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A detailed study of the effects of force-constant changes produced by noninteracting TI* impurity ions
on the lattice specific heat of KCl has been made. Numerical computations have been performed for
three impurity concentrations, 1, 3, and 5 mole % of Tl*, and the results are compared with the
experimental data of Karlsson. The effects of force-constant changes on the specific heat are seen to be
quite large. The temperature dependence of the observed specific heat has been explained successfully
by Green’s-function theory in the temperature range 1-10°K. The force-constant change due to TI* in
KCl is seen to be small and the impurity behaves essentially as a mass defect. Finally, the
low-concentration theory is seen to be adequate for understanding the experimental results even at
relatively higher concentration of impurities (5 mole % of T1*) present in a crystal.

I. INTRODUCTION

Quite striking changes in the phonon frequency
spectrum of a crystal are obtained by introducing
a finite concentration of impurities. The periodic
symmetry of the crystal lattice is destroyed by the
point defect. The normal modes of perfect crys-
tal are thus modified. The modifications of the
phonons are naturally large in the neighborhood of
the defect. Essentially two new types of impurity
modes may appear. The modes whose frequencies
lie outside the range of those of the host crystal
are called localized modes. This type of impurity
mode is localized in the vicinity of the defect.

The localized modes may appear owing to very
light impurities such as U centers (H™) and/or ow-
ing to impurities strongly bound to the host lat-
tice. Another type of impurity mode is a reso-
nance mode. The frequencies of these modes lie
in the range of the phonon frequencies of the per-
fect lattice and they are characterized by a con-
siderable enhancement of the amplitude over a nar-
row range of frequencies. The resonance modes
may occur owing to the presence of very heavy im-
purities and/or owing to impurities interacting
very weakly with the host lattice. Recently, de-

tailed studies of impurity modes have been made
by infrared-lattice-absorption, -3 jnelastic-neu-
tron-scattering,*~® and first-order Raman-scatter-
ing*"10 experiments,

One of the most important properties of a crys-
tal where the frequency spectrum plays a central
role is the lattice specific heat. At low tempera-
tures the high-frequency localized modes are not
excited. At high temperatures a significant num-
ber of local modes are excited but all other phonons
of the lattice are also excited. Thus the local
modes will induce a relatively small change in the
large total specific heat and the possibility of ob-
serving local modes in specific-heat measure-
ments is very small. On the other hand, low-fre-
quency resonance modes get excited even at low
temperatures and can be observed in specific-heat
experiments. Lehman and De Wames*! and in-
dependently Kagan and Iosilevskii'? have shown that
the contribution of resonance modes to the lattice
specific heat may be appreciable at low tempera-
tures. Some numerical estimates for isotopic im-
purities have also been made by later groups of
workers., Quite recently some combined experi-
mental and theoretical .studies!*~!® have been made
for the temperature dependence of the lattice spe-
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cific heat of crystal containing small concentra-
tions of impurities.

Karlsson'® has measured the specific heat of
KCl crystals doped with 1-, 3, and 5-mole% TI1Cl
in the temperature range 1-30°K. He has dis-
cussed the experimental results on the basis of a
theory of Kagan and Iosilevskii'® using a Debye
frequency spectrum for the host lattice. He ob-
tained reasonable fits in the temperature range
5-10°K, but the agreement was poor below 5°K.
In Kagan and Iosilevskii’s theory one assumes that
the lattice is monatomic, which is certainly not
true in the case of KCl. Further, in KCI there
exist long-range Couloumbic and dipolar forces

" and, therefore, the use of a Debye theory may not
be reliable.

In the present work we have determined the con-
tribution of point defects to the lattice specific
heat of a crystal having rock-salt structure., In
the calculations we have employed realistic models
both for the defect perturbation and the host KC1
crystal. In the perturbation model mass change
as well as nearest-neighbor central-force-constant
change are considered. The results of the lattice
dynamics of KC1 in the deformation dipole model
have been used in the calculations. Numerical
computations for specific heat have been performed
for the three impurity systems of KC1: T1" contain-
ing 1, 3, and 5 mole% of T1* ion experimentally
studied by Karlsson.

In Sec. IIA we briefly describe the Green’s-
function theory for the change in the lattice specif-
ic heat due to impurities in a crystal in the low-
concentration limit. In Sec. IIB, the nearest-
neighbor perturbation model for the point defect
is discussed. In Sec, III, we calculate the en-
hancement in the specific heat and also discuss
the results based on an effective force constant.

In Sec. IV the results are discussed and sum-
marized.

II. THEORY
A. Lattice Specific Heat

Owing to the presence of impurities the enhance-
ment of the vibrational specific heat of a crystal
(per mole) at temperature T, can be expressed as

ha

ACL(T)= T TE

f w?AN(w) csch¥ (7w l 2ksT)dw ,
° ¢y

where kg is Boltzmann’s constant, w is the phonon
frequency, and other symbols have their usual
meanings. AN(w) denotes the change in the phonon
density of states N(w) which is defined as the num-
ber of normal modes in the interval w and w+dw

in the limit as dw—0. N(w) is related to a simi-
larly defined function N(w)? which is a more com-
mon function in the theory of crystal-lattice dy-
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namics, as
N(w)=2wN(w?) .

The evaluation of AN(w?) is very difficult for a
general defect, but the problem is tractable if the
perturbation caused by a defect exhibits some sym-
metry. For instance, one observes a point-group
symmetry of the host lattice for a point defect sub-
stituted at a lattice site and considers only the im-
purity space of dimension 35X 3b where b is the
total number of ions directly affected by a defect,
including itself. A group-theoretical analysis may
be performed for the change in the phonon density
of states in such cases. For a crystal containing
a single defect one may therefore write

AN(w?) = Z;J AN, (0, (2)

where AN,(w?) is the contribution made by the
symmetric motion v and is given by
l 1 dp,z) )
2y _ — v

AN, ()= - b 1m< 5 ) -
Here [, is the dimension of the irreducible repre-
sentation v, z = w?+2iwt is the complex squared
frequency in the limit £ -0, and D,(z) is the reso-
nance denominator corresponding to the irreducible
representation v. It is defined by

D,(z)= |£+.g_v(z)£v(wz) l ’

where I is the unit matrix, P (w? and g,(z) are
the perturbation and Green’s-function matrices
projected onto the subspace of irreducible repre-
sentation v.

The frequency of an impurity mode, i.e., lo-
calized or resonance mode, in the symmetric mo-
tion v may be determined by the condition

ReD,(z)=0.

®)

“)

(5)
After introducing phase shifts defined by

tand,= - ImD,(z)/ReD,(z) , (6)

the contribution of modes of symmetry v towards
the change in the density of states can be written

1, ds

AN, (o) = 7 dw?

M

Substituting for AN(w) in Eq. (1) and integrating
once by parts, the change in specific heat due to a
single defect can be written

ACL(T)=2, ACY(T), 8)

where the contribution of each irreducible repre-

sentation is given by

2kpB’?
3N7

©

acl(T)= - f 8,w csch?(B’w)
0

x [1 - B'wcoth(B'w)]dw , (9)
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where B'=7%/2ksT and N is the number of unit cells
in a crystal.

In the low-concentration limit we assume that
the impurities do not interact among themselves
and, therefore, the change in the density of states
that is due to a small concentration of impurities
in a crystal may be determined by multiplying the
change due to a single defect by the impurity con-
centration. The enhancement of specific heat due
to a fractional concentration ¢ of point defect is,
thus, given by

At ¢ (T)=cNACL(T) . (10)
B. Perturbation Model

Except for the cases of defects with off-center
configurations or molecular impurities, the in-
duced perturbation retains the full cubic point sym-
metry and both the matrices P(w?) and gy(z) can be
easily diagonalized into blocks belonging to the ir-
reducible representations A,, (one dimensional),
E, (two dimensional), and F,, (three dimensional)
of the O, point group. The nearest-neighbor per-
turbation model for a substitutional ion in a NaCl-
type lattice has been described in previous
works. #1617 The resonance denominators for a
cation impurity are seen to be

DAlg(2)=1+27\X(g4+2gs) ) (11)

DEg(Z)=1+2)\x(g4 —gs) ) (12)
and

Dp,,(2)=1- €w’g;+21(g1 + xgs - 22

gz)
-2c0®x(g1gs - 23, (13)

where y =M, /M. is the ratio of the masses of two
ions of an unit cell, A is the change in the mass-
reduced nearest-neighbor central-force constant,
and ¢ is the mass change parameter equal to
(M!-M.)/M,. M!is the mass of the thallium ion.

If we define an effective force constant 7, intro-
duced earlier'® in the framework of a nearest-
neighbor rigid-ion model for a cubic crystal lat-
tice, the resononce denominator in the F,, irre-
ducible representation simplifies to

Dp,, (&)= (L+2/n)(1 - ew?qy)

+ /N1 + ) ¥/ Zn)(1+w%y), (14)

where Z is the number of nearest neighbors of a
lattice site and is equal to six for rocksalt struc-
ture. The various Green’s functions appearing in
Egs. (11)-(14) are given in Ref. 19,

III. NUMERICAL COMPUTATIONS AND RESULTS

Equation (10) has been employed for calculating
the change in the lattice specific heat of KC1 doped
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with T1" ions in the temperature range 1-30°K.
The force-constant change )\ was taken as a param-
eter to obtain best fits with the experimental data
of Karlsson at the three impurity concentrations 1,
3, and 5 mole% of T1*. In the calculation we have
used the values of the five Green’s function com-
puted earlier by Benedek and Nardelli'® in Hardy’s
deformation-dipole model for KC1 at 4096 points

in the first Brillouin zone.

In Figs. 1-3 we present the theoretical results
for two different values of A, i.e., A= —0.204x10%®
sec™? and - 0.408%x 10% sec™?, along with the ex-
perimental data. In these figures we have also
shown results in the mass-defect approximation.
We observe that a decrease in the nearest-neighbor
force constant due to the impurity increases the
specific heat while the reverse is true for an en-
hanced force constant, This result is in agree-
ment with that drawn earlier by one of the present
authors® in a scalar lattice model. In the present
calculation a 5% change in force constant (see be-
low) produces approximately a change of ~ 20% in
the enhanced specific heat. An over-all good
agreement with experiment takes place for
A= -0.204%x10% sec"? at all the three impurity con-
centrations. However, in the case of 3-mole%

T1*, the agreement is seen to be better for
A=-0.408x10% sec™?.

In Fig. 4, we have plotted the real part of the

resonance denominator for F,, symmetry modes
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FIG. 1. Comparison of the predicted contributions to
the specific heat with the experimental results in KCI;
1-mole% TI*.
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FIG. 2. Comparison of the predicted contributions to
the specific heat with the experimental results in KCl:
3-mole% T1*.
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FIG. 3. Comparison of the predicted contributions to
the specific heat with the experimental results in KCI:
5-mole% T1*
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for A= —0.204x10% sec*®. A low frequency reso-
nance appears at w,=41.7 cm™. This resonance
is found at a frequency w,=42.5 cm™ in the mass-
defect approximation. The experimental informa-
tion about the resonance frequency is not very con-
sistent because on the one hand the infrared ab-
sorption measurements done by Kahan and Sievers®
have revealed a weak line in KC1: T1* at about 39
cm™, while on the other hand the thermal con-
ductivity experiments?® have detected a resonance
at 45 cm™,

The phase shift in the F,, irreducible represen-
tation is shown in Fig. 5. A phase shift of 37 ap-
propriate at resonance is well produced in the cal-
culation, The contributions of phase shift to the
specific heat are seen to be negligible above the
frequency 106 cm™,

The contributions of the two other irreducible
representations A,, and E, are comparatively much
smaller. At 4°K, the contributions of E, and A,,
symmetry motions to specific heat are only 0.5%
and 0. 2%, respectively, while the contribution of
Fy, modes is 99.3%. At high temperatures the
contributions of E, and A,, irreducible representa-
tions increase, e.g., at 25°K, the contributions
of E, and A,, irreducible representations are 1. 8%
and 0. 7%, respectively.

The contribution of F,, symmetry modes has also
been determined in the effective-force-constant
approximation by using Eq. (14). An effective-
force-constant has been determined by Eq. (14)
using A= -0, 204x10% sec™? and the resonance fre-
quency 41,7 cm™ . The calculated value of the ef-
fective nearest-neighbor central force constant 7

=-0.204x10%°gec?

Re Df, (2)

0\ 1 ‘\/\l 1 1 1 1
0 08 16 Vblza 32 40 48 53
-1 13
(107 rod/sec) —

2

FIG. 4. Real part of the determinant of the Fy, sym-
metry modes for the force-constant change A=—0.204
% 10% gec™2,
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FIG. 5. Phase shifts of Fy, symmetry modes for
A=—0.204%10% sec™,

is 4.334x10% sec™®. This value of effective force
constant is quite close to the value 4, 09x 10% sec?
calculated by Benedek and Nardelli.'® Thus the
percentage change in the force constant (\/7)
caused by a thallium ion is seen to be very small,
i.e., about 5%.

The total contribution of the three irreducible
representations using the effective-force-constant
approximation for F,, symmetry motions have been
depicted in Figs. 1-3. It may be noted that these
results are very similar to those obtained in a
mass-defect approximation except at higher tem-
peratures (above 10 °K) where there are some dif-
ferences in the magnitudes of the two values.
These discrepancies arise because at high tem-
peratures the contributions of E, and A,, irreducible
representations are appreciable. Finally, the
specific-heat values in the effective-force-constant
model differ in magnitudes from those in a realis-
tic calculation [Eq. (13) ] by about 24% at 4 °K, and
by 6% at 25°K. These discrepancies disappear
as we go to higher temperatures.

IV. DISCUSSION AND CONCLUSIONS

The temperature dependence of the experimental-
ly measured lattice specific heat of KCl doped with
T1" impurity ions has been explained successfully
in the temperature range 1-10°K. However, the
drop in observed specific heat above 10°K cannot
be understood on the basis of the theory. The
present low-concentration Green’s-function theory
is seen to explain the observed specific heat even
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at comparatively high concentration (5-mole% T1*).

The reported error in the measured specific
heat is + 2%, which gives rise to an error of +10%
over most of the temperature and concentration
ranges of the enhanced specific heat. In the pres-
ent calculation we have found that the enhanced
specific heat is very sensitive to force constant
changes e.g., a 5% change in the force constant
produces ~ 20% change in the increased specific
heat. Our determined force-constant change has,
therefore, an accuracy of about 2. 5% and the
evaluated change in force constant may be written
as (5+2.5)%.

The change in force constant induced by thallium
ion is not seen to be very large. The percentage
change is within 10%. It implies that T1* impurity
ion may be treated as a “mass defect.” Similar
conclusions have been drawn by Harley et al.® and
Kravitz!? after analyzing their measured data of
first-order Raman scattering. These authors have
noted very small changes in the force constants.

Harley et al. have, however, observed a 10%
stiffening in the force constant as compared to a
5% softening in the present calculation. The en-
hancement in the specific heat is mainly due to the
mass defect which, in turn, is determined by the
Green’s function gj. The disparity in the calcu~
lated force-constant changes obtained from the
specific-heat data and Raman scattering data may
arise because of the different values of the Green’s
functions gj used in the two calculations. The res-
onance frequency calculated by Patge23 in the mass-
defect model is 43 cm™ (as compared to 42.5 cm™
in the present calculation). Usually the real part
of the Green’s function g remains constant in the
low-frequency region. A value of w,=43 cm™ is
obtained if we decrease our value of g; by about
4%. This change in the Green’s function will lower
the enhanced specific heat by 6%. Consequently,
with the use of g calculated by Page, a further de-
crease in the force constant by about 1. 5% will be
observed. Thus, it is difficult to reconcile the
different changes in the force constant obtained by
the specific-heat data and the Raman scattering data.
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The phonon dispersion of a single crystal of krypton has been measured for the [110]L, [1 10]T,, and
[100]T modes at 7 = 114 °K in the region 0.03 < ¢ <0.15 A~! by the inelastic scattering of neutrons.
Analysis of the results based on a nearest-neighbor-force-constant fit gives for the zero-sound elastic constants
C,, = (289 +4), C,,= (1854 4), and C,, = (144 4 1) X 10® dyn cm~2 This results in an anisotropy
A =2C,/(C,; — Cy) =276 4 0.05 and a departure from the Cauchy relation of § = (C,, — C,,)/C,,

= — 022+ 0.02.

I. INTRODUCTION

Theoretical calculations of the properties of rare-
gas solids has progressed considerably in the last
decade. Computational capability has been increased
and hence calculations need not be restricted to sim-
ple interaction potentials of limited validity, i.e., the
Lennard-Jones potential. One property of impor-
tance is the elastic constants and the present paper
is directed towards their measurement in krypton.
Such measurements can give a measure of the im-
portance of three-body forces by comparison of the
results with calculations which have utilized a suit-
able two-body potential,»? One indication of three-
body effects is the deviation of the Cauchy relation
0= (Cyy— Cy3)/Cyp at liquid-helium temperatures,
where departures due to quantum effects have been
minimized by the heavy mass of the krypton atom.
The three-body effect acts in opposition to the quan-
tum effect and Hiiller ef al.! give for krypton, at
T=0, avalue for § of +0.02 and ~ 0. 07 for calcula-
tions using a Lennard-Jones potential without and

with a three-body force, respectively.

While the measurement of elastic constants on
single crystals through the use of ultrasonic trans-
ducers is well known, its direct application to the
case of rare-gas solids has not been straightfor-
ward., The main difficulty is obtaining one orient-
ed single crystal of sample to which transducers
can be satisfactorily bonded; the bonding problem
as the temperature changes is maximized by the
large volume expansivity in these solids. Ultra-
sonic measurements have been made as a function
of temperature for the transverse and longitudinal
sound velocities inpolycrystalline krypton, 3-8 which
alone do not give the elastic constants. Korpiun
et al.® have further used circuitous reasoning tojus-
tify the assumption of a measurement in two samples
as being made in the [100] direction, thus obtaining
C115 Cu, and thence Cy; from the polycrystalline
measurements,

Recently Brillouin scattering has been used by
Gornall and Stoicheff”® and Stoicheff et al.® to mea-
sure the sound velocities of oriented single crystals



