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The mode-Gruneisen parameters, the macroscopic Gruneisen function y(T)=3aB" V/C~, and the
coefficient of thermal expansion a are calculated for KBr. Three anharmonic models are used: the
rigid-ion (RI) model, a deformation-dipole (DD) model in which the deformability of the ions does not
depend on the volume V, and a DD model in which the deformability does depend on V. Allowing
the deformability to depend on V significantly improves the agreement with experiment. A definite
minimum in the low-temperature values of y(T) is predicted by the DD models, but not by the RI
model. The distance between nearest neighbors r at which the potential energy of the lattice has its
minimum value is found self-consistently. This value of r is used in the determination of the
derivatives of the short-range overlap potential v(r). The force constants obtained difFer significantly
from those obtained by substituting room-temperature experimental data into formulas derived using the
equilibrium condition. Significantly larger values for y(T) and a, which are in better agreement with

the experimental results, are obtained by allowing for the temperature dependence of the zero-pressure

values of 8" and r.

I. INTRODUCTION

Recently, results of several model calculations
of the linear coefficient of thermal expansion n(T)
and the macroscopic Gruneisen function y(T) for
the alkali halide crystal have been reported in the
literature. ' Reasonable agreement with the ex-
perimental results has been obtained.

We have carried out model calculations of n(T)
and y(T) for KBr while trying to minimize the num-

ber of approximations made once the interactions
included in the model have been specified. We
also investigated the significance of several ap-
proximations that are often made in such model
calculations by comparing the predictions obtained
with our model when these approximations are
made with the predictions obtained when they are
not made.

The macroscopic Gruneisen function is given by

r(T) = 2(xu ~/Cv, (1.1)

where B"is the isothermal bulk modulus, C~ is
the heat capacity at constant volume, and V is the
volume. The quantity y(T) is related to the nor-
mal-mode frequencies & and the mode-Gruneisen
parameters yq by

(1.2)

where C, (T) is the heat capacity of the normal mode
with frequency u~ and the sum is over all normal
modes. The self-energy corrections to the free
energy are neglected here. Equation (1.2) is most
accurate when the values used for ~& and y& are
the values appropriate to the volume of the crystal

at the temperature and pressure being considered.
An often made approximation is to use Eq. (1.2)
but neglect the change in the values of coq and y~

caused by the change in volume due to thermal
expansion. To determine the significance of this
approximation we used a consistent expansion of
the Helmholz free energy to derive expressions for
the zero-pressure values of the quantities on the
right-hand side of Eq. (1.1). The expressions ob-
tained involve the values of &~ and y~ at only one
volume, the volume that minimizes the potential
energy. When these expressions are substituted
into Eq. (1.1), the resulting formula for y(T) con-
tains several corrections to Eq. (1.2). We find
that these corrections affect the calculated values
of y(T) by as much as 9% and that they significantly
improve the agreement with the experimental re-
sults.

The equilibrium condition, i.e. , the condition
that the electrostatic forces balance the short-
range overlap forces, is utilized in the derivation
of the formulas commonly used to determine the
first two derivatives of the short-range overlap
potential v(x) from the bulkmodulus andthe nearest-
neighbor separation r. Of course, these forces
balance exactly only in the configuration that mini-
mizes potential energy. Because of the anharmonic
nature of the interionic forces and because of zero-
point motion, this configuration is never realized
in real alka, li halide crystals at zero pressure.
Nevertheless, the values of the first two derivatives
of v(x) are often determined by substituting room-
temperature zero-pressure experimental data into
these formulas. We find that the values of the
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F = —ksT in(Tre "~ & ) (2. 1)

where II is the Hamiltonian of the system and k~
and T are Boltzmann's constant and the absolute
temperature.

When applying Eq. (2. 1) to a crystal lattice, one
expands the potential-energy part of the Hamilto-
nian in a Taylor series of powers of the displace-
ments of the ions from the positions they occupy
when the potential energy is minimized. If the
cubic terms in this series expansion are considered
to be of order Xandthequartictermsare considered
to be of the order A, , the perturbation expansion for
the Helmholz free energy per un@ cell through or-
der X has the form

f(T, u)=f '(T)+uf~"(T) + (u /2)[f~ '(T)+P t

+ (u'/3!) y"'+ (u'/4 l) y"'. (2. 2)

In general the strain parameter I in Eq. (2. 2)
is a tensor. However, when considering the ther-
mal expansion of cubic crystals, it is sufficient to

derivatives determined in this way differ by as
much as 10% from the values determined by a con-
sistent use of the formulas.

Most of our calculations have been done with the
deformation-dipole (DD) model, which is a general-
ization of the rigid-ion (RI) model that allows for
the polarization of the ions in the crystal by the
internal electric fields and for the distortion of
the negative ions by their motion relative to their
six nearest neighbors. The anharmonic model
considered in greatest detail allows for anhar-
monicity in the overlap forces, in the RI part of
the electrostatic interaction, and in the deforma-
bility of the ions; we refer to it as the anharmonic-
deformation-dipole (ADD) model. Using it, we
obtain reasonable agreement with the experimental
values for n(T) and y(T) without the use of adjusta-
ble parameters. For comparison, we have also
used a simpler-deformation-dipole model (SDD)
that allows for anharmonicity in only the RI part
of the dynamical matrix. %e find that the predic-
tions of the ADD model are in considerably better
agreement with the experimental data than those of
the SDD model. We also carried out anharmonic
calculations with the RI model and found no low-
temperature minimum in the values of y(T) pre-
dicted with it. The values of y(T) predicted with

the ADD and SDD models do possess low-tempera-
ture minima.

II. THERMODYNAMICS

A. Helmhob Free Energy

The connection between the macroscopic thermo-
dynamic properties of a system and its microscopic
structure is made by th8 statistical mechanical
formula for the Helmholz free energy:

consider the scalar strain parameter

u=(~-y, )/~, (2. 3)

where r is the distance between the average posi-
tions of nearest neighbors and r, is the potential-
minimum value of r. The phrase "potential-mini-
mum" is used to refer to the configuration of the
lattice that minimizes the potential energy.

The coefficients p~"' in Eq. (2. 2) are defined as

(2. 4)

+ anharmonic terms, (2. 5}

where ~&, is the frequency of the normal mode
with wave vector k and polarization index s. All
k-space integrations are to be taken over the first
Brillouin zone. Only the harmonic (i.e. , X = 0)
term is given explicitly. The coefficient f~"(T) in
Eq. (2. 2) is given by

f"'(T)= —3(2rys ) P,„(T)

d kcoth
2& T 2

8'&u„,yg, ,
S 4 8

(2 8)
where P,„(T) is the "thermal pressure, "which is
the pressure needed at temperature T to prevent
the crystal from expanding beyond its potential-
minimum volume, that is, its volume when g=0.
The mode-Qruneisen parameters are defined as

V Geo

8V (2. 7)

where the product Ik lr is held constant in the
differentiation. The volume V is related to r and
to the strain u by

v= v, (r/~, )'= v, (1+u)', (2. 8}

where V, is the potential-minimum value of V.
Potential-minimum values for the frequencies and
mode- Gruneisen parameters are required in Eqs.
(2. 5) and (2. 6).

The terms in Eq. (2. 2) containing the coefficients
Q

"' give the contributions to the free energy that
result from the potential energy associated with a
lattice having a'distance r between the average
positions of nearest neighbors. The terms con-
taining the coefficients f '"'(T) gives the contribu-
tions that result from the motion of the ions about

where P(r) is the potential energy per unit cell
associated with a collection of static ions with a
distance r between nearest neighbors. Since the
derivatives in Eq. (2.4) are evaluated at the poten-
tial-minimum value of w, it follows that P'" = 0.

The term f t '(T) in Eq. (2. 2) is given by

3
f'"(T) = -'k T Z d'kin

~

2sinh 2„'T ~
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y(4) 0 (2. 9)

We have approximated the temperature depen-
dence of the zero-pressure isothermal bulk modu-

lus B(I'(T) with the function

B2'(T)=B, +B(coth(8 /T4), (2. 10)

where the subscript 0 indicates zero pressure.
The potential-minimum value of the bulk modulus,

B, , was set equal to the ordinate of the intercept
with the 7'= 0 axis of the straight-line extrapolation
of the high-temperature experimental values of
B(') (T) on a B)') (T) vs Tplot. B-() (-T) is the zero-
pressure adiabatic bulk modulus. The sum B,
+B,was set equal to the experimental value of Bp
at 0 K, which is also the 0 'K value of Bp, Ex-
perimental values for B2 (T) were obtained from
Gait and Sharko and Botaki. The parameter 8&

was determined so that when Eq. (2. 10) was
evaluated at 300 'K it gave the value of Bp' given

by Reddy and Ruoff. The values obtained were
B, = 1.772x10" dyn/cm, B,= —3. 2x10 dyn/cm,
and 8,= 27. 9'K.

The thermodynamic expression relating the iso-
thermal bulk modulus to pressure I', volume V,
and free energy I" is

(2. 11)

It follows from this and from Eq. (2. 2) that at zero
pressure

B(s(T)
y(

&+ f (2&(T)+g (T) y(2&+ ) u (T)2 )1)
&4&

0 ~ 0

18r', [1+u()(T)]
(2. 12)

where g()(T) is the zero-pressure value of the strain
at temperature T. Rearranging the terms in Eq.

their average positions. The harmonic part of
f' '(T) is simply the free energy per unit cell of a
set of independent harmonic oscillators with fre-
quencies (dp, . The strain-dependent terms uf "'(T)
and 2u f' '(T) are the quasiharmonic contributions
to the free energy which account for the dependence
of the force constants (and thus the frequencies)
on the average distance between nearest neighbors.
The anharmonic terms in f(2& (T) are the self-
energy contributions to the free energy.

B. Determination of Coefficients in Eq. (2.2)

In this article we use the anharmonic models de-
scribed in Sec. III to determine f' '(T) and the
harmonic part of f( '(T). We neglect the anhar-
monic terms in f(2&(T) and determine f(2&(T), Q( &,

and p(2& from the known temperature and pressure
dependence of the bulk modulus. Since we lack a
convenient experimental parameter with which to
determine (()' ', we make the simplifying assump-
tion that

(2. 12) gives

4 f( )(T) 18r2 [1+g()(T)]Bt)(T)

—u2(T ) Q
( ' —

2 u()(T ) Q
( ' . (2. 13)

We have determined (t)( & and f( &(T) by substituting
Eq. (2. 10) into this and separately equating the
te mperature- independent and temperature-depen-
dent terms from the two sides of the resulting equa-
tion. This gives

and

(2. 14)

f' '(T)= 18r2 ([I+u()(T)]B,coth(82/T)+u2(T)B, j
—u()(T) Q' —2u()(T) p ' . (2, 15)

It also follows from Eq. (2. 11) that the isother-
mal pressure derivative of the bulk modulus at zero
pressure is given by

(
SB" (("&+a,(T) y&'&

SP r 54r' B"(T)

From this it follows that

= 54r B() (T) 1 (( ep
- u, (T) y(4&.

(2. 17)
This expression with P( '= 0 was used to determine

p "& from the 300 'K experimental values of B2' and

of (SB"/8P)r given by Reddy and Ruoff.
To complete the determination of f( &(T), the

zero-pressure strain u()(T) must be determined.
It follows from Eq. (2. 2) and the thermodynamic
relation P = —(SE/(&V)r that at zero pressure

0 f(2)(T)+g (T) [f(2)(T)~ (t) (2&]

+ 2u()(T) (t)( '+ [u()(T) /3 I] (t)
( ' . (2. 18)

By substituting Eq. (2. 13) into this and setting )t)
( '

= 0, one obtains the quadratic equation

u,(T)' [3B,"(T)—(Q(2)/12r2,.)]
+u()(T) 3B()'(T)—P)„(T)= 0, (2. 19)

which is the equation we have solved to determine

u()(T).

III. ANHARMONIC MODELS

A. Description of Models

The familiar rigid-ian model treats an alkali
halide crystal as a collection of massive charged
ions held in place by long-range electrostatic
forces balanced by short-range overlap forces. The
ions are considered to have monopole moments of mag-
nitude +e, where e is the magnitude of the charge
on an electron. Two-body central overlap forces,
which act between nearest neighbors and can be
derived from a potential ()(r), are considered.

The deformation dipole model is an -extension of
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The derivatives needed can be determined either
with

8&@~ (uf,(t+hx') —&u~(x)tcs (~) Ls

9~» 8D
20)p = E~~ e ~ E»hs

where Ep is the eigenvector of the dynamical ma-
trix Dp associated with the eigenvalue &~:

2

(Vga Egg Df Ep~ (3.4)

Equation (3.2) has been used with the ADD model,
while Eq. (3.3) has been used with the RI m«ei ~

The dynamical matrix for the DD model can be
expressed as

DD Rf p
Dp =Dp +Dp (3. 5)

EQ
where Dp is the BI dynamical matrix and D& is an
additive term that accounts for the effects of the
polarization and deformation dipoles. A simple
way to allow for the dependence on x (or equiva-
lently, on V) of both the nearest-neighbor force
constants and the monopole part of the, electro-
static interaction, while neglecting any r depen-
dence in the strengths of polarization and deforma-

V'(r) Vu(r) r

B(r) A(r) 8
I

v v'

PIG. 1. Parameters needed for determining the nor-
mal-mode frequencies cop rvith the RI model (solid lines)
and the DD model (solid and dashed 1ines).

the RI model. In addition to the monopole moments
associated with the ions, dipole moments are in-
cluded to account both for the polarization of the
electron clouds of the ions by the internal electric
fields in the crystal and for the distortion of the
electron clouds by their motion relative to their
six nearest neighbors. Polarization dipoles on
both the positive and negative ions are included;
deformation dipoles on only the negative ions are
allowed for.

It follows from definition (2. V) and relation
(2. 6) between the volume and the nearest-neighbor
distance that the mode-Gruneisen parameters are
given by

tion dipoles, is to calculate the mode-Gruneisen
parameters using Eq. (3. 3) with the derivative of
the additive term D„' neglected. This gives

SDD —K DD
YPig 6( DD}2 +ks s +les 1 ( ' 6)

DD DD 2where Eg, and (u&h, ) are the eigenvectors and
eigenvalues of D

The anharmonic model that uses normal-mode
frequencies determined with the DD model and
mode-Gruneisen parameters determined with Eq.
(3.6}will be referred to as the SDD model. This
model is appealing for several reasons: (i) the
expectation that the short-range forces are the
major source of anharmonicity in an alkali halide
crystal; (ii) the fact that the determination of the
mode-Gruneisen parameters with Eq. (3.6) re-
quires only one more input parameter than the
calculation of the frequencies; and (iii) the fact that
the expression for &D'/~ is much more difficult
to evaluate than the expression for &D /W'.

Our most complete anharmonic model, which we
call the ADD model, not only allows for the x de-
pendence of the nearest-neighbor force constants
and of the monopole part of the electrostatic inter-
action, but also allows for r dependence in the
strength of the deformation dipoles. For simplicity
we have assumed that the polarizabilities n, and

are independent of &.

B. Input Parameters

The essential input parameters needed for deter-
mining the normal-mode frequencies up are listed
in the top rom of Fig. 1. The first and second
derivatives v'(r) and v"(t ) of the short-range poten-
tial and the average distance between nearest neigh-
bors & are needed with both models. The elec-
tronic polarizabilities +, and e„, the static di-
electric constant 60, and the infrared dispersion
frequency (or reststrahlung frequency) &voare needed
with the DD model only. The derivatives v'(r) and
v"(r) are conventionally expressed in terms of the
dimenslonless parameters

(3. V)

and

(3.6)

The values of the input parameters used in deter-
mining the frequencies and mode-Gruneisen param-
etex s are given in Table I.

C. Short-Range Potential v(r)

Values for v'(~, ), v"(r, ), and v'"(~, ) are
needed for the determination of the potential-mini-
mum values of the frequencies and mode- Gruneisen
parameters required in Eqs. (2. 5) and (2.6).
When Eq. (3. 3) or Eq. (3.6) is used, v"'(r, ) is
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TABLE I. Values of the input parameters used in
determining coI, and yg for KBr and the models in which
the parameters are needed.

Parameter

(4r' /e')v'(r ) =&( )

(4r /e )v" (r ) =&(r )

(4r4~/e') v "'(r~)

Value

—l.165

12.82

-116.4
8.2658 && 10 cm

1.195 && 10" cm

Model

ADD, SDD, RI

ADD, SDD, RI

ADD, SDD, RI

ADD, SDD, RI

ADD, SDD

4. 109&& 10 cm ADD, SDD

(e*/e)~

(r~/e+) (ae+/er)~

0.7506

2.937

ADD, SDD

ADD

needed to determine the derivative of the dynami-
cal matrix. When Eq. (3. 2) is used, values of
v'(r) and v"(r) at r=r, + 4r are needed, and they
are given for small values of &r by

v'(r, + br)=v'(r, )+v"(r, ) hr

and

v"(r, + hr) = v"(r, )+v'"(r, ) 4r . (3. 10)

In both the RI and DD models, the potential en-
ergy per unit cell p(r) is related to the short-
range potential v(r) by

3 & +1
Q~+ Q

4m ~„+2 (3. 15)

The ratio o., /o.'was set equal to the ratio of the
electronic polarizabilities of K' and Br" give~ by
Tessmann. , Kahn, and Shockley. ' Although &„and
~ were used in the actual determination of 0., and
at, it is more convenient, for the purpose of the
discussion here, to think of &„ as being deter-
mined by o„a„, and x, as indicated in Fig. 1.

The strength of the deformation dipoles is deter-
mined by the value of the Szigeti effective charge

e+ = a),
~

' " {22r')"',3
4w ~„+2

where M is the reduced mass of the two ions in a
unit cell. The parameters y and y' appearing in
Fig. 1 were introduced by Hardy' to characterize
the strength of the deformation dipoles (y and y'
are not Gruneisen parameters). The long-wave-
length optic-mode frequencies depend on y and y'
only through the combination y'+ 2y. To obtain the
proper values for these frequencies, one sets

(3. 16)

2(y'+ 2y) = e*—e . (3. 17)

The value of the sum of the polarizabilities (o,,
+ e ) w'as determined from the experimental value
of the high-frequency dielectric constant c„and the
Clausius-Mossotti relation

4(r)= —+ (e /r)+6v(r), (3. 11) To complete the specification of y and y' we set
where &s is Madelung's constant. Since dQ/dr
vanishes when r= ry, it follows that

y'/y = rv" (r)/v'(r) (3. 18)

I +N
2'(,.)=-

+ym
(3. 12)

which, in terms of A(r) and B(r), is

y /y =&( )/B( ) (3. 19)

It also follows from Eq. (3. 11) that

2

«ym 3 &ym

and

(3. 13)

This is somewhat arbitrary, but it is equivalent to
the choice suggested by Born and Huang ' and to
that used by Hardy. To be consistent, the zero-
pressure value of ~ at 2 'K, not ry, has been used
in the evaluation of Eqs. (3. 15) and (3. 16).

2

«ym &ym
' (3. 14)

where Eq. (2.4) has been used. The method for de-
termining g' ' and p' ' is discussed in Sec. II; r,
is determined self- consistently.

D. Dielectric Properties

Potential-minimum values for &0, &„, and ~0
are needed to determine the potential-minimum
frequencies with either the SDD or the ADD model.
Such values are not directly measurable, but can
be estimated by straight-line extrapolations to
T = 0 on graphs of experimental values plotted ver-
sus temperature. Since we lack the necessary data
with which to do such an extrapolation, we have
used the 2'K experimental values of Lowndes and
Mart1n.

e~
~ ly ~ym+&r=~ lr~rym ~+

ym &ym-
(3.20)

and used Eq. (3. 16) to determine the potential-min-
imum value of e*. To determine se~/sr, we used
the derivative of Eq. (3. 16) with respect to r to re-
late &e "/&r to the derivatives of e, eo, and &,.

It follows from the assumption that the polariz-
abilities &, and n„are independent of r from the
Clausius-Mossotti relation, Eq. (3. 15), that

(e —l)(e„+2) 3 2 )8+

E. Determination of Be*/Br

To determine the mode- Gruneisen parameters
with the ADD model requires values for the Szigeti
effective charge e* at both r=ry and x=x, + Ar.
We set
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It follows from Eqs. (2. 8) and (2. 11) that

(3. 22)

the expression

(
r &e ~ 3 rPv" '+ 2(rv" —v')
e* Sr, 2 2(rv" + 2v')

The available experimental values for (s&p/8P)r
are room-temperature values while, to be consis-
tent with the 2 'K data used for &0, &„, and uo,
the 2'K value of (&ep/SP)r is needed. We have
used the expression for the pressure dependence
of the room-temPerature value of (Sap/SP)r given
by Jones and have evaluated it at the pressure
P(2) that would be needed to reduce the volume of
the crystal at room temperature to the volume it
has at 2'K at zero pressure. This gives the 2'K
value of (pep/SP)r at zero Pressure to the extent
that ep(P, T) equals ep(V(P, T)}or, equivalently,
to the extent that (S&p/ST)» is negligible. The
zero-pressure value of (~&p/&P)r for KBr given
by Jonesi is —5. 636 x10 ii cm /dyn. At pressure
P(2), which is equal to 3.62x 10P dyn/cm, the
value of (Sap/SP)r is —4. 602x10 ii cm/dyn. Thus,
the derivative (Sap/SP)z, is aPProximately 18% less
at 2'K than it is at room temperature. We have
used the quantity Bp'+ (&B"/~P) P(2) to estimate
the room™temperature value of the bulk modulus
at pressure P(2) for use in Eq. (3.22).

The dependence of &0 on r is determined by the
dependence of v(r), e„, and ep on r, and by the
model. The frequency of the transverse-optic
modes at the zone center predicted by the DD mod-
el is~

(pro = (e /2 r M ) [A (r) + 2B (r)]

—(2v/9Mr ) (e„+2) (e*) . (3.23)

In principle, &p equals the infrared dispersion
frequency &p (if one neglects the self-energy fre-
quency shift). Even though the experimental quan-
tity +0 enters into the calculation of u&o through
the Szigeti effective charge e*, the model does
not assure that &&0= +0. Nevertheless, for KBr
the calculated quantity &&0 differs from the experi-
mental quantity &p by less than leap (see Table II).

Since +&0 and &o should be equal, we derived the
following expression for &o by substituting Eq.
(3. 16) into Eq. (3.23), replacing the symbol ~p~o

with p&p, using Eqs. (3.7) and (3.8), and solving
the resulting expression for &0..

~p = (2/M) [v"(r)+ 2r 'v'(r)] [(~-+2)/(ep+ 2)].
(3.24)

This reduces to the first Szigeti relation" in the
potential-minimum configuration. The derivative
of Eq. (3.24) with respect to r was used to relate
S&up/&r to the derivatives of v(r), e„, and ep.

By differentiating Eq. (3. 16) with respect to r,
solving for ee*/&r, and using the above results for
the derivatives of &, &0, and ~0, we arrived at

3(&-+ 2) is»"
P(2)

2(ep+ 2) (ep- e-)

s t (& + 2) (e„-1) (3 25)SP r 2(ep e )

When evaluating this, we used the potential-mini- .

mum values of ~, s', &", and v'", the 2 K values
of &0 and &„, the room-temperature values of 80'
and (SB"/~P)r, and the room-temperature value
of (Sap/SP)z, at Pressure P(2). Our value of 0. 98
for the quantity

& lne* ~ &e*
~lnV 3e* er (3.26)

rp(T) = r, [1+up(T)], (3.27)

which follows from Eq. (2.3) and the definition of
up(T). Equation (2. 19) determined up(T).

Our final values for rp(T) predicted with the ADD
model are given in Fig. 2. Our final value for
rp(T) at T = 298 ' K for the ADD model is 3.2999
X10" cm; the corresponding experimental value is
3.3000&&10 cm. 7 The self-consistent procedure
was carried out for the ADD model only. The value
of y, determined with that model was also used
with the RI and SDD models.

IV. RESULTS AND COMPARISON VfITH EXPERIMENT

A. ,Mode-Griineisen Parameters

The mode- Gruneisen parameters yl determined
with the RI, SDD, and ADD models for k vectors
in three directions of high symmetry are given in

is in good agreement with the values of 0. 98 and
0. 90 estimated by Lowndes, ' but is quite different
from the value of —0. 05 estimated by Barron. and
Batana. '

F, Determination of r~
The value of the distqnce between nearest neigh-

bors in the potential™minimum configurations r,
is ~ceded for the model determination of the fre-
quencies and mode-Gruneisen parameters. The
zero-pressure value of the distance between neares
neighbors rp(T) can be determined experimentally
but, because of the zero-point motion in real crys-
tals, r, is never equal to rp(T), even at absolute
zero.

We have used a self-consistent procedure to
determine r, . We have varied r, until our pre-
dicted value for rp(T) at room temperature is in
agreement with the experimental value. The pre-
dicted value for rp(T) is determined by the value of
up(T) and the relation
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FIG. 2. Temperature dependence of the distance
bebveen nearest neighbors at zero pressure for KBr as
predicted with the ADD model.
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Fig. 3. A brief inspection of the figure reveals
appreciable differences between the predictions of
the three models. This suggests that comparing
the calculated and experimentally determined values
for the mode-Gruneisen parameters should be a
sensitive way to determine the accuracy of an
anharmonic model. Unfortunately, little experi-
mental information is available for such a compari-
son, except for modes with k vectors near the cen-
ter of the Brillouin zone. Nevertheless, our ADD-
model values for yp are in reasonable agreement
with the results of other researchers ' '~ (in par-
ticular, see Fig. 3 of Ruppin and Roberts ).

The experimental parameters that determine the
frequencies of modes near the center of the zone
are the elastic constants C», C», and C44, the
infrared dispersion frequency &0, and the di-
electric constants &0 and e„. Since yp„= —(V/&p )
&(»p /&V), and since experimentally the volume
is varied by varying the pressure, the pressure
derivatives of C», C», C44, 0, &0, and & are
the essential experimental parameters for deter-
mining the zone-center mode- Gruneisen parameters.
Model and experimental values for some of these
parameters are given for comparison in Table II.
The agreement between the values predicted by
the ADD model and the experimental values is
quite satisfactory. The most serious discrepancy
is probably in the values for C«and (s C«/SP)r.
discrepancy is probably in the values for C44 and

(&C44/&P)r .
Both the RI and the DD models predict the same

elastic behavior. The model values for C», C»,
and C44 were determined with standard formulas,
while the experimental potential-minimum values
were determined by making straight-line extrapo-
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FIG. 3. Mode-Gruneisen parameters for KBr along
the [1,1,1], [1,1,0], and [1,0, 0] directions ink space
as predicted by the RI, SDD, and ADD models. The
symbols I', I, X, and Z designate the points of high
symmetry in the first Brillouin zone of the fcc lattice.
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TABLE jI. Model and experimental values of properties that determine ~g, and ~with k=o for KBr. The notation pm
is used to label potential-minimum values. All values are in cgs units.

Property

(sa"/sp),

Model value

1.772x10 '

5.331
4.479

(pm)

(soo K)
(ppm)

5.331' (300 'K)

Experimental value

1.772 x 10« (extrapolated)

Ci2

C44

(ec«/es),
(ec„/es),
(ec44/es),
(e~„/ep) &

(dyo

3.906 x 10"
0.705 x 10«
0.705x 10

10.38
1.53

—0.469
13.64x 10-'2

2.309 x $0
2.187 x 10

2.221
1.802
2.009

(pm)
(pm)
(pm)

(pm)
(pm)
(pm)
(300'K, ADD)

(pm, DD)

(pm, RI)

(pm, ADD)
(pm, SDD)
(pm, RI)

4.277 x 10"
0.56x 10«
0.52 x 10

12.91
1.542

—0.328
9 92x 10 12b

2.32x 10'3'

2.83
1.59'

(extrapolated)
(extrapolated)
(extrapolated)

(soo K)
(soo K)
(soo'K)
(soo K)

(2'K)

P. J. Reddy and A. L. Ruoff (Ref. 8).
R. M. Waxier and C. E. Weir, J. Res. Natl. Bur.

Stand. 69A, S25 (1965).
R. P. Lowndes and D. H. Martin (Ref. 9).

'C. Postmus and J. R. Ferraro, Phys. Rev. 174,
983 (1968).

~. P. Lowndes (Ref. 15).

lations to T = 0 on elastic-constant —versus-tem-
perature plots. Since the input parameters were
determined so that the model and experimental
values for B, agreed, and since 3B= (C„+2C,a),
the overestimate of t-"» by a model is necessarily
associated with an underestimate of C».

The model values of the pressure derivatives of
the elastic constants C~„were determined with

ec „ r ec „
r~rym

(4. 1)

and the standard formulas for the elastic constants.
The fact that only room-temperature experimental
values are available for comparison with the poten-
tial-minimum model values makes the significance
of the comparison somewhat uncertain. An idea of
the difference that can exist between room-tempera-
ture and potential-minimum values of the pressure
derivatives can be obtained from the two model
values for (SB '/SP)& given in Table II. The exact
agreement between the model and experimental val-
ues of (SB"/&P)r at 300 'K is assured by the method
used to determine the input parameters.

The ADD-model value for ~e„/sP at T = 300 'K
was calculated with

B. Thermal Expansion

3n, (T)B,"(T)V,.[I+uo(T)]'
CF(VQ, T) (4.4)

Since no information about the thermal expansion
of the crystal was used in setting up the models or
in determining the input parameters, it is mean-
ingful to test the models by comparing the predicted
and experimental values of either the linear coeffi-
cient of thermal expansion n(T) or the macroscopic
Gruneisen function,

y(T)= 3n(T)B (T) V(T)/Ch(T). (4. 3)

When presenting results graphically, a more sen-
sitive comparison of the low-temperature behavior
can be obtained with y(T) than with n(T). Model
and experimental values for y(T) are given in Fig.
4. The experimental points were determined from
the thermal-expansion data of Meincke and Gra-
ham, ~ the specific-heat data of Berg and Morri-
son, and the elastic-constant data of Sharko and
Botaki.

The ADD-model values for the macroscopic
Griineisen function at zero pressure, yo(T), which
are given in Fig. 4, were calculated with

Se„ho(T) Se„
~P r 3Bo'(T) sh „ ir)

(4 2) where Eq. (2. 3) has been used. The linear coeffi-
cient of thermal expansion at zero pressure is

Equation (3. 21) and the Clausius-Mossotti relation
were used to determine &e /&h.

1 Cho(T)
o( )=h(T) dT (4. 5)
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By differentiating Eq. (2. 19) with respect to T, and

using Eqs. (3. 27) and (4. 6), one can show that

c'0(T) = ~k.(T)

y (&) "1
x 1+uo(T) 2-, B„~(4. 6)

pm 0

It follows from Eq. (2. 6) that

Cv(V, , T) = ', Z d k Ch, (T),
7I

(4. 9)

&&hh(T)
( . , )- ~h.(T)

(4. 10)

which is the value appropriate to the volume V= V,
when self-energy contributions are neglected.

If one sets uo(T) = 0 on the right-hand side of
Eq. (4. 6), one would obtain an expression of the
form

„Z ~ d'kC„-(T)y„;,

where the heat capacity per mode is

1 1(4)f

sk T' i sh(sR ts/ STk))

(4. 7)

(4. 8)

As the notation indicates, this is the value of n(T)
appropriate to the pressure P,„(T) that reduceS the
volume of the system at temperature T to the po-
tential-minimum value V, provided, of course,
that the value of B '(T) appropriate to that pressure
is used. The macroscopic Gruneisen function for
temperature T and pressure P&h is

Temperature ( K)
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FIG. 4. Macroscopic Griineisen function for KBr.
The circles (Q) indicate experimental values of 3mB 'V/

C~. The lines represent values of yo(g or y(V~, T) de-
termined with Eq. (4.4) or Eq. (4. 11), respectively.

In calculating the heat capacity, we have neglected
the contributions of the terms in Eq. (2. 2) contain-
ing fu'(T) and f~ )(T) and used the value

y(v, T) =(E d

des�

(T)ys) f (Z d

key�

(T))

(4. 11)
which is a special case of Eq. (1.2). Expressions
of this form are often used to calculate values for
the macroscopic Gruneisen function, which are then
compared with zero-pressure experimental values.

Equation (4. 11) was used to determine the RI-,
SDD-, and ADD-model values of y(V, , T) given in
Fig. 4. By utilizing a scheme for evaluating inte-
grals over the first Brillouin zone that divides the
zone into several distinct concentric regions and
samples the integrand at a higher density of points
in the region at the center of the zone, we have
obtained values for y(V, , T) that we estimate are
accurate to better than 1% at temperatures as low
as 3 'K. This has enabled us to show unambiguous-
ly that well-defined minima exist in the values of
the macroscopic Gruneisen function predicted by
the ADD and SDD models, but not in the values pre-
dicted by the RI model.

It is apparent from Fig. 4 that the ADD-model
values for yo(T) are in better agreement with the
experimental values than the values for y('V, ; T).
In particular, at 250 K the zero-pressure macro-
scopic Gruneisen function yo(T) is only 1.4% less
than the experimental value, while y(V, , T) is 9%
less. Of course, this is not surprising, since the
experimental points were calculated with zero-
pressure data.

Although the ADD-model value for yo(T) is very
close to the experimental value at 280 K, the model
values drop appreciably below the experimental val-
ues at lower temperatures. To see which one of the
parameters in Eq. (4. 3) contributes most to this
discrepancy, we have calculated the ratios of the
model values to the experimental values of c!0(T),
Bo (T), and C„(T) and have presented the results in
Fig. 5. This method for presenting the data em-
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FIG. 5. Temperature dependence for KBr of the ratio
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the adiabatic bulk modulus B~, the heat capacity C&,

, and the linear coefficients of thermal expansion 0,0(T)
and +(V~, T) determined with Eqs. (4.6) and (4.10), re-
spectively.

phasizes any differences that exist between the ex-
perimental and model values of oo(T) and C „(T)at
low temperatures.

It is readily seen from Fig. 5 that the major
source of the discrepancy between the model and

experimental value for yo(T) is in the determination
of the coefficient of thermal expansion. The ADD

values for the beat capacity C~(V, , T) are within
2'K of the experimental value at temperatures
above 50 K, despite the fact that the anharmonic
contributions are neglected. The model values for
Bo'(T) are in good agreement with the experimental
values at temperatures above 80 'K. Unfortunately,
reliable experimental values for Bo'(T) below 80 'K
are not available. Even though Eg. (2. 10) gives
reliable estimates for Bo"(T), it does not give re-
liable estimates for (SB"/~T)J, at low temperatures.
In particular, it is the poor estimate of (SB"/SP)z
that causes the model value for o'.0(T) to exceed the
experimental value at the lower temperatures.

The ADD-model values for n(V, , T) are also
given in Fig. 5 to illustrate the significance of the
corrections to Eq. (4. 10) that are included in the
complete expression (4. 6). [The zero-pressure
values for B"(T)were used in determining the
values of o.'(V, , T) given in the figure. 1 The cor-
rections increase the ADD-model value of the co-
efficient of thermal expansion by approximately
5% at temperatures above 80'K. Below 80'K, it
is difficult to estimate the significance of the cor-
rections because of the lack of reliable values for
(»"/sT)p

V. DISCUSSION AND CONCLUSIONS

A. Consistent Use of Models

One reason for creating crystal models is to help
determine the nature of the microscopic interac-
tions in real crystals. If a model predicts values

for several independent properties that are in good
agreement with experimental values, one feels
reasonably confident in assuming that the interac-
tions allowed for in the model at least approximate
those in the real crystal, and one then hopes that
the model will be capable of predicting crystal
properties that are not already known. Of course,
for any such predictions to be reliable, the model
must be used consistently. In particular, the same
interactions, and interactions of the same strength,
must be used in all of the predictions made. Also,
all of the effects of each of the interactions included
in a model should be considered.

Consider the often used procedure of determining
the strength of the overlap forces by substituting
room-temperature zero-pressure data into formu-
las derived using the equilibrium condition. Since
a real crystal at room temperature is not in a con-
figuration in which the electrostatic forces exactly.
balance the overlap forces because of thermal ex-
pansion, it is certainly not strictly consistent to
use such a procedure. Nevertheless, one might
hope that the errors introduced by using the pro-
cedure would be negligible. To check whether or
not this is the case, we have calculated values for
the first two derivatives of the nearest-neighbor
overlap potential v(r) both by substituting room-
temperature data directly into formulas derived
using the equilibrium condition, and by taking into
account the effects of thermal expansion, etc.
The results are given in Table III.

Formulas (2. 14), (S. 12), and (S. 13) were de-
rived using the equilibrium condition. They are
equivalent to the expressions given by Kellermann
for determining the dimensionless parameters
B(r) and A(x) related to v'(r) and o"(r) Withi.n
the harmonic approximation, which was being con-
sidered by Kellermann, it is consistent to sub-
stitute room-temperature zero-pressure experi-
mental data into these formulas, since in the har-
monic approximation there is neither thermal ex-
pansion to cause the distance between nearest
neighbors at zero pressure t'0(T) to differ from
potential-minimum distance &, , nor temperature
dependence in the elastic constants to cause the
zero-pressure bulk modulus Bo'(T) to differ from
the potential-minimum value B~~. Only in the
potential- minimum configuration do the electro-
static forces exactly balance the overlap forces.

The values given in Table III for v'(r) and & "(&)
at &=r, were determined by substituting actual
potential-minimum data into Eqs. (2. 14), (3. 12),
and (3. 13). The potential-minimum distance &,
was determined self-consistently (see Sec. III),
while B, was determined by an extrapolation of
the experimental data (see Sec. II). The ' consis-
tent" values for v'(r) aud v"(x) at the nearest-
neighbor distance ro(T) were determined with
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TABLE III. Values for KBr of the first two derivatives of the interaction potential y (~) associated with the overlap forces
acting between nearest neighbors. The "consistel}t" values were calculated with formulas that allow for the effects of
thermal expansion, etc. The "approximate" values were calculated vnth formulas derived using the equilibrium condition.

Distance between
neighbors

&=~yn

~=go(l 'K)

g =go(300'K)

Comment

consistent
approximate

consistent
approximate

e'b)
(erg/cm)

-6.300 & 10-'
-6.136 ~10-' 2%
-6.270 && 10"~ difference

-5.607' 10 5 10%
—6.170 & 10 difference

e"4)
(erg/cm2)

2.122 x 10
2.076 & 10 0.8%
2, 092 x 10 difference

1.920 & 10 7%
l.783 & 10 difference

U (&o(T)) =" (1' )+I' (+ ) [I'o(T) + l

&"(&o(T)}= &"(&y )+~'"(&, ) [1'o(T)—1, j.
The "approximate" values for p'(y) and e"(y}at
x= ro(T) were determined by substituting the zero-
pressure values of xo(T} and Blo'(T) (instead of r~
and 8, ) into formulas (2. 14), (8. 12), and (8. 18).
It can be seen from the taMe that the substitution
of room-temperatGre zex'o-px'eseux'e experimental
dRtR directly lllto these fol'IllulRs 18Rds 'to R 10%
overestimate of the magnitude of e (ro(800'K)}.Rnd

a V% underestimate of the value of g '(to(800'K)).
If one is seeking to construct models that accurate-
ly reflect the microscopic properties of x'eal crys-
tals, these errors are certainly significant. As
one expects, the erroxs resulting from the use of
2 K experi. mental data, are much smaller.

Significant errors also result if one is not care-
fU.l to consider all of the effects of including an
overlap potential 6(r) with a nonzero third deriva-
tive. The derivative e" (r~) is an essential pa-
1'Rllle'tel' fol' de'tel'nllnillg the VRhle Of both f (T)
and p"', which occur in the free-energy expan-
sion (2. 2). The coefficient f"'(T) is proportional
to the thermal pressure P,„(T) and is determined
by the values of the mode-Griineisen paxameters,
while p'o' contributes to the temperature depen-
dence of the bulk modulus Blo'(T). The major con-
tribution to the coefficient of thermal expansion
no(T) is from (1/8B") (SP,„/ST). Nevertheless, to
include all of the effects of allowing e(r) to have a
nonzero third derivative, one must also include the
contributions to txo(T) of the tel 1118 ill Eg. (4. 6) that
involve [SBL'(T)/ST]I, and pl'. One might hope
that the error introduced by neglecting such terms
wouM be negligibley buty as pointed out ln sec, IV~

including them appreciably increases the predicted
values of both no(T) and yo(T) and significantly im-
proves the agreement with experiment. It is rea-
sonable to expect that the contributions of such
terms will be of roughly the same relative size in

othex' alkali halidee,
Finally, we would like to mention a few ways in

which a model can inadvertently be used inconsis-
tently. To determine the mode-Gruneisen parame-
ters y~ one needs the values of the volume deriva-
tives of the normal-mode frequencies v~. One
of the simplestmethods for determining these deriv-
atives is to calculate the difference between the
fxequencies predicted with two di.fferent sets of in-
put parameters and use Eq. (8. 2). The two sets
of input parameters correspond to slightly different
volumes. The differences between the sets can
be determined from the experimental values of the
px'essux'e derivatives. However, it would not be
consistent to employ two such eete of input param-
eters in a computer program that uses the hax-
monic approximation to determine the frequencies
directly from the ba.sic experimental data: Most
such programs employ the equilibrium condition.
If the equilibrium condition is satisfied at one of
the values of the volume, it necessarily cannot be
satisfied at the other' value.

8. RI and SDD Models

One of the shoxtcomings of the RI model is its
failure to predict the ratio &o„o/&oTO correctly,
where ~Lo and ~To are the long-wavelength lon-
gitudinal- and transverse-optic-mode frequenciee,
respectively. The DD model corxecte for this
shortcoming. Nevertheless, the RI model pre-
dicts values for no(T) that are in better agree-
ment with experiment than the predictions of the
SDD model (see Fig. 4). Since both models allow
for the same anharmonicity, while the SDD model
px'edicts the harmonic properties more accurately,
we conclude that the relative success of the RI
model must be the result of the errors caused by
the shortcomings of the harmonic aspects of the model
being cancelled by the errors caused by the incomplete-
ness of the anharmonic aspects of the model. a~

C. ADD Model

The ADD model used here predicts results that
agree reasonably weQ with the experimental data,
particularly when one considers the simplicity of
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the model and the small number of parameters de-
termined from experimental data. Since no in-
formation about no(T) was used in setting up the
model, the ability of our model to predict a value
of oo(T) at 290'K that is within 3% of the experi-
mental value is quite satisfying. Nevertheless,
the larger discrepancies between the predicted and
experimental values at lower temperatures (see
Fig. 5) indicate that the model still needs consid-
erable refining, Probably the most serious short-

comings of the ADD model, as used here, are its
neglect of the coefficient P'4' in the expansion of
the free energy and its failure to accurately ap-
proximate the experimental values of C44 and

(8C44/sP)r . If known, the second pressure deriva-
tive of the bulk modulus could be used to determine

while agreement with the experimental
values of C4~ and sC4~/sP could be obtained by
including next-nearest-neighbor overlap forces
in the model.

~Work performed under the auspices of the U. S. Atomic
Energy Commission.
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Monte Carlo methods are used to evaluate pressure, energy, and specific heat for solid and liquid

argon for volumes and temperatures at or near melting. The potential energy is assumed to be the sum

of pair-wise-additive potentials recently determined by Barker and co-workers plus the Axilrod —Teller
three-body interaction, Quantum corrections are included. The agreement with presently available

high-pressure data is excellent.

I. INTRODUCTION

The dynamical behavior of solids with large-am-
plitude motions is an active area of contemporary
solid-state physics, and all the powerful and ele-

gant techniques of many-body theory have been ap-
plied to this problem, as well as Monte Carlo '3

and molecular dynamics techniques4 that had proved
so successful for fluids. At the same time, the
problem of the interatomic forces between simple


