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The ground state of a model exciton-phonon Hamiltonian is studied using variational techniques. A
single-exciton band is considered in the tight-binding model; the exciton is coupled to Einstein phonons
through a short-range linear interaction. We first verify that a variational wave function corresponding
to simple displacements of the lattice coordinates (analogous to the Lee—Low-Pines wave function for
the polaron) leads to an unphysical result: For strong exciton-phonon coupling the effective mass of the
excitons depends discontinuously on the parameters of the Hamiltonian. We obtain an improved trial
function by studying an exactly soluble problem: an exciton hopping between two sites and coupled to
a phonon field. The new trial function allows distortion of the Gaussian form of the phonon wave
function as well as displacement. Analogous trial functions are used to calculate the energy and
effective mass for a one-dimensional lattice with nearest-neighbor exciton hopping. The results are a
continuous effective mass and a substantial improvement of the ground-state energy over the
Lee—Low —Pines trial function. Arguments are given that the qualitative behavior of the ground state is
independent of the dimensionality of the lattice, so that the one-dimensional calculation performed here
is adequate.

I. INTRODUCTION

The interaction of an exciton or an electron with
lattice vibrations leads to a number of interesting
effects. ' 3 If the exciton-phonon interaction is
weak, the major effects are a reduction in mobility
due to scattering, the introduction of phonon side-
bands in optical absorption, 4 6 a small change in

mass, etc. For very strong coupling the phenom-
enon of self-trappingv' occurs. Here, the distor-
tion of the lattice in the vicinity of the exciton
leads to a large increase in effective mass. At
high temperatures, the motion of the particle
through the lattice changes from band type to ac-
tivated hopping. 9

This paper is concerned with the transition be-
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tween nearly free and self-trapped behavior as the
exciton-phonon coupl. ing strength is increased.
Ever since Landau first introduced the idea of
self-trapping, there has been speculation as to
whether the onset of this phenomenon occurs dis-
continuously as a function of the coupling strength,
or whether there is a smooth transition between the
two types of behavior. In order to discuss this
question, we must specify the nature of the par-
ticle-phonon interaction carefully. When the par-
ticle is an electron the usual interaction is of the
Frohlich-polaron type, ' in which the electron in-
teracts with the polarization field of the lattice via
the long-range Coulomb interaction. The transi-
tion from small to large coupling of the Frohlich
polaron has been extensively studied, ' and it ap-
pears that the polaron mass is a continuous function
of the coupling parameter, i. e. , that self-trapping
does not have a sudden onset. However, in a
variational cal, cul.ation for a Frohlich polaron bound

by a weak Coulomb potential, Larsen has shown
that a sharp transition may occur, so even in this
case the question cannot be regarded as finally
settled.

When the particle is an exciton, the interaction
is usually short range. As a model, we can regard
the exciton as exerting a force only on those atoms
in the same unit cell of the lattice as its own in-
stantaneous location. This model may also be
valid for the electron-phonon interaction in non-

polar crystals, where the interaction could occur
via the deformation potential. " The character of
the transition between weak and strong coupling has
been much less clear in this case. Toyozawa'3 has
pointed out that the absence of a sudden onset of
Landau trapping of polarons may be due to the long
range of the electron-lattice interaction. Using
a Lee-Low-Pines' form of wave function, he has
given a variational calculation in a case where the
interaction is short range (interaction of an elec-
tron with acoustic phonons); in that caicuiation
self-trapping manifests itself as a discontinuity of
the effective mass of the ground state as a function
of coupling strength. A further conclusion of that
variational calculation is that for intermediate
values of coupling the free and self-trapped states
can coexist; as the coupling increases the ener-
gies of the two states cross, with the self-trapped
state having lower energy for strong coupling. A

similar calculation has been done for molecular
excitons by Merrifield. " The lack of discontinuities
in the numerical calculation of that paper is ap-
parently due to the fact that the exciton-phonon
coupling strength was always too weak.

Experimental evidence of a discontinuous mass
in exciton or electron systems lis unclear. Fivaz
and Mooser'6 have interpreted experiments on the
layerlike semiconductors MoS2 and GaSe in terms

of a model similar to Toyozawa's which contains
discontinuities. No actual jumps seem evident in
their data, however.

More recently, Cho and Toyozawa'- have studied
the optical absorbtion of the exciton-phonon sys-
tem nonvariational. ly, by diagonalizing the Hamil-
tonian within a restricted subspace of phonon
states. In contrast to the earlier result, they find
no discontinuity in effective mass or other prop-
erties. Instead, they find a dependence of effec-
tive mass on coupling constant which is "smooth,
but quite abrupt. " In related work, Sumi' has
shown that large (unbound) and small (bound) poia-
rons can coexist for certain values of the coupling
parameter. For different values of coupling
strength, one type or the other can have lower en-
ergy, but the character of the transition is still
not clear.

In the following sections we seek to clarify the
situation, discuss the inadequacy of the I ee-I.ow-
Pines wave function for this problem, and intro-
duce improved variational wave functions that pro-
duce a lower ground-state energy and a continuous
mass in the intermediate region. We wiI. 1. argue
that these functions give a better representation
of the transition to the self-trapping regime than
the Lee-Low-Pines function. In Sec. D we use a
Tamm-Dancoff method to investigate the role that
the dimensionality and coupling strength play in
the self-trapping problem. We conclude that there
is no essential difference in the behavior of one
or three dimensional systems. In Sec. III we study
variational approximations to a problem that can
be solved numerically: an exciton hopping between
two sites and coupled to a phonon field. We develop
an improved variational wave function that can be
extended to the N-site problem. In Sec. IV we
calculate the ground-state energy and effective
mass for the N-site problem using improved varia-
tional functions. In Sec. V we discuss the physical
significance of the new variational wave functions
and conclusions concerning the character of the
ground state.

The Hamiltonian for the interacting exciton-pho-
non system is written as

X= —+ g c', c, +(oP a', a,

This Hamiltonian describes a linear, simple
square, or simple cubic lattice. The first term
describes the free exciton band, of width ~0. Here
g is the number of nearest neighbors, equal to
twice the dimensionality of the system; the index
0 runs over nearest neighbors. The operator g~g,

is the number operator for the harmonic oscillator
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In this section we argue that the dimensionality
of the system does not play a crucial role in the
self-trapping problem. This contention is in ap-
parent contradiction to the well-known fact that a
weak, attractive, short-range static potential al-
ways leads to a bound state in one dimension, but
does riot in three dimensions. 2P We show that a fea-
ture of three-dimensional static potentials, namely;
that they must exceed a certain strength to lead to
binding is absent in self-trapping. The difference
between the self-trapping and static-potential prob-
lems can be made clear by the following calcula-
tion.

For an electron interacting with an attractive
static potential Vp, we can write a model Hamil-
tonian:

t ~ t tK&= — ~ c&~c& —Vp ~ c&c&a&a&2S gfy

(2)

Here, the operator at&a& refers to a fictitious par-
ticle at site i that attracts the electron with poten-
tial. —Vp. We first assume this particle is located
at the origin and look for an eigenfunction of the
form

g)c~gol 0)

where the g~ are constants to be determined.
It is very easy to show that the eigenvalues Ej of

+ are solutions of the equation

~Up
1

6 -Ei (4a)

where

e"'
2z (4b)

at lattice site i; all oscillators have frequency &.
The l.ast term describes the exciton-phonon inter-
action, which is assumed to be local and linear in
oscillator displacement. The strength of the in-
teraction is given by the dimensionless parameter
Wp. The binding energy of the exciton in the pho-
non field for zero bandwidth (+=0) is - &TWO/4.

The Hamiltonian K is identical to that of Ref. 17
with the following replacements: v —1, &p —2B,
Wp —48. This model has several limitations.
Since only a single exciton band is considered,
there is no possibility of an exciton-phonon bound
state due to internal motion of the exciton, as con-
sidered by Toyozawa and Hermanson. Further,
this model yields an infinite mean free path at
T=O, since the phonons are dispersionless. Still,
this model seems appropriate for investigating
variational a'pproximations to the ground state,
and particularly the onset of self-trapping.

II. NATURE OF SELF-TRAPPING POTENTIALS

The eigenfunctions are then given by

@ N~P ~ -E
q q 1

(4c}

We now ask whether Eqs. (4}possess a bound-
state solution Eg ~ —pAp, If they do, the electron is
"trapped, " since the g& will then faB off expo-
nentially for large R&. As is well known, the an-
swer depends on the dimensionality. In one dimen-
sion, the sum Q (e, + ~b~) ' diverges for lql -0,
so that a bound state must exist. For three dimen-
sions, the extra q factor in the numerator pro-
duces a finite sum, leading to a condition on Vp for
the existence of a bound state:

The usual argument for self-trapping consists of
looking for an "adiabatic" solution to Eq. (7), in
which the exciton is assumed to move in a "static"
potential produced by the distortion of the lattice.
The over-all translational invariance is then re-
stored by summing a linear combination of such
adiabatic terms.

A simple version of the adiabatic argument con-
sists of ignoring the hopping term in Eq. (7).
Then, the adiabatic potential is obtained by assum-
ing the exciton is fixed at the origin, (c,c&) = 6~,0,
and diagonalizing the phonon terms. The result,
(a&+ a,")= (2V+/ur)ii 6, , 0, leads to an adiabatic po-
tential V&' = —Vp5& p. If one then argues that this
potential can only exist if Vp is large enough to
bind the exciton at the origin in the first place,
then the analogy with the static potential seems
complete and the conclusion follows that in three
dimensions a small Vp will not lead to self-trap-
plllg,

The simple argument can be improved, without
changing the conclusion, by requiring that the
adiabatic potential be self-consistent. If the ex-

—ap (e, +-', a,) ')1
a

In order to obtain a transl. ationally invariant eigen-
state of X&, analogous to the k=0 state of an ex-
citon, C& can be replaced by

I 1
kg=~—Z g, c aqua 0)

g6

This eigenstate has exactly the same properties as
4&, since there is no coupling between terms of
different j.

We now wish to follow the argument of Eqs. (2)-
(6) as closely as possible for the case of the self-
trapped exciton. We modify Eq. (1) slightly to
emphasize the similarity with Eq. (2):

X2-- ~~ cf„cf+M ~/ a~a28 ]fy

-(-,'v, (o)'"Q c', c, (a, +g) . (7)



4540 BERSERK S. SHORE AND LE ONARD M. BANDE R

citon is bound, with a wave function

g(c(10)

then we require (a(+ at() = (2'/&u)'/~ lg( I'. This
replaces the 5-function potential of the simpl. e
argument with a finite but short-range self-con-
sistent potential. The conclusion that there is no
bound state in three dimensions unless Vo ~exceeds
a critical. value is still valid.

We will argue here that for small Vo the adiabatic
argument is incorrect since it is improper to
solve the phonon problem first and restore the
larger hopping term later. Instead, we start with
a 4=0 eigenfunction of the form

+(.= ~ ct+~ ((«t~fe (s)

V()(o p 1
2 2 2N g E y (10)

f =(-'v ~)(/'x-'Q
co+ 6~ —Eg

Equation (10) always has a bound-state solution
E3& —2 40, whatever the dimensionality or coupling
strength. This solution is essentially the second-
order perturbation energy, obtained by replacing
E~ by ——,'&0 in the denominator of the q summa-
tion. Further, this denominator never vanishes,
so that the qualitative features of the solution do
not depend on the dimensionality of the summation.
The coefficients f, fall off exponentially with dis-
tance even for a weak potential in three dimen-
sions.

These conclusions are not an approximation, but
are rigorous features of the model. This becomes
clear if one considers that the above calculation
is, in fact, variational. Since we have found a
bound state below the bottom of the band, the exact
ground state must have a stBl lower energy, We
conclude that there are no essential features of the
self-trapping problem that depend on the dimension-
ality of the model. Further, in raising the ques-
tion of a sudden onset of self-trapying as the in-
teraction energy Vo is increased, the preceding ex-
ample gives convincing evidence that this onset
could not occur as a transition to a, "localized"
state in which the dynamic lattice potential. finall. y
becomes large enough to bind the electron or ex-

For Vo«~, it is correct to limit 4& to terms con-
taining zero and one phonons. The coefficients f,
and the eigenvalues are determined by using a
Tamm-Dankoff method10 g2i,

P(Ã,4', ) = E,@,

Here I' is a projection operator that projects out
of Kz+~ those parts containing zero or one phonons.
The result is

2-& f~ I'1
0

&0

I

+( 8 ( ()) ( )/ ~0) (13)
1

e

Here [0) is the phonon vacuum. If u= Wo(d/bo»1,
Eq. (13) gives a good approximation to the ground
state. In Eq. (13) the spin points in a given direc-
tion long enough for the oscillator to relax com-
pletely. The interpretation in terms of a displaced
harmonic oscillator is made obvious by defining
a dimensionless position operator:

x= (I/)/2)(a+ at) (14)

In the x representation, the wave function (13) be-
comes

citon. There remains the possibility that a dis-
continuity could occur in a manner suggested in
Ref. 13, where the effective strength of the lattice
potential itself, i.e. , the distortion of the lattice
produced by the exciton, varies discontinuously as
the interaction parameter is changed. In the re-
mainder of this paper we shall concentrate on this
latter possibility.

III. TWO-SITE PROBLEM

The argument of the preceding section leads to
the speculation that the spatial form of the wave
function will always be exponential. and may not be
of critical importance in studying the transition
between untrapped and trapped behavior of the ex-
citon. This is in contrast to the case of the static
attractive potential, where the change from power
law to exponential form of the wave function de-
fines the onset of the bound state. We expect then
that we can gain useful information about the
transition by studying a simpler problem that can
be solved exactly with a computer: an excitation
hopping between two sites. The intention is to use
the computer solution for the wave function to con-
struct a variational wave function that is an im-
provement upon functions of the type used by
Toyozawa' or Merrifield' and then generalize the
improved wave function for the many-site problem.

The Hamiltonian is

Ã= —bo((, —,&(Wo) S,(a+ at)+(()a a . (12)

The two states are represented by a spin-& par-
ticle; S„, S, are spin operators. The "tunneling"
parameter ~~ governs the motion between the sites
(flipping the spin). As in Eq. (1), Wo is a dimen-
sionless measure of the coupling strength. The
sign of the coupling of the "spin" to the single har-
monic oscillator depends on whether the spin points
up or down.

For small 40 the ground state of X is
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FIG. 1. Properties of the two-site model for Wp=12.
(a) Values off that produce extremal values of (X) in
Eq. (17), vs the parameter u = (o Wp/bp. (b) Energy ob-
tained from the variational functions +~ and 42 and the
exact solution 4,. The energies obtained from 4'2 and 4,
are indistinguishable on the scale of this plot. (c) Be-
normalized tunneling parameter 6 vs u, calculated using
several trial functions. The curve for 42, 4, asymptot-
ically approaches the curve for +~ at very large values
of u. The value of d calculated from 4~ changes dis-
continuously at the critical value of u, u~=2. 4.

e(x&=2xix ( )X,(x&x((()X (x&,

where
4 (x)= ' 'exp[--'[xv(-', W)' ']'] .

(15a)

(15b)

In the opposite extreme u «1, the ground state is
found by replacing Wo by 0 in Eq. (13}. In this
limit the spin-flip rate Q is so large that the
oscillator always remains in its undisplaced ground
state. To find a solution for intermediate values
of u, an obvious first choice is to treat the dis-
placement as a variational parameter. This is
analogous to the variational solution used in Ref.
13. We put

V 2-'~'(
1 B]i

R= ( —1)' '
The operator 8 obeys

(19c)

This expression is minimized with respect to f.
For fixed W(&, we find that the equation 8(Q/sf = 0
has three roots for a certain range of values of u
in the vicinity of u=1, provided that %0 is suf-
ficiently large (Wo&~4). Two of the roots corre-
spond to local minima of (K) and one root to a local
maximum. These results are illustrated in Figs.
1(a) and (1b) for We=12, where the ground-state
energy and f are plotted as a function of u.

For u smaller than a critical value u„ the
absolute minimum of (K) corresponds to the smaller
of the two choices of f (typically f~0). As u in-
creases through u„ f shifts discontinuously to the
larger extremal value (f~1). This result can be
related to self-trapping by defining a "renormal-
ized" tunneling parameter &=-(MoS„). We asso-
ciate 4 with the "bandwidth" of the exciton; the
inverse of ~ gives a measure of the "effective
mass. " If we use 4& to calculate 4,

g ~ f lVO/2 (18)

As u increases through u, the discontinuity in f
leads to a sudden exponential decrease in ~, as
shown in Fig. 1(c). This discontinuity is a primi-
tive form of self-trapping discussed in Ref. 13.

Further, in the region u-u„ the two minima in
(X) can be interpreted as describing a ground and
excited state with greatly different i. For u ~u,
the ground state is untrapped and the excited state
is trapped. For u ~u, the reverse is true. This
feature of 4& is also discussed in Ref. 13.

It is clear that the wave function 4', gives an
adequate description of the ground state for u»1
and u «1. However, we now show that the discon-
tinuous onset of self-trapping at u= u, is an artifact
of the simple form of the wave function 4„ in
reality 4 is a continuous function of u. This can
be established, along with information needed to
construct an improved variational wave function,
by obtaining the exact ground state of Eq. (12)
numerically. The numerical solution is facilitated
by performing a unitary transformation on X:

$C = UKU (19a)

where

-ss,&,&' ~'& J'&
(16) B=R; R =B

[ft, a].=[a,a'], =0 . (2o}

Here f is a variational parameter which is expected
to vary from 0 to 1 as u increases. The expecta-
tion value of the energy is

&@,~X~ e,)= ——,'&,s ~~o "+-,'o&W, (f'- 2f) . (17)

The result is

(21)X = —&oS,R —~ &o (Wo) ~ (a+ at) + o&a a

g. is di.agonal in the spin coordinate; the eigen-
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FIG. 2. The wave function 4, calcu-
lated from Eq. (23) vs x for the two-
site model. Several values of u are
shown for fixed Wo.

0:-4

~.(x) ="/'e" "Z ~„(2"n!)'/oH„(x), (22)

where the cy„are the coefficients of the ground-
state eigenvector of K and the H„(x) are Hermite
polynomials of order n. In Fig. 2 we plot 9,(x)
for T4p = 12 and several values of u. From the
figure it is obvious that 4', cannot be represented
by a single displaced harmonic oscillator for values
of u in the transition region u-u, . This is appar-
ently the source of failure of 4,. If we calculate
the mean displacement x of the oscillator using the
4„we find a continuous variation between x 0
for u«u, to x=(Wo/2)(/a for u»u, . However, for
u~u, the rms zero-point motion ((x- x) )'/a in-
creases above the value 2 ' characteristic of a

states separate into two manifolds, obtained by
setting S, = + 2. These correspond, respectively, to
the symmetric and antisymmetric combinal;ions of
the original spin-up and spin-down states. The
two states are analogous to an exciton with 4 = 0
and k at the zone boundary.

The ground state is obtained by setting S,=
&

and numerically diagonalizing a matrix II „with
nonzero elements:

H„,„=—o &o( —1)"+ (on

H„' „,, = H„'„„=—', o/(Wo)-'/o(n+ I)'",
n=0, 1, . . . . (22)

The result for the ground-state energy is shown in
Fig. 1(b) for Wo=12. The parameter b is shown
in Fig. 1(c). Since the energy, eigenvector, and
& are continuous functions of u, we conclude that
the discontinuity obtained from 4, is an artifact.
The next step is to investigate the ground-state
eigenvector to understand the inadequacy of 4', .

Any eigenstate of Ã can be written in the form
(15a), with exact 4, (x) to replace Eq. (15b); the
eigenstate of K corresponds to 4,. In the x rep-
resentation,

Z ""'"'",e, ((e, ,,))~0& . (25)

Here k is a wave vector, R, is the location of the
lattice site i, and P is a function of all the oscil-
lator coordinates Q(, (where the oscillator i, 5
is located at 5;+R,). From the argument of Sec.
II, we know that the term in 4~ containing the elec-
tron at site i will only affect oscillators in the
vicinity of that site The imp.ortant features of ((»

harmonic oscillator. This behavior is character-
.istic of all the transitions between trapped and un-
trapped behavior that we have studied.

We now write down a trial wave function that
more closely approximates the behavior described
above and which can be generalized to the many-
site problem, where a numerical solution cannot
easily be obtained. We try a linear combination
of two displaced oscillators:

[e (wo) /o(a-c ) /2+ &-g(wo) (N. at)/2]~ 0)
1/2

(24)
Here f, g, and y are variational parameters chosen
to minimize the expectation value of (@o!K !4'o)/

(4o!4o). The x-representation wave function 4o(x)
is a sum of two Gaussians; this form is clearly
suggested by the numerical solution in Fig, 2, The
ground-state energy calculated from 43 is shown
in Fig. 1(b) for Wo=12. On the scale of Fig. 1(b)
it is indistinguishable from the exact numerical
value. There is no discontinuity in any of the vari-
ational parameters. The renormalized tunneling
parameter is plotted in Fig. 1(c). Once more the
agreement with the numerical solution is extremely
good. Thus, there seems to be reasonable justifi-
cation for modifying the Lee-Low-Pines type of
trial function in a manner analogous to Eq. (24).

IV. THE N-SITE PROBLEM

We now attempt to treat an exciton in the infinite
lattice, described by the Hamiltonian of Eq. (1).
The general solution can be written



are (1) its spatial extent, i.e. , the distance over
which the lattice oscillators are distorted; and
(2) the form of the disturbance for oscillators in
the immediate vicinity of the exciton. For fixed
Sz, both properties depend on the parameter
u= Wo&o/&o. For u»1, all oscillators are in their
ground state, except for the oscillator at the site
of the electron (5=0). The wave function for the
5= 0 oscillator corresponds to a simple displace-
ment by the ful. l value (zo o) = (o Wo)' ~ . For u «1,
the displacement of the 5=0 oscillator is small
(zo o) (2u), but the disturbance falls off with
distance as a slow exponential, involving roughly
(Wo/u)'I' neighbors. We will. show that for inter-
mediate values of gg, the wave function for the 5= 0
oscillator approximates a double Gaussian, as in
the two-site problem. The transition from small
to lax'ge Q ls again continuous.

Since the qualitative behavior of |Ii, including the
exponential character of the dependence on dis-
tance, does not depend on the dimensionality of
the lattice, we will concentrate on a one-dimen-
sional model, g= 2 in Eq. (1). Then, the location
of oscillator Ro is Q = a5; here a is the nearest-
neighbor distance and 6 takes on values 0, + 1,
+ 2, . . . . The ground-state energy and effective
mass of the exciton can be identified by expanding
the energy for small 0:

1 3@0+ p + 0 0 ~

2m+

For 8'0= 0, the effective mass is simply

mg = 4/&oa

Then, for fixed Wo, the ratio m*/zoo varies between
1 and e 0 as u increases.

'Mle first display the apparent discontinuity in the
effective mass for g ~g„using a wave function
similar to that of Ref. 13;

This has a minimum when the fo's are related to
fo=o by

f f e-slol (29a)

1-fo~a'= ln

That is, the f's (which measure the distortion of
the Mh nearest neighbor of the site containing the
electron) fall off exponentially with distance.

Using the results of Eqs. (29) in Eq. (28), the
expectation value of the energy (3() . can be written
in terms of fo alone:

(Ã~= &&oe ~o o~ + 8&Wo(fo 3fo) (30a)

-0.5

The structure of this equation is similar to Eq.
(1V) for the two-site model. When we minimize
(K) with respect to fo, (K) has extrema when

fo -wahoo g4 (30b)1-fo' ~o

For large Wo (Wo&5'/2&&3'~19. 3), Eq. (30b) has
multiple roots, resulting in a discontinuity in fo
as u increases. The results for the ground-state
energy are shown in Fig. 3 for S'0= 24. As in the
two-site problem, the second minimum of (Ã) ean
be interpreted as an excited state with greatly dif-
ferent effective mass than the ground state.

From Eq. (29) it can be seen that the disturbance
is weH localized for the trapped state (fo ~l) and
is spread out for the untrapped state (fo ~0).

The effective mass for this model is found using
Eq. (2V) for nonzero k. The calculation is com-

P e'"' ~ et, exP(-', (Wo)' (o

xZ (f,"a',„-f,u...)) ~0) . (2»)

-0.7

The invariance of a momentum elgenstate under
the combined operations of spatial inversion and
time reversal. requires that

f, =f,*, 6=0, al, +2, . . .
To calculate Eo, we set A =0; then we can require
that aH f, be real. . The expectation value of the
enex'gy ls

&'41&~l ~a&=--'*&oemI- -'&n Z (fsw f~)'}-
+ —,'(two(fo' —2fo)+a&Wo+ fo' * (2&)

6~1

-0.9

FIG. 3. Expectation value of the energy for the one-
dimensional N-site model vs the parameter I= Q) +0/+0
The trial functions are obtained from I-Eq. (27); II-
Diagonalization of the matrix in Eq. (36); III-Eq. (37);
IV-Eq. (38).
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IO

IO

IO

I

Np= 24
So=+ [5—),(!}+1)]2e2"'= 2'(1 —X) (1—X )

(33c)
The effective mass for W0 = 24 is plotted in Fig. 4.

The discontinuity in fo arising from Eqs. (30) is
clearly the result of attempting to approximate the
wave function for the 5 = 0 oscillator by a simple
displacement. Another "variationaV' wave func-
tion can be obtained by requiring that all oscil.lators
with 5 40 remain in the ground state; the best
wave function for the 6 = 0 oscillator can be ob-
tained numerically. This solution is analogous to
the "internal subspace" solution of Cho and
Toyozawa. '~ We look for an eigenfunction of Eq,
(1) of the form

(34)

0.2 0.5 I.O 2.0 5.0 IO 20 50

It is easy to see that, within the subspace of states
given by Eq. (34), the minimum energy is obtained
when P» is an eigenfunction of the local Hamilto-
nian:

FIG. 4. Calculated effective mass vs u for several
trial functions. The mass calculated with 4q changes dis-
continuously at the critical value of p, +~ =3.2.

plicated by the fact that the f, 's should be taken to
be complex. The expectation value of the energy
is

(4~~Ã()1)'»)= —ghoexP oak —»W() Q (( fo~
6=0

K~ = &oa a —2 &u(Wo)' (a+ a ) —2 &o cosak( 0) (0
(

(»)
X~ operates on a space spanned by the eigenstates
ln) of a single harmonic oscillator:

~
n) = (n! )

' (a~)"
~

0)

The operator !0) (0!is the projection operator for
the n= 0 state of this oscil. lator. The ground-state
energy of Ã~~ is found by numerically diagonalizing
the matrix (H2)„„with nonzero elements:

+ If»+1 I 2fo f5+I) + c.c
(Hz, )„„=n(d —(—,

' b,o cosak) 5„o

(H,')„,„„=(H,")„„,„=——.
' ~(wo)' "(n+ 1)'".

(36)

fo sinhK

sinha+ —,
'

Wo foo
(32)

Then, letting X denote e ", the effective mass be-
comes

~
= —~1+ 2 Wo fo(1 - fo')] '

0

where

2W0 0$)+ 3
— 1+ 2 W0 0 $~

1-fo
0

(3Sa)

.—.'-W.(f. — f.).—.-W. Z ~f. ~

.
(»)

Calculating (Q to second order in k, it is found
that fo (=ff) is given by Eqs. (30), f,'= Ref, is
given by Eqs. (29), and

The ground-state (k=0) energy and the effective
mass are shown for F0=24 in Figs. 3 and 4, re-
spectively. There are no discontinuities in the
effective mass, but the restriction to a localized
distortion raises the energy considerably above the
value obtained using O'. The approximation is
particularly bad for small I, where many neigh-
bors of the electron are in fact displaced. The
diagonalization of (H2»)„„allows us to determine
(f)„ in the x representation; this is displayed in Fig.
5. The double-Gaussian behavior with large fluc-
tuations of the displacement around its mean value
again appears for intermediate values of N.

The preceding results indicate that an improved
variational wave function must allow for some
spatial extent of the lattice distortion around the
exciton position and for a possible "double-Gaus-
sian" form of the distortion. A simple example for
a ground-state (k = 0) wave function is

g Q 32e-2»o g2(1 + g2) (1 go)-2
6=1

(ssb) X"'=, p e( ex --,"()ee)'leZ f, (a, —e)„))
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0.8—

Wp= 24

Jwo/2

04—

FIG. 5. The x representation for
the wave function 4' vs g for the one-
dimensional N-site model. Several
values of u are shown for fixed Wp.

0.2—

+yexp(- —,'(w, )'/'p g, (a(y() at~) I0) (37)
6

Here the f~, g„and y are (real) variational param-
eters, obeying f, =f » g, =g „A is a normaliza-
tion constant. The ground-state energy is shown
in Fig. 3 and values of f6, g() and y are given in
Table I. These values were obtained by minimiz-
ing the expectation value of the energy using e
standard numerical algorithm and are of uncertain
accuracy, since the absolute minimum of a func-
tion of a large number of parameters can be very
shallow in the multidimensional space of those pa-
rameters. We have made sure, however, that
the minimum itself is obtained accurately. All
parameters are continuous as u is varied and there
is a considerable lowering of the energy for all
values of u from the value obtained from I('.

The energy can be further lowered for large u
by one further change in )I(". The ground-state
energy asymptotically approaches the value
E-—&~WO for large I, corresponding to the en-
ergy of a localized displaced harmonic oscillator.
The energy can be lowered by order —40~/&o Wo

below this by allowing the exciton to make virtual
transitions to nearest-neighbor (undisplaced)
oscillators. This results in a wave function in
which the lattice displacements are not symmetric
with respect to the site of the exciton. The re-
(Iuirement of 4"' that f, =f ~, g() =g 6 inhibits this
contribution to the energy. A more suitable trial
function is

X =+ Z e) exx(-,'(wo)' Z f, (a„,—x, ))

+ -.x ex)(- * (txo)' "E Xs (ag., - x)„))

+-.'yexp--.' &&'" g & ~&-~&
(38)

Here f, =f, but t:here is no restriction ong, . The
ground-state energy is shown in Fig. 3 and the
values of f„g, and y are given in Table II.

Calculations using several trial functions more
complicated than W do not seem to change the
ground-state energy significantly. Consequently
we believe that the ground-state energy calculated
using )I(' is close to the actual value.

TABLE I. Variational parameters to minimize the
expectation value of the energy using the trial wave func-
tions' t. Here u=+W()/Q; W0=24.

TABLE II. Variational parameters to minimize the
expectation value of the energy using the trial function
~zv Wo 24

0.48 1.20 1.92 2.88 3.60 4.56
0.48 1.20 1.92 2.88 3 60 4.56

0.002 0.24

fo 0 14 0 19
fg 0.10 0.15

0.08 0.09
f~ 0.06 0.06

gp 1.0 0.41
g+ ~ ~ ~ 0 08
g ~ ~ ~ 0 09
g~ "' 0 05

0.54
0.21
0.19
0.09
0.05
0.50
0.08
0.08
0.04

0.96
0.28
0.21
0.09
0.04
0.79
0.04
0.04
0.02

2.76
0.29
0.24
0.07
0.02
0.93
0.02
0.02
0.005

8.59
0.19
0.37
0.03
0.007
0.96
0.008
0.01
0

fo
fg
fa
8-2
g-i
go
g'i

g2

g3

1.89
0.22
0.13
0.04

—0.01
-0.003

0.08
0.13
0.13
0.08

1.68
0.40
0.19
0.04

—0.002
0.01
0,.17
0.28
0.20
G. 10

1.20
0.57
0.15
0.03
0.01
0.02
0.20
0.40
0.19
0.07

0.46
0.87
0.05
0.006
0.005
0.006
0.15
0.77
0.06
0.006

0.34
0.93
0.03
0.002
0.002
0.003
0.13
0.83
0.03
0.002

0.26
0.96
0.02
0.001
0.001
0.002
0.11
0.86
0.02
0.001
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We are unable to easily calculate the effective
mass using 4 . In order to determine the effect
of neighboring lattice sites on m*, we use the
following simpler trial function:

+v & ~ ~i4, qr ~gr )
/ f(et-a)/2

p
.f y &/2(Q) / g(g g )/g+ —pe( 0) ( Qg g

AC )/2

-', P ~o& /'&"'& &-"*' &/ ]~o) . (3g)

The ground-state energy for 4 is somewhat high-
er than that of 4, particularly for small u where
the restriction of the distortion to nearest neigh-
bors is least valid. However, the qualitative fea-
tures of the solution are similar to + . The mass
calculated with 4 is shown in Fig. 4. As ex-
pected, the major effect of including displacements
of nearest neighbors is to increase the mass for
small u.

V. CONCLUSIONS

The Hamiltonians (1) and (12) describe a fairly
wide range of problems in which a spin or fermion
interacts linearly with a boson field. Our results
indicate that the simple physical idea that these
systems can be described by harmonic oscillator
wave functions whose mean displacement depends
on the hopping rate is not valid if the hopping rate
(-60) is comparable to the self energy of the
oscillators (-~WO). In this intermediate regime
the fluctuations of the oscillators become anom-
alously large: the low-lying states of the system
are best described as superpositions of nearly
completely distorted and completely undistorted

oscillators. The fluctuations remove any sign of
discontinuities in the effective mass of the excita-
tion, or any sudden onset of self-trapping.

This conclusion is based on particularly firm
grounds for the two-site model, where, as we have
seen, an exact solution can be given. For the N-
site model (i. e. , an exciton in a lattice) we could,
in general, only give plausibility arguments for
our conclusions. In the particular case of 4 '
where distortions are allowed only at the site where
the electron resides (i. e. , the internal subspace
of Ref. 17) we can again give an exact solution.
This solution, the two-site model, and the large
gains in variational energy from allowing large
fluctuations in oscillator wave functions give us
confidence in our conclusions.

Similar wave functions to ours have been sug-
gested in quite a different context by Eagles. 3 In
his work, attention is focused on the transition
between large and small polarons, and he points
out that superpositions of the two sorts of states
should be considered. This is very close to our
contention. It is interesting that in contrast to the
case of the static potential, there is little differ-
ence in the character of the ground state of a par-
ticle coupled to a lattice via a Coulomb poterkial
(the polaron) and the short-range coupling we use
here. It was one of the major points of Ref. 13 for
example, that major effects could be expected from
the difference between long- and short-range po-
tentials. We believe that the discussion of Sec. II
shows that the dynamic potential due to the lattice
always produces a bound state regardless of the
form of the interaction.
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