curves have been continued into the critical
region in Fig. 7, merely to show qualitatively the
variation with the number of layers. In order to
obtain a more concrete idea of the accuracy of
these plots, values of the partial sums, g", , cI"'K' ',
extrapolated versus I/N, are also shown. The
two methods of extrapolation give approximately
coincident results for the specific heats down to
temperatures for which [I —(K/K, (n))] = 0. 3 to 0.4.

The specific-heat series for the lattice films
have one especially interesting feature. In three,
dimensions, on the basis of series extrapolations
and scaling arguments, the specific-heat exponent
is thought to be negative, ns = —0. 1. Accordingly,
the specific heat is finite at T= T„but has a sharp
cusp there. Direct Pade approximants to the se-
ries cannot follow the sharp curvature of such a
cusp at the critical temperature and, hence, tend to
overestimate the inverse critical temperature K,

and underestimate the critical value of the specific
heat. However, the Pade approximants to the
specific-heat series for finite n consistently ex-
hibit a pole at a smal/ez value of K than the esti-
mate, K,(n), of the inverse critical temperature
obtained from the susceptibility series. In Table
VIII these (real) poles are listed for n= 2, 3, . . . , 6,
and ~ and S = —', and ~. These Pade tables are sur-
prisingly convergent for such a characteristically
ill-behaved function. Such behavior, although
based on very short series, is a little puzzling.
It could possibly be an indication that the true spe-
cific-heat curve is rounded in the presumed critical
region rather than displaying a cusp or divergence.
In this case the Pade approximants, plotted in Fig.
7, would be significant overestimates of the true
value in the critical region. With longer series
one would then expect to find the pole "splitting"
to form an imaginary pair, in the vicinity of which

0.5—

0.0-
I

log)o A„

-0.5—

-1.5—
0.25

periodic

0.50
log to n

0

free surface

S=1

~p
p~

0,75

- 1.0

Ar)

—0.50

- 0.10

-0.05

FIG. 6. Variation
of the reduced critical
amplitude A„', as de-
fined in Eq. (22), for
S=l and S=~.
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FIG. 7. Reduced
specific heats C„g')/
k~K vs inverse tem-
perature K for S=~5

and free-surface con-
ditions. The solid
lines represent direct
Padd approximants;
the dashed lines fol-
low from extrapolation
of the truncated series.
The estimated critical
points are indicated
but the curves are
merely qualitative
near the corresponding
critical point.
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the specific heat would go through a rounded maxi-
mum above the estimated T,(n). Of course, this
leaves quite open the question of the behavior of
the specific heat at the critical point (if, indeed,
one exists).

VII. SURFACE-SUSCEPTIBILITY ANALYSIS

both powers (y3+ v~) and (y~+ 1) are present, as
actually predicted by the detailed scaling argu-
ments when A. = 1. One might, alternatively, spec-
ulate that scaling theory breaks down for the sur-
face properties in the sense that the n= ~ bulk cor-
relation length $(T) may not be the only relevant

We can be more definite about'the properties of
the surface susceptibility as the series, being es-
sentially a bulk three-dimensional series, is com-
paratively well behaved. Using the bulk critical
point K, = K,(~), which is also quite accurately
known, ' the standard ratio and Padd techniques
were applied. The values of the Pade approxi-
mants to (K-K,) (d/dK) in'"(K) evaluated at K=K,
are presented in Table IX. The apparent conver-
gence is good and we estimate

y"=2. 18+0.02 (all S) . (24)

The error refers only to the apparent extrapolation
uncertainties; the value would be shifted appro-
priately if the estimatefor y, [and hence for K, (~)j
were altered.

The estimated value of y" lies between the thor-
ough-going scaling prediction (8), namely, y" = ys
+ v3 = 2. 08 + 0.03, and the alternative prediction
(10), namely, y"=ye+1=2. 88+0.02. However,
it is closer to the first, lower value. This situation
is identical to that arising in the Ising model. At
present we cannot reach any firm conclus"'ons con-
cerning these discrepancies. It may well be that

S=g5

(DN] . 2 3 4 Z, (~)

S=
2 4

2 0.673 0.690 1.051
3 0.689 0.672 O. 8O,
4 0.797

2 0.605 0.621 0.758
3 0.620 0.601 0.69p
4 0.695

2 0.583 0.599 0.707
3 0.598 0.580 0.637
4 0.663

2 0.573 0.588 0.686
3 0.587 0.569 o.6o,
4 0.648

2 0.567 0.582 0.674
3 0.581 0.563 O 588
4 0.640

0.955 1.216

1.031

0.865 0.967

0.925

0.837 0.914

0.888

0.823 0.891

0.870

0.814 0.879

0.860

1.081

o.92,

0.862

0.823

0.798

(sc)

2 0.543 0.557 0.636
3 0.557 0.539 0.506p
4 0.609

0.781 0.835 0.6918

0.821

TA BLE VIII. Specific-heat approximants. The
smallest real poles of the direct Padb approximants to the
specific heat C„(K) are listed. For S=~ the odd terms
are not listed since the series then contains only even
powers of K.
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10

-&/X

[DK,(n)]

0
0 0

pro. 9. variation of critical temperature shift with n. The quantity t~c(~}~ is plotted, where ~c(n) =&c(n) -K,( ),
with (a), for free surfaces, X=1.24, and (b), for periodic conditions, A.=2. The error bars at the top of the plots repre-
sent the range of uncertainty for each value of n.

correlation length $"(T) a sharper divergence does
seem likely. However, there always remains the
possibility that the correction terms to the leading
divergence of y "(T) play an important role near T,
so that the asymptotic equality $"(T)= ((T) cannot,
at this stage, be convincingly ruled out.

Finally, we might observe that if (25) is taken as
a definition of $ "(T) for spherical model and ideal
Bose fluid films one always has v"= 1 which ex-
ceeds v~ for dimensions d~4 (for which v~= —,'). '4

UIII. CRITICAL-POINT SHIFTS

Qne of the main questions arising from the gen-
eral theory of films is the value of the exponent ~,
defined in (4), which determines the behavior of
the critical-point shift for large n, Even in the
event that a true critical point does not exist one
may still expect to be able to define, more or less
uniquely, 3' a pseudocritical point mhich mill vary
in the corresponding way. Nevertheless, the esti-
mates we will obtain depend fairly heavily on the
assumption that a true critical point exists and that
the susceptibility diverges there with an exponent

y2 —3
To estimate A., plots of [K,(n) K,(~)] "vs n-

were made for various trial values of X. The val-
ue which gives the most linear plot for the larger
values of n provides the favored estimate. Note

that such a plot rightfully weights the higher n val-
ues more heavily. It might be expected that a
Heisenberg model with short-range interactions
would follow the scaling prediction A. = I/v~, as did
the Ising model. 2'3 However, this value of X(= 1.42)
results in a noticeably curved plot. Figure 9(a)
shows the plot with ~= 1.24 which corresponds to
X= I/v" with v =0.80, for the case of free-surface
boundary conditions. A good straight-line fit can
be obtained to the points with 2 & n, & 6. Qn the
other hand, a reasonable straight-line fit to all the
available points (1 & n & 6) can be found with x = 1.0.
This result is perhaps unexpected and should not be
considered conclusive. Thus the critical points
for the larger values of n could well be less ac-
curate than suspected because of the difficulty of
extrapolating the relatively short Heisenberg se-
ries. (Note also the uncertainties indicated at the
top of the figure. ) Indeed, we may recall that Al-
lan' initially concluded that the value ~= 1.0 was
consistent with his results for Ising films up to
n= 4. However, later reanalysis, based on ex-
tended series for films of up to n= 7 layers, showed
that X= I/v~ gives a better fit than A. = 1. Accord-
ingly, our tentative conclusion for the Heisenberg
films may be stated as ~ = 1. 1 + 0.2.

With periodic boundary conditions the value X= 2

gives a reasonable fit to the values n= 1, 2, 3, and
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4, The corresponding plot of [K,(n) -K,(~)] is
shown in Fig. 9(b). The same value fits the Ising
results also and similar large values are found
for spherical model and ideal Bose films. ' No
simple argument for these values has so far been
constructed.

IX. CONCLUSIONS

In summary, we have not been able to conclude
firmly whether or not the susceptibility of the
plane square Heisenberg lattice diverges at a non-
zero anomalous critical temperature. Indeed,
there is indirect evidence that the specific heat
may have a rounded peak in the region of suspected
divergence of y. Assuming that the susceptibility
does diverge with an exponent y3 -—2. 5 to 3. 5 one
can obtain reliable estimates of its magnitude
down to temperatures at which the reduced sus-
ceptibility Ty "/(Ty")r „attains a value around 70.
Even with the assumption y&=3. 0, however, the
estimates of the critical points are insufficiently
accurate or numerous to j.ead to precise estimates
of the shift exponent X: The data are consistent
with the values X= 1, I/v"= l. 24, and, perhaps,
although with less numerical plausibility, X= I/v, .

The results for the surface susceptibility are
more precise. As is the case for the d= 3 Ising
model, the exponent y" characterizing the diver-
gence of the surface susceptibility appears to lie
between the thorough-going scaling prediction y3

+ vs = 2. 08, and the alternative prediction ys+ 1
=2. 38, at y" —-2. 18. This has suggested the con-
jecture that there may be a different exponent v"

=0.80 & v3=Q. VQ characterizing a surface correla-
tion length $"(T) which is distinct from the stan-
dard bulk correlation length. As noted, the pre-
diction X = I/v fits the results for the critical tem-
perature shift e(n) better than does the relation
X= I/ps.

In order to explore further some of the theoreti-
cal questions, we hope to extend these calculations
to the Heisenberg-model transition from three to
four dimensions, where there is no serious ques-
tion regarding the existence of a sharp critical
point T,(n). However, although the presently ob-
tained data have proved hard to analyze in the im-
mediate critical region, our numerical estimates
for three-dimensional films still should be useful
for comparison with experiments on uniform mag-
netic films above their transition temperatures.
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