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Phonon Contribution to the Free Energy of Interacting Adatom Pairs
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The free energy AF due to the interaction through the crystal phonon field of two identical atoms
adsorbed on a (100) surface of a simple cubic monatomic lattice is studied within the framework of the
Montroll —Potts model. The zero-point energy of interaction, EEO, is found analytically in the limit of
large separation distances, and numerical results are presented for small separation distances. The
leading temperature-dependent terms in the expansion of W are given in closed form in both the low-

and high-temperature limits. The results are given as a function of the mass and separation distance of
.the adsorbed atoms and as a function of the force constant binding the adsorbed atoms to the surface.
For all values of the model parameters, it is found that the free energy decreases with the separation
distance. Thus, two adatoms on a surface are attracted toward each other.

I. INTRODUCTION

Recently, chemisorption, and to a lesser degree
physisorption, has been extensively studied in
several laboratories. The well-def ined patterns
within the surface adlayer are often different in
structure from the surface layer of the absorbate. '
Of fundamental importance in understanding these
various patterns is an understanding of the inter-
action energy between pairs of adatoms.

Recently, Einstein and Schrieffer have studied
the electronic contribution to the energy of inter-
action at 0 'K (the zero-point energy) of two adatoms
on the (001) surface of a simple cubic monoatomic
solid within the tight-binding approximation. Their
simple non-self-consistent first approach applies
mainly to the case of chemisorption of simple gases
on transition metals.

In this paper we consider the energy of inter-
action of two adatoms through the crystal phonon
field. It is of interest to know the magnitude of the
phonon contribution to the interaction free energy
relative to the magnitude of the electronic contri-
bution. Whereas one might expect the phonon con-
tribution to be negligible compared to the electronic

contribution, such a conclusion has not been demon-
strated. It seems possible, for example, that
there might be cases in physisorption of rare-gas
atoms on rare-gas crystals where the phonon con-
tribution may be expected to be the major contribu-
tion to the free energy of interacting adatom pairs.
In addition, Einstein and Schrieffer have found that
the interaction energy in the electronic case may
vanish depending upon the location of the Fermi
level in the band. It should be noted that, like
Einstein and Schrieffer, we do not consider direct
interactions between the adatoms.

In Sec. II we introduce the phonon model and
present the general expressions which enable us to
calculate the free energy as a function of tempera-
ture. In Sec. III we consider the interaction free
energy at 0 'K. For a general separation distance,
this zero-point energy b Eo must be calculated nu-
merically. We present results showing how this
zero-point energy depends upon separation dis-
tance, the mass of the adatoms, and the strength
of the force constant binding the adatoms to the
surface. In addition, an analytic expression is ob-
tained for AEO in the limit of weak binding and large
separation distances. In Sec. IV, we consider the
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negative half-space E3~ 0.
By assuming a sinusoidal time dependence for

the displacements, we obtain the equation of motion

M(o u, (l) = y 5~ [u (l) -u, (l + 6 )]

&8(- l,)8(-l, —6,), (2)

where M is the mass of the atoms in the bulk. In
matrix notation, Eq. (2) can be written as

Lu=P
P

where

I (t& w. ') '(, lM =' —Bw+wn a)5ii +Ev&n ~ )3 6

FIG. 1. Model geometry showing two adatoms of mass
M' bound. in the "on-site" configuration to a surface
atom of mass M by a force constant P. The force con-
stant in the simple cubic monatomic crystal is p.

temperature dependence of the interaction free en-
ergy. In both the high- and low-temperature limits,
the leading terms can be determined analytically.

II. FORMALISM

In this section we first describe the very simple
model we have chosen to represent the phonon field
of the semi-infinite crystal. Then we give the
perturbation due to the introduction of one or two
adatoms. Finally, we assemble the relevant equa-
tions for calculating the change in the free energy
due to the interaction of two adatoms. The for-
malism which we have used for this last step is
well known in the related study of the inQuence of
point defects on the bulk vibrational properties of
infinite crystals.

A. Equations of Motion

First we confine our attention to the semi-infi-
nite crystal without the adatoms. We assume the
crystal to be a monatomic simple cubic crystal
with a (001) surface (see Fig. 1). The lattice vi-
brations are described by the model introduced by
Rosenstock and Newell and popularized by Montroll
and Potts. ' Let u„(l) denote the n component of
the displacement from equilibrium of the atom at
site x(l) = ao(l, R+lay+l~s), where ao is the lattice
parameter. The potential energy 4 associated with
the lattice vibrations has the simple form

4=-,'y ZZZ[u, (l)-u (l+5)]'

x8(-l,)8(-l, -6,). (1)

Here, y is the nearest-neighbor force constant,
the sum over g is restricted to first neighbors, and
the Heaviside step functions 8(- l~) and 8(- l3 53)
ensure that all the counted bonds occur only in the

where

2

(ml 2 1) Z 2 u (~1~20)(Op

('d p
—(d

(6)

2 I I
~o=y /M ~

The equation of motion for the entire system, which
now consists of the semi-infinite crystal with two
absorbed atoms located at the lattice sites 000 and

m&m20, is

M&'u (l)=y5 [u (l)-u (l+6) 8(-l,)8(-l, -n)

+y'[u. (lil20) 5 (lll21)]

&'[6r,06~,a+6',~, 6r,~, ] (6)

By substituting the adatom displacements of Eq.
(6) into Eg. (8) we obtain

M(d'u (l)=y Sm [u (l)-u (l+5)]8(-l,)8(-l, -5,)
6

x 5,a8(- l s) 8(- l, —0,). (4)

We now want to modify the model by adding two
identical adatoms of mass M (see Fig. 1). The
adatoms are assumed to be located in the "on-site"
configuration. The mathematics for other adatom
configurations is notably more complex for this
problem. Einstein and Schrieffer have shown that
for the electronic problem, the results are of the
same order of magnitude for various adatom con-
figurations, and we expect similar behavior in our
problem. Thus, we assume each adatom is bound
to one surface atom by a force constant y . Let
$ (mqma 1) denote the n component of the displace-
ment from equilibrium of the adatom absorbed at
the surface site m&m&0. The equation of motion
for each adatom is

M (o'$ (m~m21)= y'[(, (m, m, 1) -u, (m, m30)].

(6)This can be rearranged as
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y (d2
+ o o + (l)5~ oo[5& o5& o+5t 5t ]~

Qr -(do a 3 1 2 11 2 2

(8)
In matrix form this equation becomes

or

(L -D)u=O,

where L is given by Eq. (4) and D is
I

Cd
Dao(11 ) 2 2 5uo 511'6l 0—(do 3

(10)
G ~o(l, l; (o ) = L~o (l, l, u) ).

The virtue of using the Montroll-Potts model is
that the Green's function, even for the case of the
crystal with a surface, is of a rather simple form.
It has been shown previously that

x(6i,o~ioo+5i, m, 5iom )~ (11) G, o(l, 1;u) ) =5,oG(l, L;(o ), (14a)

For the case of a single adatom on the surface at
site 000, the perturbation matrix D becomes

I
CO

D o(11 )= z z & o5i( ~ 5&o ~ (1
Q7 CO p

8. Green s Function

The Green's function for the semi-infinite crys-
tal with a free surface can be formally written as

and

G(l, 1;+ )=G (l, —l»lo —lo, ls lo; &u )

+G (l( l~ ~ lo lo ~ lo+lo ll(d ),
(14b)

Here we have introduced the Green's function for
the infinite crystal G (l; &u ), which for the Mon-
troll-Potts model can be written as

Go l o 1
l

" "
cosl& p, coslo go cosl, yodp, dipody,

PJ „„M&@—2y(3 —cos yq —cosyo cosyo-)+i&
0

(15)

~(~') -=l1- GD
I (16)

where I is the unit matrix. For the case that the
perturbation is a single adsorbed atom at site a or
site 5, using Eq. (12) with Eq. (16), we have

4.(~') = &o(~')

=1 —
o o G(000, 000;v ).

o

For the case of two adsorbed atoms located at 000
and m1m20, we have

o ~e(~') X(~')
(') &(') (18)

where

In this expression, & is a positive infinitesimal and
the integration is over the entire Brillouin zone.
For general & and l, the value of this Green's func-
tion must be found by numerical methods. ' How-
ever, the asymptotic behavior for large values of
Il ) and for large and small values of & has been
studied elsewhere, ' and it is this behavior that
will be exploited in obtaining the analytic results
in Secs. III and IV.

The reason for introducing the Green's function
is that for any arbitrary additive function of the
normal-mode frequencies (such as the free energy),
the information needed to find the change in the
additive function due to a perturbation is contained
in the determinant

2

X(m ) = o o G(000, m, mo0;&g ).
—Y (d 2

(d —(d 0

To obtain the interaction free energy of the ada-
tom pair, we must subtract the free energy of infi-
nitely separated adatoms from the free energy when
they are separated by the distance ap ll I. For
reasons that will soon become apparent, this can
be done by forming the ratio of the respective 5's.
Therefore, we define

2

~( o) +ao(& )
&.(~') &o(~')

(y (uo) Go(000, m, moO;u) )
[a -ohio —y'&o G(000, 000;&u )]

(20)

C. Interaction Free Energy

The general formalism for calculating the change
in additive functions of the normal-mode frequen-
cies due to the introduction of defects into a per-
fect crystal has been fully developed elsewhere.
The method requires knowledge of the perfect-crys-
tal Green's function and the perturbation matrix
due to the defect. For our problem, the same ap-
proach can be used if we replace everywhere in the
formalism the perfect-crystal Green's function by
the semi-infinite crystal Green's function and the
defect perturbation by the perturbation due to the
adatom pair.

The interaction free energy as a function of tem-
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perature T can be written as

~(T)= r).Eo —ksT Z W„(T)
nss 1

with

(21)

III. ZERO-POINT ENERGY OF INTERACTION

The interaction free energy at 0'K is given by
~o in E(I. (22). Upon integrating by parts, we ob-
tain

and

fA( f)df
J 0

EI„(T)= — O(f) sin((s„f) df .
3

Jo

(22)

(23)

»»(-~if )
l

3&coI 2 2

2w 0

1nh( e f )—df). (81)

As will become apparent in Sec. IV, the first term
vanishes at both limits. Thus we have

o)i = 12&/M,

f= (d/&i)

(24)

(25)

c(„=nfs(di/ksT,

and the function Il( f) is

(26)

Here, the factor 3 arises from the fact that the
phonon branch is threefold degenerate. In writing
these equations, we have used the notation

~o= I 1nh(-(di f )df,
2m go

where, from E(l. (20), we have

s( (d', f'-) =1

(y f s)'Gs(000, m, mso;- (osf')
{fso+ f [I—y' G(000, 000, —(oif )]p

and where we have introduced

(32)

n(f) =
d
—ln~(-o)', f'). (27) (34)

kT-2kT
~(T)= b,Eo — s —

~

s
— Q(0) ——

@I,

k T
x g(li)( )

B Il((v)(0) .. . (28)
945 I'& ~

where & "'(0) is the second derivative of Il( f)
evaluated at zero frequency. In the high-tempera-
ture limit, a different form for the free energy is
particularly useful:

hE(T) = 3k&T Z in 6(-a„T ),
nss j.

where

(29)

It is the fact that the function 4((d ) occurs in a
logarithm that allows us to calculate the difference
in two free-energy expressions by forming a ratio
as we did in E(I. (20).

At low temperatures when e„ is very large, the
change in the free energy can be written as

i'Y G(000, 000; —(dif )( «1,
E(I. (33) can be written

(35)

(r f ) G (000, m, ms0; —(d f )&i )=1 (fs fs)s
(36)

The magnitude of the Green's function in E(I. (35)
is a maximum when f= 0 and is very nearly e(lual
to —(3y) '. Thus, condition (35) translates to

r'/~ «3 (37)

In the region of large separation distance where
m = (m, +ms)» 1, an expansion for the perfect-2 2 1/2

crystal Green's function has been given previously.
The leading term is

A. Analytic Results

An analytic expression for the zero-point energy
can be obtained in the limit of weak binding and
large separation distance. In the limit as

a„=2vnks/I'. (30) o s s exp(- 12 mf
G (m, ms0;-(dif )= " . (38)

In the next section, we present the results of
numerical calculations of the zero-point energy of
interaction ~0 for adatoms that are fairly close
together on the surface. In addition, an expres-
sion for ~EO valid in the limit of large separation
distance is obtained in closed form. In Sec. IV,
the low- and high-temperature expansions in Eqs.
(28)-(30) are considered separately and analytic
results are obtained for the change in the free en-
ergy in these temperature regions.

From E(I. (14b), the leading term for the surface
Green's function is simply

—exp(-12 ~ mf

(39)
By substituting E(l. (39) into E(l. (36), we obtain

1 y's f4
~(-(dif')=1 —~s —

(fs fs)s
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(2'l)'~a M 3 1—,e(o, . (44)

exp(-48' mf)
m2

The second term in this expression is small com-
pared to the first in the limits we are considering.
Therefore the logarithm in Eq. (32) can be ex-
panded, and we obtain

3&(ug y ~ (" dff'exp(-48' mf)
8x'm' y J (f '+f ')

(41)
If we confine our attention to the region where m is
large such that

48'"mf, »1, (42)

then the important contribution to the integral in
Eq. (41) comes from values of f less than fo.
Hence, the denominator of the integral can be ex-
panded about fo and the lowest-order term in the
zero-point energy expression becomes

a -4 — f exp(-48 mf )df.N(d~ y
'' f'"

4 1(3
8vmf0 y&

(43)
Evaluating the integral and substituting for fo gives,
finally,

region of interest and for values of IE ) & 15. With
the use of recursion relations, all of the Green's
functions for the bulk can be obtained for which
l&+E2+l3—5. The accuracy of the tabulated func-
tions is better than one part in 10 . The recursion
relations, however, are unstable to small errors,
and the Green's functions calculated by means of
the recursion relations decrease in accuracy as the
magnitudes of [ l I and f become larger. Fortu-
nately this is the region where the magnitude of the
Green's function is very small. In the numerical
calculation, the integration was truncated at a val-
ue f = f&. The value of fr was chosen large
enough such that the contribution to the integral
from values of f larger than f r was negligible and
was chosen small enough such that the Green's
function determined by the recursion relations was
still accurate. The value of f r varied depending
upon the separation distance of the adatoms. We
believe the numerical results presented are accu-
rate to within 1%.

In Fig. 2 we show the dependence of the zero-
point energy upon separation distance of the adat-
om pairs for two values of the coupling constant
Y and for separation distances less than 4cp Al-

The condition in Eq. (42) can be rewritten as

m»-,' (M y/My )'~'. (45)

-IO

Thus, in the weak defect limit and for large sepa-
ration distances [Eqs. (37) and (45), respectively],
the zero-point energy (a) is independent of y, (b)
is proportional to the square of the relative mass
of the defect, and (c) varies inversely as the
seventh power of the separation distance. This
behavior is similar to that found for the zero-point
interaction energy of a pair of isotopic impurities
in the bulk of the crystal. ' This similarity is not
surprising, since the Green's function for the crys-
tal with a surface is the sum (not the difference)
of two infinite crystal Green's functions.

B. Numerical Results

Inpractice, the result in Eq. (44) is only good if
the two adatoms are separated by more than about
eight lattice sites (i. e. , m 8). For separation
distances smaller than this, numerical methods
must be used in evaluating Eq. (32). The most
difficult step in the numerical calculation is obtain-
ing good values for the Green's function in Eq. (15).
This problem is simplified somewhat by the fact
that only negative values of & are needed for the
integration in Eq. (32). These frequencies fall out-
side of the phonon bands and, consequently, the
Green's function is totally real.

Values of the Green's function G (l; -&ozf ) have
been tabulated by Maradudin et al. in the energy
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FIG. 2. Zero-point energy as a function of separa-
tion distance for two values of the force-constant ratio
y'/p. The solid line is the asymptotic limit for large
distances, and the points are results of the numeric cal-
culations. The adatom mass is set equal to the crystal
atom mass in this figure. Note that ~0 is negative.
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FIG. 3. Zero-point energy as a function of the force-

constant ratio p'/p for various near-neighbor adatom
configurations. These points are the result of the numer-
ic calculation with the adatom mass set equal to the
crystal atom mass.

I

2.0

so shown is the asymptotic limit of Eq. (44). The
fact that the numerically calculated points do not
fall on a smooth curve indicates that the correction
terms for smaller separation distances are aniso-
tropic. These correction terms also depend upon
the relative value of y and 'Y. Since the zero-
point energy always decreases as the adatoms be-
come closer together, the force between adatoms
at 0 'K due to the indirect interaction through the
phonon field is always attractive.

In Fig. 3 we show the family of curves for vari-
ous separation distances of the zero-point energy
as a function of the coupling constant X . As the
separation distance becomes larger, the depen-
dence on p becomes weaker. In the asymptotic
limit, ~0 is independent of ~ .

In Fig. 4 we present the dependence of the zero-
point energy on the mass of the adatoms M for
various separation distances. As the separation
distance becomes larger, the dependence changes
from nearly linear to quadratic in M /M.

In every case, the magnitude of AE0 is given in
units of N~L, , the maximum phonon energy for the
model. Even for the most favorable case, the
zero-point energy of interaction is very small.
However, the results of Einstein and Schrieffer
indicate that in some cases, depending upon the
position of the Fermi surface in the band, the in-
direct interaction of adatoms through the elec-
tronic states may vanish. Thus, in such cases the
effect we have calculated may be the most impor-
tant indirect contribution to the interaction energy.

IV. TEMPERATURE DEPENDENCE OF FREE ENERGY

In order to find the leading temperature-depen-

and

0 (m, ~m, +m, )!
lim G (m, mpm„-urqf )=-
f~pe )'my tm2 1@3~

1+~ 3
(47)

In Eq. (46), Ap(m, mpmp) and &,(m, mpmp) are
numerical constants whose values depend upon the
separation distance of the bulk atoms. It is due to
the fact that the Green's function has a finite value
at f= 0 and decays rapidly for large values of f that
the first term in Eq. (31) vanishes.

A. Low-Temperature Limit

To evaluate the lowest-order temperature-de-
pendent term in Eq. (28) we must determine up to
the fifth derivative of the natural logarithm of Eq.
(33). In the region where f«fp, we may write
this logarithm as

IO

-IO4

I

O.as
I

0.5
I

I.O

M/M

I

2.0
I

4.0

Numerically calculated zero-point energy
as a function of the mass ratio I'/M for near-neighbor
adatom configurations. The dependence varies from
nearly linear for the (100) configuration to quadratic for
large separation distances. The force-constant ratio
v'/v=&.

dent term in both the high- and low-temperature
limits, we need the Green's function G (m, mpmp;
—&uz f ) in the limit as f-0 and f-~. It can be
easily shown from previous results that

limG (m, mpmp;-&u~f ) =l' '[&p(m, mpmp)
f~0

+A&(m&mpm&) If I
+"

~ (46)
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»&(-o)rf ) =-I 2 I [Bo(mama)
lr'f ')'
V'fo J

+2I fl Bo(mama) B~(m)ma)+ ~ ~ ~ ], (48)

where we have written the surface Green's func-
tion as

G(000, m, m, 0;—(d'I,f') = r '[Bo(m) ma)

+B,(m, ma)
l fl + ~ ~ ~ ] (49)

and where

((f (o

I 48 '~'r I

~

n )
Using this Green's function, the logarithm of
6(- (2„T ) can be easily found by using E(l. (33) and

the identification (60). We obtain

48 a~a ~a a

and

Bo(mama) =Ao(m) ma 0)+Ao(mama 1) (50)
where we have set

B)(m) ma) =Ay(m) ma 0)+Ay(mama 1). (51)

The derivatives of E(l. (48) are easily found to be

Q(0) ='0, (52)

fa()) )(0) (53)

0'"'(0)= —240(& /yf ('))'B()(m, ma) B,(m, ma).

p= 2(m, +ma+1).

Substituting E(l. (62) into E(l. (29) gives

4T(T)= —44~T(
' ~

) ( )

(63)

Hence, the free energy in the low-temperature re-
gion becomes

To evaluate this sum, we use the definition of the
Bernoulli number

m(r) = ~Zo+
2(2P)) g(1 "
(2v) , )n

(65)

x Bo(m, ma) B,(m, m,), . (55)
(kaT)' Thus, we finally obtain for the interaction free en-

ergy in the high-temperature limit

For the bulk Green's function,

A()(m, mam, ) & 0 (56)

34!, T (m, +m,)!)'
2(2p) t3 1m) t ma '.

SQ) gx '
l

I2,r. (66)
8 )

A, (m, mam, ) & 0

for all values of m» mz, and ms. Thus,

B()(m, ma) & 0

(5V)

(58)

B,(m, m, ) &0. (59)

The leading temperature-dependent term in the
low-temperature region varies at & and is nega-
tive.

~a f2 saT2 (60)

and by using E(ls. (14b) and (4V) we obtain for the
leading term

G(000, m&m20; —(2~2 T2) =-
ym) ~m~ 1

B. High-Temperature Limit

For large values of the temperature, the argu-
ment of 4 in E(l. (29) becomes big and the large f
expansion of the surface Green's function is needed.
By making the identification,

This result shows that the interaction free energy
decays to zero very rapidly for values of the tem-
perature T& fko2 j2ka. The speed of the decay is a
function of the separation distance of the adatoms.

Upon combining this result with the low-tempera-
ture result in E(l. (55), we obtain a (lualitative pic-
ture of the dependence of the interaction free energy
upon temperature over the entire temperature
range. The interaction free energy at 7.'= 0 'K be-
gins at a negative value equal to the zero-point en-
ergy and at first becomes more negative as & for
small temperatures and then increases to zero as
T ~" at higher temperatures. Thus, in the inter-
mediate temperature range where 1+0&k&T'& —,'@v&,
there is a minimum in the interaction free energy.

V. CONCLUSIONS

We have examined the contribution to the free
energy from two adatoms on the (100) surface of a
simple cubic monatomic crystal due to their in-
direct interaction through the perturbed crystal
phonon field. We have found the following.

(1) The zero-point interaction energy bZo is
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negative and decays to zero as the inverse seventh
power of the separation distance for distances
greater than about 8a(). At these large distances,
~p varies with the square of the adatom mass M,
and is independent of the spring constant y bind-
ing the adatom to the surface.

(2) At smaller separation distances, the depen-
dence of ~o on M and p changes until for nearest-
neighbor separation distance, ~o varies nearly
linearly in both variables.

(3) The interaction free energy dd" is anisotropic
when the two ad3toms are not too far apart. For
large separations, however, ~I" depends only on
the magnitude of the separation distance,

(4) At low temperatures, ~ becomes more
negative as the sixth power of the temperature. At
higher temperatures, ~I" decays to zero at least
as fast as the inverse seventh power of tempera-
ture. The exponent of T at higher temperatures
depends upon the separation distances.

(5) The gradient of the zero-point energy with
respect to separation distance is always positive,
showing that the adatoms are always attracted to-
ward each other due to this interaction.

(6) The interaction energy we have calculated is
small. For example, —~o is less than 10 S&~.
However, the contribution to ~I" from perturbed
electronic levels can sometimes vanish, leaving
the effect we have reported the largest indirect
interaction contributing to the free energy.

(7) Schick and Campbell calculate the phonon
contribution to the free energy of helium atoms
adsorbed on argon-plated copper. We can apply
the results of our paper to this system (using He )
if we make the following two assumptions: (i) the
resonant frequency of the helium adatom, p ls
related to the Debye temperature of the adsorbed
helium atoms, 0&', by

where ks is Boltzmann's constant, and (ii) the maxi-
mum frequency +& of the argon substrate is related
to the Debye temperature of bulk argon by

Using these assumptions, the ratio of the force
constants is

M (8 ')~

The Debye temperature of adsorbed He is found

to vary from 15 to 30 K depending upon tempera-
ture and concentration. '~ For low concentration
and for low temperature, the Debye temperature
approaches the value OD'= 15 K. The Debye tern-
perature of solid argon also varies with tempera-
ture, but it approaches the value 8~'= 93 K at low

temperatures. Using the fact that the mass ratio

M /M = 0. 10, we find that the force-constant ratio
y /y=0. 03.

From Figs. 3 and 4 by double extrapolation we
find that the phonon contribution to the interaction
free energy when the adatoms are nearest neigh-
bors (100) is about —10 k&u&. The actual value
obtained by performing the numerical calculation
of Sec. GIB is ~O=-3.9x10 5~1.=-2.6 .

x10 k~ 'K.
Schick and Campbell have calculated the phonon

contribution to the zero-point energy of interaction
by a method much different from that presented in
this paper. They describe the adsorbed atoms with
Bloch functions having quasimomentum E parallel
to the surface. They calculate the scattering ma-
trix element which takes the adatom from state &

I
to & accompanied by the emission of a phonon.
The effect of the inter3ction between the adatoms
is, in second-order perturbation theory, to in-
troduce a phonon-mediated retarded interaction.
The complexity of the calculation they perform re-
quires that a large number of assumptions be made.

The two conclusions that Schick and Campbell
make are in sharp disagreement with the results
of this paper. First, they conclude that the zero-
point interaction energy decays to zero for large
separation distances between the adsorbed atoms
as const&&p ~ cos(o/p ——,

' v), where o is the char-
acteristic length in the Lennard- Jones potential,
and p is the distance between the adatoms. This is
in contrast with our result that the interaction en-
ergy decays monotonically as the separation dis-
tance to the inverse seventh power. Schick and
Campbel1. 's result is undoubtedly due to their
truncation of the Fourier transform of the inter-
action potential. It is well known from the theory
of Fourier transforms thai the asymptotic be-
havior of a Fourier integral is determined by the
singularities, including discontinuities, of the
Fourier coefficient. In the present case, the trun-
cation of the Fourier coefficients yields the oscil-
latory behavior of the interaction energy at large
separation distances noted above, and can give
rise to a slower dependence on adatom separation
than would be obtained from using the complete
Fourier coefficient.

Second, Schick and Campbell conclude that the
zero-point energy of interaction is of the order of
~p= —1k' K. This disagrees with our result by
more than four orders of magnitude. Although
their result is based on a large number of assump-
tions, they state that the order of magnitude of
their result should be independent of the assump-
tions. At present, it is unclear to us as to what
causes the large discrepancy between their result
and ours. We find their result surprisingly large,
however, in light of the comments made by Grim
ley.
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