7 ABSORPTIVITY OF SINGLE-CRYSTAL YTTRIUM AT 4.2 K

transitions like L, to L, (1.4 eV in Sc, not calcu-
lated for Gd and suppressed more deeply below Ep
in Re) might account for further absorption. In

all cases large volumes of reciprocal space may
be involved, not just regions along symmetry lines.
It is quite impossible to make even qualitative es-
timates of the origins of the higher-energy struc-
tures in A for both polarizations.

Thus, the data presented here not only allow ten-
tative information concerning the bands of Y itself,
but also provide support for the existing bands of
Sc and Gd. Likewise, these data represent the only
existing data on oriented crystals of Y. It is hoped
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that a more detailed calculation of the bands of Y
will follow as more experimental information be-
comes available for Y. More positive identifica-
tions than those presented here must await these
bands and measurements in the vacuum ultraviolet
of (probably) ultrahigh-vacuum-evaporated films

of Y, which, when used in conjunction with our
data, will make it possible to determine the optical
constants.

The authors thank B. Beaudry and P. E. Palmer
for providing the starting material and F. A.
Schmidt for strain annealing the material to obtain
the single crystal.
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The hot-electron Hall coefficient in #-Ge is theoretically estimated incorporating the band nonparabolicity,
the electron transfer to the (100) minima, and the effect of the magnetic field on the distribution function.
A better agreement with the nature of the experimental curve at 200 °K is obtained when the
nonparabolicity is considered than when it is ignored. A close fit with experiment requires the value of the
deformation-potential constants for the optical and for the nonequivalent intervalley scattering to be

0.66<10° and 0.5 10° eV cm™!, respectively.

I. INTRODUCTION

In an earlier paper, ! calculations of the Hall
factor in n-type germanium at high electric fields
were reported taking into account the influence of
the electron population in the (100) minima and
that of the magnetic field on the valley distribution
function. The nonparabolicity of the (111) bands
was, however, not included in these calculations
and the value of the optical -phonon deformation-
potential constant D, required for an agreement
with the experimental results at 200 °K was found
to be unusually high. It may be mentioned that
when parabolic bands are considered, there re-
main discrepancies in the values of D, obtained
fromvarious studies. ! Incorporation of nonparabol-

icity has recently been found to reduce to a large
extent the disparity in the D, values obtained from
the conductivity results at high and low electric
fields. ®® It would be of interest to examine wheth-
er the hot-electron Hall-coefficient characteristic
can also be explained with the same value of D, as
that obtained from the conductivity data when the
nonparabolic nature of the band structure is taken
into account in addition to the carrier transfer to
the (100) minima and the influence of the magnetic
field on the carrier distribution function. In this
paper we present the results of such calculations.
We have also studied the effect of a change in the
coupling constant for nonequivalent intervalley
scattering D,; and have determined the value re-
quired for a fit with the experimental results.
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II. THEORETICAL FOUNDATION

The heating electric field F, is assumed to be
applied along the x direction of the chosen coordi-
nate system which in the present situation coincides
with the [100] crystallographic axis. The magnetic
field B, is applied along the z direction so that the
Hall field F, appears in the y direction.

The solution in the present case is made tract-
able by the assumption of a Maxwell-Boltzmann
distribution function. Though this distribution may
not be exactly attained, its assumption yields fairly
accurate results in the case of germanium and at
the same time vastly simplifies the calculations. '3
The important scattering mechanisms at high elec-
tric fields affecting momentum and energy loss of
the carriers are the intravalley acoustic and optic
scattering and the nonequivalent intervalley scat-
tering between the (111) and the (100) minima. All
these scattering processes have been considered.
The equations giving the carrier temperature and
the relaxation time for the (111) electrons incor-
porating these scattering mechanisms and the band
nonparabolicity and overlap factors have been giv-
en in Ref. 3 and will not be repeated here. The
carriers in the (100) minima are assumed to ther-

malize at the lattice temperature because of their
low mobility and the carrier density in these
valleys is determined from the equation of detailed
balance in intervalley scattering.®

The current densities in the x and y directions
for a particular valley are given, retaining only the
terms up to the first order in B,, by

nea e 2
sz;’jl’;"((axxe"'awa) <T>_;’l,: 62!B2FV (T >) (I)

and
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where 7 is the carrier concentration in the valley,
e is the electron charge, the @ are the components
of the reciprocal-mass tensor normalized by the
free-electron mass mg, and .= a,, 0y, — aZ,. The
angular brackets ( ) represent the average quanti-
ties defined by
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In this equation m ,, m represent the transverse
and longitudinal effective masses, 7Zisthe Dirac con-
stant, I, is the normalization integral, Kj is the
Boltzmann constant, T, is the electron tempera-
ture, 7 is the relaxation time, E, is the direct en-
ergy gap, and E is the carrier energy. It may be
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noted that Eqs. (1) and (2) are similar to those ob-
tained for parabolic bands. The inclusion of non-
parabolicity only affects the average values de-
fined by (3).

The magnetic field influences the valley distribu-
tion function by perturbing the values of n and T, .
The perturbations may be evaluated in the same
way as for parabolic bands, leading to an expres-
sion for the Hall mobility having the same form as
Eq. (1) of Ref. 1.

III. RESULTS AND COMPARISON WITH EXPERIMENTS

Numerical calculations have been performed with
the values of the material constants given in Ref.

3. The value of (r) for the silicon-type (100) val-
leys-was derived by assuming the mobility in these
valleys is (1/5.5) times the low-field mobility of
the (111) electrons.® The value of (%) for the (100)
minima was also assumed to be equal to ()2 with-
out introducing any serious error.!

In Fig. 1 we have shown the electric field varia-
tion of the Hall coefficient normalized by its low-
field value. Curves (a) and (b) are drawn accord-
ing to the present analysis incorporating the effects
of nonparabolicity with a value of D, equal to 0. 66
x10° eVem™, This value corresponds to the tem-
perature variation of weak-field mobility and is
close to that obtained from the hot-electron con-
ductivity data.?® We have used in curve (a) D,y
=0.2x10% eV ecm™ and in curve (b) D, =0.5x10°
eVem-l. The former value corresponds to the
high-field conductivity characteristic® and the lat-
ter to the resistivity measurements under hydro-

NORMALIZED HALL COEFFICIENT

ol 0.5 1.0 50
1
ELECTRIC FIELD (kVem')

FIG. 1., Normalized Hall coefficient vs electric field.
Curves (a) and (b) represent the results of the present
analysis with Dy=0.,66 X 10° eV ecm™!. In curve (a) D,
=0.2x10% eV cm™ and in curve (b) Dy =0.5% 10° eV cm™,
Curve (¢) is calculated for parabolic bands (Ref. 1) with
Dy=1x10° eV cm™! and D,;=1% 10% eV cm™!, The @ and
+ are the experimental points of Heinrich et al. (Ref. 4). -
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static pressure.® We have also included in the fig-
ure the curve obtained in Ref. 1 assuming parabol-
ic bands and Dy=1x10° eVcm™, D, =1x10% eV cm™.
It is evident that inclusion of nonparabolicity re-
duces the rise of the Hall coefficient at high fields
and thus gives a better agreement with the trend

of the experimental variation. Furthermore, it

is found that for a fit with the experimental re-
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sults, D,, should be close to 0.5%10° eVcm™*
in agreement with the value indicated from pres-
sure experiments.
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The density of electronic states in liquid beryllium is calculated for both a random and a correlated
distribution of atoms using the approach of independent pseudoatoms due to Rousseau et al.

In this paper we report the result of calculation
of the electronic density of states in liquid beryl-
lium using the model of independent pseudoatoms
proposed by Rousseau ef al.! These authors have
calculated the density of states of liquid beryllium
using a screened Coulomb potential corresponding
to a charge Z=4 in a Fermi gas. Recently, we
have calculated the density of states of liquid
aluminum? using the above formulation but with a
form of the potential as given by Green ef al. 8
Although the present calculational scheme is the
same as in Ref. 2 the motivation, unlike that for
aluminum, is that there is only one bound state in
beryllium and the problem due to orthogonalization
of the effective potential matrix? is less serious.
We outline below only the essential steps of the
formulation of Rousseau et al, which are relevant
for the discussion of the results of our calculation.

The model of independent pseudoatoms enables
one to write the diagonal elements of the density
matrix as?

CE, T; B)=C,(F, T; B) g AT (1)

where C(f, T, B) is the free-particle density ma-
trix, R, is the position of the ith ion, and V is an
“effective potential matrix” introduced by Hilton

et al,* The essential advantage of this formulation
is that U (f; B) is a much more slowly varying func-
tion than the actual potential V(¥) from which it is
obtained. By a straightforward integration and
configurational averaging, one arrives at the follow-
ing expression for the partition function Z(B):

ZB) = (2.".3)-3/2( 1, d-fl f(f'l; 3){;}({_15[)9G(Fl)]"' 1}),
1
(2)
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+ FIG. 1. Orthogonalization parameter A(3) is shown as

a function of 8.



