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A calculation of the temperature dependence of the magnetic-resonance linewidth in ferro-:
magnetic crystals is presented. It is based on the Kubo-Tomita relaxation function and Van
Vleck's method of moments, generalized to finite temperatures. Our work differs from pre-
vious general theories in that detailed calculations are performed including the applied field
so that meaningful comparison between theory and experiment is possible over a wide range
of temperatures including the Curie region. The temperature dependence of the moments is
calculated in two steps. First, the four- and six-spin correlation functions which occur in the
second and fourth moments, respectively, are decoupled into sums of products of two-spin
correlation functions. These two-spin thermal averages are then computed in the constant-
coupling approximation, since we show that nearest-neighbor static correlations are by far
the most important. In this manner linewidth calculations are made for two ferromagnets,
K2CuC14 2H20 and Ni, for temperatures ranging from T =0 K to T = 10T~. It is found that the
method gives reasonable agreement with the experiments of Ford and Jeffries on K2CuC14 ~ 2H20
and of Bhagat and Chicklis and of Salamon on Ni.

I. INTRODUCTION

In this paper we investigate the behavior of the
exchange-narrowed ferromagnetic-resonance line-
width as a function of temperature. In spite of
much previous effort on the general theory of mag-
netic-resonance linewidth, ' there appear to be
no detailed calculations of the temperature depen-
dence of the linewidth which can be directly applied
to the full range of experimental parameters for a
ferromagnet. Treatments at finite temperature
have tended to be either phenomenological or limited
to nonrealistic situations such as zero applied
field. '4 It is particularly important that the ex-
ternal field be included, because it removes the
divergence of the uniform susceptibility at the
Curie point, and this can drastically alter the line-
width in the critical region. Since experiments
have been performed over a wide range of tempera-
tures above and below the transition point in finite
fields, there is considerable interest in having gen-
eral formulas for finite-temperature linewidths
and performing the computations necessary for
meaningful comparison between theory and experi-

ment.
The linewidth is calculated in terms of the second

and fourth moments as originally proposed by Van
Vleck. The stochastic theory of Anderson and

gneiss and the relaxation-function approach of
Kubo and Tomita also utilize the moments and re-
produce Van Vleck's results in the infinite-tempera-
ture limit. Richards has shown that these methods
may also be applied at finite temperature; so one
essentially has only to compute the second and
fourth moments at the temperature of interest in
order to compute the linewidth within the frame-
work of Kubo and Tomita's general theory.

Describing the linewidth by second and fourth
moments can be risky for pathological line shapes;
however, for a well-behaved line shape —Lorentzian
near the center and more sharply cut off in the
wings —this has been shown to produce reasonable
results in the infinite-temperature limit. Also, as
mentioned by Kawasaki, ' use of moments may be
more correct for large external fields, as en-
countered in this work.

Green's-function techniques have also been used
to calculate temperature dependence of the line-
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width, but these entail decoupling of time correla-
tion functions which may be more questionable than
decoupling of static correlations functions, as em-
ployed here. Also, they apparently lead to results
which are quite different from those presented here
and not in agreement with experiment (see Ref. 8).
Our philosophy has been first to see what the con-
ventional moments treatment produces before trying
techniques which are more difficult computationally
and which involve approximations whose physical
basis is often obscure. That, as we show, good
agreement can be obtained with experiment may be
a posteriori justification for the techniques em-
ployed here.

The actual computation of the moments is achieved
by decoupling the four- and six-spin correlation
functions, which occur in the second and fourth
moments, respectively, into sums of products of
two-spin correlation functions. The resulting two-
spin thermal averages are calculated in the con-
stant-coupling ' approximation for reasons which
we discuss later. In this manner explicit calcula-
tions of the linewidth are made for two ferromag-
nets, KxCuC14 2HpO and Ni, for temperatures
ranging from T=O K to T=10T~.

A notable feature of our results is that the various
secular and nonsecular components do not have an
identical temperature dependence. Furthermore,
the temperature dependence of the effective ex-
change frequency ~, is not, in general, consistent
with the often-used argument that co, decreases
with onset of ordering due to slowing down of the
rate of fluctuations.

The linewidth calculations are then compared
with the measurements of Ford and Jeffries" for
the potassium salt and with those of Bhagat and
Chicklis' and Salamon' for Ni. We find that the
constant- coupling approximation can give r eason-
ably good agreement with experiment. Comparison
between K2CuC14 2H~O and ¹iis of interest because
the former has h~p/ksTc- I while the latter has
Rurp/ksTc«1, where Kurp/ksTe is the ratio of Zee-
man energy to thermal energy at the Curie point.
We find that the width in Ni has a temperature de-
pendence given simply by the denominator (MP„) ~ in
the general theory [see Eq. (1)]; but the numerator,
which is related to dynamical spin correlations,
plays a decisive role in KxCuC14 2HpO.

II. GENERAL THEORY OF LINEWIDTH

In Ref. 7, hereafter referred to as I, one of us
extended the methods of Kubo and Tomita to finite
temperature. The notation used here is the same
as in I, and the reader is referred to it for back-

groundd

and additional r eferences.
The relaxation rate p is given by

M

where

e'""p'( g ~(r)g„(0)) + e '""p'(g„(r)g „(0))
8@'pP)

g (g) e-&xpxxx/x[G ~ ]e&xpex ~ (2)

in which 3C~ is the isotropic Heisenberg-exchange
Hamiltonian, M, is the usual raising operator as-
sociated with the transverse components of total
magnetization M„and M„and GM is that part of
the perturbation K' which induces a change M in
total Zeeman quantum number. For the purposes
of this paper K' is either the classical or pseudo-
dipolar coupling, and thus M=+2, +1, 0. The un-
perturbed angular resonance fr equency is

(dp —gp, sHp/'k ~

where g is the spectroscopic splitting factor, p, ~
the Bohr magneton, and Hp the applied field. Tri-
angular brackets indicate thermal average with
respect to the unperturbed density matrix in which
K' is neglected. A Lorentzian line shape is as-
sumed except far from the center, so that the full
linewidth at half-maximum ~H is related to p by

6 H = 27JS/gP, s . (4)

In I the relaxation rate was derived by consider-
ing the Fourier transform of the line-shape func-
tion Ij "(ur) coth(-,'pk~), where X" is the imaginary
part of the susceptibility and p= I/ksT, with ks
Boltzmann's constant and T the absolute tempera-
ture. We show in Appendix A that the sa,me result
is obtained from the Fourier transform of y "(v)/v
if the perturbation K' is neglected in computation
of thermal averages.

Frequency shifts can be important at finite tem-
perature. It was shown in I that Eq. (1) above holds
as long as the frequency shift is small compared
to &p. As pointed out in I, the fact that the line-
wi.'.th can be computed without having to know the
exact location of the line center is a virtue of ex-
change-narrowed lines. [See Eq. (19) of I and the
ensuing discussion. ] In nonspherical samples,
frequency shifts of the order of cop can occur owing
to demagnetizing fields. We show, however, in
Appendix B that such shifts do not affect our cal-
culations.

The quantity (g~t(v)g„(0)) is assumed to decay
in a characteristic time v, . For either of the
limiting cases ~ps', «1 or (dpT»1, it is not neces-
sary to know the precise form of (g~t(7)g„(0)) in
order to study the temperature dependence of the
linewidth. This is because, as discussed in I, if
~ps, «1, then e' "o' = 1 for all times of interest,
while if Q)p7, »1, the M=O term dominates. In
either case one is left with f"f„(7)d7 to evaluate,
where M is restricted to zero if cop7', »1, and we
have defined
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fs(&)= &gz(~) gz(0)) + &gg(~) g~(0)) . (g&ttg„)„=(g&&)g„)„oe
"" 'e" (12)

The approximation

f„f~(7 )d7 = cf„(0)/o&,'"',
with

(6a)

as a convenient, but by no means unique, way of
satisfying Eq. (11) and maintaining a Gaussian
character. It may be shown that 0 is related to co,
as defined in Eq. (6) by

(6b) o&, = o (1+ —,
'

P 8 (P) . (13)

is then made, where c is assumed to be tempera-
ture independent and of the order of unity [c= (2m)'+
for a Gaussian decay].

The frequency o)™in (6) is of the order of the
decay rate 7',' and is equivalent to the exchange fre-
quency +, introduced by Anderson and gneiss. A
superscript (M) is necessary since o) ~ ' is different
for different M's and shows different temperature
dependences.

If neither of the limiting conditions is satisfied,
then an analytic expression for the dependence of
(gt„(7)g~(0)) is required. If the usual Gaussian
form is taken,

f (~)= f (0) e '" (7)

III. CALCULATION OF Mq AND M4

For X' given by the classical dipolar perturba-
tion, the quantities G„are of the form

GM ~ F)J +)J (14)

where we have defined E,'", ' = 0. The factors E,'& '

and A,'& 'are given by

We have investigated how (12) and (13) alter the
calculated linewidth and find that, in the regions of
experimental interest for the compounds treated,
there is a negligible effect. For simplicity we
therefore do not further consider modifications
such as are required by Eq. (11).

then the expression (1) reduces to

„)n~ f~(0)exp'- l (M~o)'/[~."']')r/= 27r 8~'"'e'&M') (8)

F)g = —g (gps) f')g(3 cos e)g —1),
F(g = —4(gi) s) %PE sln8)g cos 8(g e

F'""= —-)'&(gy, )'r 'sin e e"'"~~

(16a)

(15b)

(Isc)

M,'"' = y, (0)/4m'&M'„) (9a)

and the contribution to the fourth moment M4 is

M,'"' =f,(0)/4e'(M'„), (9b)

so that Eq. (6) becomes

~(M) [M(N&/M(N&] 1/2 (lo)

if it is also assumed that (g„(r)g~(0)) is an even
function of r [see Eqs. (11)-(13)and the discussion
below]. Identical expressions have been obtained
by Tomita and Henderson and Rogers. ' The
terms in Eq. (8) are directly related to the second
and fourth moments of the resonance line as shown
in I. For future reference the Mth contribution to
the second moment Mz is

A]) ——S) S) —3 S] 'S~,(0) s g j. ~

A ~ ' = S'S + S ] S,
A""= S'S'

g ~

The commutators g„, Eq. (2), then become

g-2= —4g&s~ F)j S)Sj ~

g i = 2gP s Z F,'~ "(S(S( —2SfSq),

go = 2gi s~ F)y SfS y

g) ——2gg, sg F)~ S(S~,

(16a)

(16b)

(16c)

(17a)

(17b)

(17d)

Of the two materials studied here, we have Mcu0
« ~,' ' for Ni, so that the Gaussian form is not
crucial. For K2CuC14 2H20, however, w0 and

w,'"' are comparable, so that detailed comparison
requires the explicit form (7).

A complication at finite temperature is that the
assumed Gaussian form of Eq, (8) makes the
Fourier frequency transform (g„g~)„an even func-
tion of (d, whereas we know from general principles
that

(g'g). = e '""(gg') .
must hold for the frequency dependence of any time
correlation function (g (r)g(0)). A somewhat more
sophisticated approximation would then be to take

&=0,

where we have used E,'& ' = E&~", '. Using these re-
sults, one obtains for the second moment the fol-
lowing expressions:

A (S )M' ' = 16 Z F' 'F' '(S'S S'S'+S'S'S'S )
ifkl

(18a)

ff (S )M ' =4 Z F) "F),;"(S)SS),S, +S),S,SJS
$Jkl

+ 8$fSiS„'S) 4(S)S)S)S,-+ S),S,SfSq )),
(18b)

ff (S~)Mo =4 Z Fq~'F)) (S)S~S)S)+S)S)SfS~),
lgkl

(18c )
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5 (8~&M2" =4 Z F(q"F», '(8(sqs»8, + 8»8)8'(8~&,

(18d)

where S, = S,S +S S,. The component M2' ' is iden-
tically equal to zero because the corresponding

commutator g,z is zero.
The components of the fourth moment are eval-

uated according to Eqs. (2) and (1). After some
lengthy commutator algebra, one finds the follow-
ing relations:

@4&8~2&~(-2) 4 Q~ Q [J (E(-2) E(-2)) J (E(-2) E(-2&)] [J (E(2) E(2&) J (E(2& F(2&)]
krak lmn

x ([8,8&8„~28(8&8»g, 8',8„8„'~ 28,'8' 8„'],), , (19)

If'&SL'&M4 "=8 ~ ~ fJ(j(Ey»" —F(»") + JJ»(F('»" E—(i")+ (»(EJ»" —EIi' )]
flak lmn

x[J, (F'» - F('„&) + J „(E,„"—E,'„")+ 2 J,„(E,"'—E„"„')]( [8(8~8» —8(8)8», 8 S„'8„-8 8'S„'],),
(20)

f)'&8,'&m,"& =16 Z Z [J„(E",„)& E,'„")-+J,„(E',,"—E,'„")]
$gk lmn

x [J;„(F„'„"—E,'„")+J'„„(FI„"—E,'„")]([8('8)8'», 8,8'8„],) . (21)

The exchange Hamiltonian has been taken as

+ex ~ US( (22)

in arriving at Eqs. (19)-(21).
The term M4 ' is identical with M4 ', except that

the lattice factors F,&

' are replaced by F&&', and
the right-hand side of Eq. (19) is multiplied by a
factor of 4. The resulting secular component M4

'

is identical with that given by Van Vleck. '
The second and fourth moments involve four- and

six-spin correlation functions, respectively. To
make progress we decouple these into sums of
products of two-spin correlation function in analogy
with Wick's theorem. ' For example, we take

E(-2)E(2) (Sgs-8+Sz& g F(-2)F(2 & (8zsg
&
(8-8+

&

fgkl $)kl
(24)

It is shown in detail elsewhere' that for S= —,
' and

cubic symmetry the above approximation holds to
O(1/Z ), where Z is the number of nearest-neigh-
bor ions, at finite temperatures. (It is exact at
infinite temperature and at zero temperature. )
This is fully consistent with the decoupling of the
correlation functions which is expected to be valid
to O(1/Z).

Therefore, in the approximation (24) one obtains

5 (8 &M' '=16 ZF' 'F' 'C"(C' C ') (25)
jjkl

&s;s,s,'s,'& = &s,'s,'&&s;s,'&,

(s',s;s„'s,-& = (s,'s;)(s„'s, ) + (8,8;&(8;8-,'&,

&s;s,'s,'s,') = &8;SJ&&s,'s,'& + (s,'s„'&&s,'s;&

(23a)

(23b)
C;) = (8(8)'&,-Cq» = (8))8» (26)

where the following short-hand notation has been
used:

+ &S;S,'& &SJS,'& (23c)

if all indices are different. Other combinations,
such as (8(SI&, are equal to zero because the un-
perturbed density matrix, with respect to which
the thermal averages are taken, is invariant under
rotations about the z axis, which is the direction of
applied field. Decoupling schemes such as (23) are
commonly used in investigations of the temperature
dependence of the Heisenberg ferromagnet. In
particular, the Green's-function equations of motion
are decoupled in the same mariner as above (see,
for example, Tahir-Kheli and ter Haar' and
Callen' ).

For simplicity we decouple according to (23)
even for spins on the same lattice site; so, for
example, the first term of Eq. (18a) is written as

Similarly,

@2(82&M( 1& 3 Q F( 1)F()&(c +C+ 3C ggcgg)

(27)

(28)ff 2&82&M(0& 4 Q E(0)E(0)C gg(c+- C-z)
fgkl

~'(8'&~"' = 9 2 F'"F'-"(c' c' c-'c" ) (29)
fjkl

The decoupling of the fourth moment proceeds in
the same manner, except that the six-spin correla-
tion functions are first decoupled into sums of
products of two- and four-spin correlation func-
tions; the latter are subsequently reduced to two-
spin thermal averages. Thus, the contributions to
the fourth-moment sums are given by
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k 4(S2)~( 2) 4 Q Q {[j (E( 2& F( 2)
) j (E( 2) E( 2) )][j (E(0) E(2)) +j (E(0) E(2))]

fglh lmn

'[(C() + C(()C~„C&,„+(C(„+C(„')C~ C07 + 4(CJ~+ Cj~)(C() C)',„'y C („'C0))]). (30)

The M4 ' part is obtained from this by changing the lattice factors from E&&
' to E&&' and multiplying the

right-hand side by a factor of —,'. The M4' ' components are

k4(SR)~(-)) 8 Q Q {[j (E(-)) E(-))) j (E(-(& E(-(&) 2 j (E(-)) E(-)) E(-)&)]
If' lmn

and

&&
I j) (EI. —F ' ) +j .(Ei"'- E(.") + 2 j).(EI"-E".')]C )' [C(.C)7 + Ci:C) (

—(C(( C) n+ CtiC&:)]]
(31)

I (S~)M4( & =16 Q Z{[j(~(Fj'0) F((0))+j)q(F((~) EI(0))][j) (F( )) EI ))) +j (E)( & F(( &)]
f fk lmn

x C &'„(C«C&,„+C(„C&)+ C(', C0„'+ C&&) C«)) . (32)

Hence, we now have finite-temperature expressions
for the second and fourth moments of the resonance
line, with the temperature dependence determined
by the behavior of the two-spin correlation func-
tions. The decoupled expressions above are exact
in the infinite-temperature limit and agree with
those given by Van Vleck and Tomita. '

It remains to compute the static-two-spin correla-
tion functions. Since there are no exact solutions
for the correlations of a Heisenberg ferromagnet in
an applied field, one is forced to use approximate
results. The choice of approximation technique is
dictated by the types of correlations which are like-
ly to be most important. In zero field the correla-
tions are dominated by long-wavelength fluctuations
in the critical region and it is essential to use a
theory which accounts for these properly. The ap-
plied field, however, alters the picture consider-
ably and makes it appear that only short-range cor-
relations are important. This is illustrated by the
following consideration.

The parameter of interest is the correlation
length ~ ' in the presence of an applied field. It is
defined by

(s,s', ) (q'+ «')-'

for small q, where (S,s,') is the spatial Fourier
component of (S(s&) at wave vector q. From the
random phase -approximation (RPA) or, equivalent-

ly, high-density or ring-diagram approxima-
tions, ""we have

(S S+) R(eB(EusHP+(zP J'&)R) 1)-1

where R = 2 (S() is the relative magnetization for
spin» Ho is the applied field, and J, is the spatial
Fourier component at wave vector q of the exchange
interaction J&&. For nearest-neighbor exchange in-
teractions in a cubic lattice with nearest-neighbor
distance a, we then obtain

« '=a(ksT+/3 gpsH0)'k (34)

upon expanding the exponential in Eq. (35) for
small values of its argument and using the S= &

mean-field relation Jo =2k~T~ for the Curie tem-
perature T~. The relative magnetization R in finite
fields is reasonably well described by molecular-
field theory:

R = tanhf ,gpsH0/ks—T+R(Tc/T)] (35)

for spin —,'. For K,CuC14 2H, O, we have T~=1 K
and Ho=3 kOe in the experiment of Ford and Jeff-
ries, so that g()0H0/ksTc =0. 4 and R =0. 8 at the
Curie point. Use of these numbers in Eq. (34) then
yields ~ '=0. Sa. Hence, we see that for the field
used in K&CuC14 ~ 2H30 the correlation length at T~
is less than one nearest-neighbor spacing. Even
for Ni, where g()0H0/ksTc= 1.5x10 ' is appropriate
for the data to be considered, we find R =0. 2 and
thus z ' = Va at the Curie point.

The above figures demonstrate how effectively
the field required for a magnetic-resonance experi-
ment eliminates the long-range correlations in the
critical region. Similar observations were made
by Kawasaki. A further effect which tends to dis-
criminate against long-range correlations is the
angular dependence of the dipole factors. Consider,
for example, the M=0 part of the second moment:

~(0) 4(N2(S2))-1 Q F(0)F(0&Css(Co-
ffel

If we assume zero field for the moment, then v '
- ~ at T~ and the correlations decay approximately
as Cgg ~x: f')g.

For simplicity we take the case of pseudodipolar
coupling, for which the factors are of the form

F,",' = - fP(~ (3 cos' 8(, —1),
with P,z =P for nearest neighbors and 0 otherwise.
We thus treat the summation
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1.0

results, such as those obtained by Oguchi and the
Bethe-Peierls-Weiss ' method, in that it is in-
ternally self-consistent. Thus, it is considered
to be the most satisfactory of the simple correla-
tion theories. In the constant- coupling approxima-
tion we take

(s, s, ) =(s,')(s, ), (36)

R

R
0

10

0.05

0.9 1.0

T/T
C

FIG. 1. Relative magnetization R in Ni normalized to
its value R~ at the Curie point T& =627 K. Experimental
points are data of Weiss and Forrer in a field of 6.015
kOe, for which R~=0. 234. Curve is constant-coupling
approximation at 6 kOe, for which R~=O. 141. It is prac-
tically indistinguishable from the molecular-field-theory
curve on this scale.

Q

(o& &o& -j. -~&= ~ &v +a~ «r&ga
f»l

where the prime indicates that all indices are un-
equal. The dipole factors E,&

are restricted to
nearest neighbors, but the distances x„and x» are
not restricted. With this constraint on E&&, com-
puter calculations were carried out in which both
x„and x» were permitted to take on values ranging
from one to six nearest-neighbor distances. The
results of these calculations show that for a fcc
lattice 96% of the contributions to g4 arise from
terms in which both ~&, and x» are equal to the
nearest-neighbor distance. The presence of the
angular factors in the lattice sums, and the result-
ing averaging which takes place, thus severly limit
the importance of long-range correlations in the
calculation of the linewidth even if the correlation
length were to be infinite.

From the preceding discussion it is evident that,
for the problem at hand, nearest-neighbor correla-
tions are likely to be the most important by far.
For this reason, we have chosen to use the con-
stant-coupling approximation ' which provides a
reasonable picture of nearest-neighbor correla-
tions which can be—and has been —readily extended
to include an applied field.

The constant-coupling approximation is of the
small-cluster type. It differs from other cluster

unless i =j or i and j are nearest neighbors, where
n is any component x, y, or z. For nearest neigh-
bors we use the equations found in Refs. 9 and 10.
The constant-coupling relative magnetization R„is
also found in these references.

A measure of the accuracy of the constant-cou-
pling approximation may be obtained from the re-
cent work of Ritchie and Fisher. ' They have esti-
mated correlation functions of the Heisenberg fer-
romagnet from high-temperature series expansions
and find 4(s;S&) = 0. 199 and 0. 187 for nearest neigh-
bors at T~ in spin- & bcc and fcc lattices, respec-
tively. The constant-coupling result for this quan-
tity is 1/(Z- 1), where Z is the coordination num-
ber and thus is 0. 143 and 0. 091 for bcc and fcc,
respectively. Hence, at worst, this approximation
underestimates the correlation by about a factor of
2 at the Curie point in zero field. In finite fields
the error may be considerably less because the
fluctuations are greatly reduced, as discussed
above.

In the calculations presented in the following sec-
tion we have adopted the following procedure. The
exchange coupling J is chosen to give the observed
Curie temperature (627 K for Ni, 1.1 K for
KzCuC14 2HzO) in the constant-coupling approxi-
mation:

(S,') =NIt coth(gpsH, /2ksT), (37)

which is derived in Appendix C (N is the total num-
ber of spine). The relative magnetization 8 may
be taken from the data of Ford and Jeffries for
K2CuC14 2H~O and Weiss and Forrer for Ni. For
both systems we find that the temperature varia-
tion of R in the region of interest is adequately
given either by mean-field theory [Eq. (35)] or by
the constant-coupling value R„. Figure 1 illus-
trates the situation in Ni at 6 kOe in the critical
region 0. 9T~ T&1„1Tc. Once again, we see that
the finite field produces a smooth variation near T~
which is well described by the simple theories.
Comparison between the measured and molecular-
field values for R in the K~CuC14 ~ 2H2O may be
found in Ref. 11.

J= —'k T ln[Z/(Z-4)].

The denominator (S~) = (S,s + S S,) appearing in the
moments expression is calculated in terms of R
from the identity
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I I I I

0.28--

K2CuCI 2H 0

gpBH
* 0.42

8 C

0.2a
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C

0. 16

Q eu

0. 12

0.08

0.04

0.00
0 6

T/T
C

FIG. 2. Temperature variation of second moment M2
for K2CuC14 2820, with H=3. 13 kOe, Tc=1.1 K.

IV. RESULTS OF NUMERICAL CALCULATIONS AND
COMPARISON WITH EXPERIMENT

In this section we compare our calculations to
linewidth measurements in two ferromagnetic sub-
stances, KBCuC14 ~ 2HSQ and Ni.

A. K2CuCj4 2HgO

The potassium salt is regarded as an ideal
Heisenberg spin- & insulating ferromagnet with a
Curie temperature of approximately 1.1 K. The
crystal structure~' is bcc with a 6% tetragonal dis-
tortion along the c axis, which we assume to be
small enough to be ignored for the purpose of line-
width calculations. Miedema et a/. have used bcc
lattice constants to compare specific-heat measure-
ments with Dyson's spin-wave theory. They find
excellent agreement with theory for temperatures
ranging from T=0. 1TC to T=O. 5T~ by using near-
est-neighbor exchange interactions only. The ex-
change constant determined in this manner has a
value of J/ks = 0. 282 K. Ford and Jeffries" have
performed linewidth measurements for tempera-
tures in the range 0. 17 ~ T~ 4. 2 K, and it is pri-
marily their data which we use for comparison with
theory.

Thus, K~CuC14 ~ 2H~O is well suited for compari-
son of theory with experiment. It is a ferromagnet-
ic insulator, so that the localized Hamiltonian on
which our calculations are based would appear to
be appropriate. Further, it is a spin- —,

' substance
with predominantly nea, rest-neighbor exchange in-
teractions and a cubic lattice structure, facts that

greatly simplify numerical calculations. Finally,
linewidth measurements are available for tempera-
tures ranging from well below to well above T~.

The measurements of Ford and Jeffries were
performed in a field of approximately 3. 13 kOe, so
that, owing to the low Curie temperature of the
potassium salt, the Zeeman and exchange energies
are of the same order of magnitude. Consequently,
Eqs. (7) and (8) were used to calculate the line-
width.

Figure 2 exhibits temperature dependence of the
second moment, calculated in the constant-coupling
approximation for Ho along a cubic axis. There is
a strong temperature dependence in the Curie re-
gion, and we note that the components do not display
an identical temperature dependence.

Of particular interest is the behavior of the
M =+ 1 component, which does not go to zero as
T-0. This fact had previously been noted by
Keffer. ' It has the consequence of producing a
finite linewidth of considerable magnitude at zero
temperature, provided that the basic assumption of
Eq. (6) is valid regarding moments and linewidth.
We believe, however, that this width is greatly re-
duced if a more realistic mqjdel based in spin waves
is invoked at low temperature (see Appendix D). In
fact, the finite M&" makes no contribution to 4H at
T = 0 for the conditions of applied field tr eated here.
Short-wavelength spin waves can exist even above
T~ and thus may reduce the importance of the
M =+ 1 term over a fairly broad temperature range.
Because of this and because it is not possible to
obtain reasonable agreement with experiment if the
M =+ 1 component is retained in the form shown in
Fig. 2, we have chosen to drop it altogether.

Thus, the linewidth is calculated including only
the M = 0, —1, and —2 terms (the M=+2 term is
identically zero). This will give a correct tempera-
ture dependence, provided that the M =+1 part,
when properly modified for spin-wave effects,
shows the same general trend as the other contri-
butions.

The fact that /~ A'&' =0 for cubic symmetry makes
the M = —2 and M = 0 terms [Eqs. (26) and (28)]
equal to zero at T=O. This also. makes the second
term on the right-hand side of Eq. (27) equal to
zero at zero temperature. The further relation
C&~=0 at T=O makes the first term in Eq. (2'7)
zero at T=0, so that the total M =-1 term also
vanishes at T=O.

The fourth moments M4", as shown in Fig. 3,
exhibit the same general dependence as the second
moments. The exchange frequency &,'"' is obtained
from M,'~' and Mz'"' by Eqs. (6), (9), and (10), and
is given in Fig. 4. Shown a,re the M = —1 and
M = —2 components; the temperature dependence of
the M=0 and M=+1 components is similar to that
of the M=-2 curve. We note that (d, decreases
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FIG. 3. Temperature variation of fourth moment M4~

for K2CuC14 2H2O, H =3.13 kOe Tc -—1.1 K.

with decreasing temperature well above Tc. This
is in agreement with the results of Goldsborough,
Mandel, and Pake, who have suggested that as the
temperature is lowered, the effective exchange
frequency is decreased. But the calculated ex-
change frequency increases sharply with decreasing
temperature near Tc. This dependence agrees
with the calculations of Richards, ' who has exam-
ined +, in the special cases of very high applied
fields and linear chain substances.

In Fig. 5 we compare the linewidth calculated
from Eg. (8) (with the M=+1 term excluded) with
the data of Ford and Jeffries at 4. 2 K and below

and with the datum of Kennedy, Choh, and Seidel
at 77 K. Two different procedures have been used.
In the solid curve we have normalized to the total
observed linewidth ~,~ at 4. 2 K. In this way
satisfactory agreement for the temperature depen-
dence is obtained all the way from the high-tem-
perature limit down to about 0. 8Tc. The following
remarks are in order regarding the high-tempera-
ture point. The measurement of Kennedy et al.
was taken with Ho along the tetragonal c axis, where
the g value is g~~ = 2, 06, whereas the data of Ford
and Jeffries are for Ho perpendicular to the c axis
and have g~ = 2. 22. Since the dipolar linewidth in
magnetic field units is proportional to g', we have
multiplied the width of Kennedy et al. by (g, /g„)s
= 1.28 to bring it more into accord with a plausible
extrapolation of the Ford-Jeffries data to high
temperature. Room-temperature linewidths of
between 115 and 140 Oe have been reported by Abe
et al. ,

"Henderson and Rogers, and Kennedy
et al. The large difference in AII between 77 K and
room temperature is apparently due to a large
change ' in exchange constant t with temperature.

100 ,
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FIG. 4. Temperature
variation of exchange
frequency cue@~ for
K2CuC14 2H20. Curves
are obta ned from Figs.
2 and 3 through the re-
lation [+~']' =M4~'/

M& . The curves for
M =0 and M =+1 are
similar to the one for
M = —2, and are not
shown.
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FIG. 5. Linewidth ~ in K2CuCl4 2H20. Solid circles
are data of Ford and Jeffries at 9.5 GHz (H = 3.13 kOe).
Open circle is 77-K point of Kennedy, Choh, and Seidel
at about 9 GHz. Triangle is correction for different g
factors, as explained in the text. Solid curve is theoreti-
cal ~ normalized to data at 4. 2 K (To/T =0.26). Dashed
curve is theoretical ~+~0 with the residual linewidth
~0 =2.8 Oe normalized to data at 1.0 K (Tc/T =0.9).
Dash-dot curve for Tc/T &0.26 is fit used by Ford and
Jeffries, ~=~0+145 e" . It is practically indis-
tinguishable from the solid curve for 0.26 & Tc/T &0.9
and from the dashed curve for Tc/T &0.9.
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and we thus find good agreement for the tempera-
ture dependence below T&.

The other curve of Fig. 5 is ~(T)= 145e ''~
Oe, which Ford and Jeffries used to obtain a satis-
factory fit to the data. No theoretical justification
was given by them for this empirical relation, and
we see that below T~ it is essentially the same as
our computed curve.

The temperature dependence of ~ as given by
Eg. (1) may be considered as arising from two
sources: the denominator (M„)~(8,) and the numer-
ator which contains the dynamic correlation func-
tions. Since we find that (S,) as given by Eg. (3V)
decreases by only a factor of 3. 5 between T~ M1d

10T~, it is evident from Fig. 5 that a large part
of the temperature dependence of 4H comes from
the numerator.

B. Ni

FIG. 6. Temperature variation of second-moment
numerator M2 R coth(h&0/2ABT) in Ni for a field of 6
kOe. Note break in scale above 1.1T&.

Thus we do not consider it meaningful to include
room-temperature points on the graph. The ex-
change interaction is believed' to stay constant
below 77 K.

The reason for the normalization procedure is
that the moment calculations seem to underestimate
the infinite-temperature linewidth by about a factor
of 2, ' ' so exact numerical agreement is not pos-
sible here. More sophisticated use of moments, 7

including Ms, can possibly account for the discrep-
ancy. Also, at least for Cu", nondiyolar interac-
tions such as anisotropic exchange may contribute
to line broadening. Our principal effort is directed
toward temperature dependence, and this is inde-
pendent of the normalization procedure.

In the dashed curve we emphasize the region
below Tc by considering the temperature-dependent
part of the linewidth,

hH(T)= ~ „~—~0,
where EIIp = 2. 8 Oe is the residual temperature-
indeyendent linewidth. At very low temperature,
surface imperfections and other inhomogeneities
can give rise to a temperature-independent term
which dominates the linewidth. These, of course,
have not been accounted for in our calculations.
As mentioned previously and explained in Appendix
D, the M =+1 term should not contribute to ~p,
since the simple Gaussian approximations are not
suitable for T 0. We have thus chosen simply to
consider the temperature-dependent part by exclud-
ing the M =+ 1 component, so that the theoretical
linewidth goes to zero at T = 0. The theoretical 6H
is normalized to the experimental 4H(T) at Tc,

70
h~—= 1.45x 10
kBT~

50—

10T -ii
C

40
0.8
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0.9
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10

FIG. 7. Temperature variation of exchange frequency
co~ in Ni for a field of 6 kOe. Note break in scale
above 1.1Tc.

The second substance investigated in this paper
is Ni, which has the fcc structure and is described
in a localized model by spin 2. Cooper and Keffer
have shown that the unusually large linewidth in'Ni
can be explained by using nearest-neighbor pseudo-
dipolar rather than the dipolar coupling as the
perturbing Hamiltonian. Even in an applied field
of the order of 10 kOe, we have ~,'"'~~(Jop so that
the Gaussian factors in Eq. (8) can be replaced by
unity; i.e. , we have the full "g effect. ""

In contrast to the situation for K~CuC14 2+0,
the temperature dependence of the moments, and
thus the linewidth, is completely dominated by the
denominator (I„)of Eq. (1) in the region of in-
terest. This is illustrated in Figs. 6, 7, and 8,
which show, respectively, the second-moment
numerator, exchange frequencies, and linewidth
over a broad range of temperature. Calculations
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I I I I I I I Between about 0. 9T~ and 1.1T~ the data are
adequately described by our calculations, which
are indistinguishable from the simple dependence
4H~ 1/BT [since here coth(2 h&cs/ksT) =2ksT/
K@0]. This relation had been noted by Salamon.
Above 1.1T~, ~ does not increase with tempera-
ture as rapidly as 1/BT, and our theory is unable
to account for this.
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FIG. 8. Theoretical temperature dependence of line-
width ~ in Ni for a field of 6 kOe. Solid curve: rhH with
M =+1 term excluded. Dashed curve: complete ~, in-
cluding M =+1 term. Dot-dash curve: temperature de-
pendence of 1/(M2) ~1/R coth(scuo/2ksT). All curves
are normalized to same value at 10T& and are practically
indistinguishable above 0.9T&.

V. SUMMARY AND CONCLUSIONS

The principal purpose of this payer has been to
investigate and make explicit calculations of the
temperature dependence of the exchange-narrowed
magnetic-resonance linewidth for realistic values
of applied field. This has been done using the
method of moments derived from the general theory
of Kubo and Tomita as extended to finite tempera. -
tures in I.

The temperature dependence of the moments was
calculated in essentially two steps. First, the
four- and six-spin correlation functions which oc-
cur in the second and fourth moments, respectively,
were decoupled into sums of products of two-spin
correlation functions. These two-spin thermal

10—

are for pseudodiyolar coupling and Ho along a cube
axis. It is clear that above 0. 9T~ the width is in-
sensitive to the dynamic correlation numerator of
zq. (1).

In Fig. 9 the calculated linewidth is compared
with the data of Bhagat and Chicklis" and of Sala-
mon. '3 To display the temperature dependence we
plot, similar to Fig. 5, (bH, ~ —WHO)/hII, (Tc)
for the three sets of data, where AHO is the
residual temperature-independent part and ~ „,
is the total observed width. For the Salamon
data, which do not extend below 0. 99T~, we have
taken WHO=300 Oe, the same value as found by
Bhagat and Chicklis at a comparable frequency.
The theoretical curve is normalized '.o the data at
T~. Once again, we have excluded the M =+1 term
so that the theoretical ~ is zero at T= 0.

The calculations in Fig. 9 were made for a
constant applied field of 6 kOe. The experimental
fields for resonance were between 5 and 9. 5 kQe,
depending both on frequency and on temperature.
Computations were also made at 8 kQe, and there
was negligible difference between these results
and the 6-kOe ones for the temperature dependence.
We therefore do not expect the temyerature- and
frequency-dependent field required for resonance
to be an important factor in comparing our calcula-
tions with experiment (see Appendix B also).

C&

O I—

0
1.0—

~ SALAMON

BC 32 GHz

o BC 23 GHz

0. 1 I I I

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

FIG. 9. Linewidth ~ in Ni. Data are for tempera-
ture-dependent part ~-~0 normalized at Tz. Open
circles, Bhagatand Chicklis (BC) data at 23 GHz, ~o
=300 Oe, as determined from their data below 0.8T&.
Triangles, BC data at 32 GHz, ddf0=450 Oe, as deter-
mined from their data below 0.8TC. Solid circles, Sala-
mon data at 23 GHz with ~0= 300 Oe, as for BC at this
frequency. Solid curve is same'as in Fig. 8, normalized
to (~ ~p)/~(TC) =0.5 at T& ~ Error bars are placed
on the BC 23-GHz data to indicate the approximately
+ 50-Oe scatter in their data.



TEMPERATURE DEPENDENCE OF THE FERROMAGNETIC

averages were then computed in the constant-cou-
pling approximation.

We have found reasonable agreement for two
ferromagnets, K,CuC14 2H, O and Ni, which satisfy
the conditions gp~Ho/kaTc-1 and gtiaHO/kaTc «1,
respectively.

The former case is the more significant test of
our methods, since for gpaHo/kaTc-1 we find a
significant temperature dependence of the numerator
in Eq. (1) which involves the specific dynamic cor-
relations. Thus the semiquantitative agreement
found with the Ford-Jeffries data is gratifying. To
achieve this agreement, it was necessary to elimi-
nate the M =+1 term. The deletion is, however,
reasonable, since this component gives rise to a
finite zero-temperature width in the Gaussian
approximation, whereas a correct treatment (see
Appendix D) shows that it cannot produce broadening
at T=O for the materials under consideration.

For ggaHo/kaTc «1 as in Ni, our method of cal-
culation gives a numerator in Eg. (1) which is es-
sentially temperature independent in the critical
region. Thus the temperature variation of ~H is
governed strictly by the denominator, proportional
to RT (R is the relative magnetization). Experi-
ment indicates this to be the case between about
0.9Tc and 1.1Tc, so that we do have good agree-
ment in this sense. Between 1.1Tc and 1.STc the
numerator of Eq. (1) appears to be decreasing sig-
nificantly with temperature, as pointed out origi-
nally by Salamon. It is doubtful that a more cor-
rect treatment of the localized Heisenberg Hamil-
tonian with temperature-independent parameters
can account for this. The reason is that we should
expect the numerator of Eg. (1) to have its strong-
est temperature dependence in the immediate vicin-
ity of Tc. Since Salamon's data. are consistent with
its being temperature independent between Tc and
1.1Tc, it is difficult to see how any such theory
can have the numerator vary strongly between
1.1Tc and 1.STc without destroying the agreement
between Tc and 1.1Tc.

The reason for the success of the constant-cou-
pling approximation has to do with the dominance
of nearest-neighbor correlations. As explained in
Sec. III, even in the case of Ni the finite field
greatly reduces the correlation length so that only
relatively short-range fluctuations exist at Tc.
Thus, a theory which makes a reasonable estimate
of nearest-neighbor correlations in the presence
of an applied field is likely to be satisfactory. We
also tried the RPA [Eq. (33) and Refs. 20 and 21]
for calculating the correlations and obtained unrea-
sonable answers —such as a negative fourth mo-
ment near Tc. This unphysical result is consistent
with the observation by Liu and Siano that the
BPA leads to a negative specific heat at Tc for
S=—1

We are grateful to Professor N. C. Ford, Jr.
for supplying a copy of the linewidth measurements
in K2CuF14 2H~O. The numerical calculations
were carried out with facilities of the University
of Kansas and University of Kentucky Computing
Centers.

APPENDIX A: RELAXATION FUNCTIONS

In Ref. V the relaxation rate was calculated from
consideration of the function

F(t) = (M„[M„(t)+M„(—t)])/2 (M„) .
Kubo and Tomita, ' on the other hand, based their
theory on the relaxation function

(Al)

Care was taken to display the temperature de-
pendence of the secular and nonsecular components
of the second and fourth moments. It has some-
times been assumed that the truncated and untrun-
cated linewidths have the same temperature depen-
dence. Our explicit calculations show that this is
not the case.

Since decoupling of many-spin correlation func-
tions and the constant-coupling approximation have
been used, it is clear that our results do not have
the correct critical exponents. ' However, with
the appreciable applied field Hp required for mag-
netic resonance, the exact power law in the limit
Hp-0 is perhaps irrelevant, at least for the pur-
pose of explaining existing data. Magnetization
data for Ni shown in Fig. 1 support this contention.

Our general conclusion is that the calculated
temperature-dependent linewidths do agree with
experiment at least semiquantitatively in all cases
considered. This gives support to the use of mo-
ments and the simple decoupling approximations
employed, except at temperatures well below Tc
where an obvious failure is the bogus contribution
of the M =+ 1 term.

The linewidth formalism presented in this paper
is general enough to be of use in future investiga-
tion. In particular, it can be extended to ferromag-
netic substances with other than spin —,

' as well as to
the antiferromagnetic ease.

Finally, we emphasize the importance of includ-
ing the applied field in calculations of the ferromag-
netic-resonance linewidth. With Hp= 0, theory pre-
dicts sH=0 at Tc, since the denominator (S2) di-
verges at the critical temperature. It is the ex-
plicit retention of Hp in all the expressions which
has enabled us to give what is to our knowledge the
first treatment which can be applied to realistic
situations. For antiferromagnets, however, Hp is
not likely to play so important a role, since the
critical fluctuations are at zone-boundary wave
vectors which do not couple directly to a uniform
applied field.

ACKNOWLEDGMENTS
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Kp =XGx —
@copse' ~ (A3)

where S, is the total g component of spin, hw0 is
the Zeeman splitting, and $C,„ is the isotropic-ex-
change Hamiltonian. We assume that even in the
presence of K' there is symmetry between x and y,
so that averages such as (M+ M+ (t)) are zero.
Then (A1) and (A2) become

(M, PVi (t)+ M (- t)]+M [M,(t)+ M,(- t)])
2(M,M +M M, )

@(t)=j u( "e"
M, e'~[M (t)+M (-t)]

+e' M e ' [M,(t)+M, (-t)])

(A4)

x [2 J' u(e~~M, e-«M + e«M e-«~ )]-&

(A6)
Now X,„commutes with S, and M, , and we have

- )i,hco 08g~ + Rheo 0~ «Xhco0$g (A6)

Thus if 3C is replaced by X0 in the e" factors,
the integrations over dX can readily be performed.
This is of course legitimate if $C' is neglected in
the thermal averages, since X & p. Furthermore,
we have

(M, e) = e"""o(eM,)
for any operator 8, since the unperturbed density
matrix

Jo' d) (e"M„e "-[M„(t)+M„(-t)])
2fo cP (e' M„e ' M„)

which has a simple physical interpretation in that
it describes decay of M„after a steady field in the
x direction is suddenly switched off.

In the infinite-temperature limit E(t) and C (t)
clearly are equal. We show here that they are
equal at arbitrary temperatures provided that the
perturbation X' is neglected in taking thermal aver-
ages. Since this approximation is nearly always
made in linewidth calculations, it is useful to know
that with it the integrals appearing in 4 (t) present
no complication.

The proof is as follows. The unperturbed Ham-
iltonian is

Demagnetizing fields cause a shift in frequency
at finite temperature for other than spherical sam-
ples. This shift is of the order of 4o(M, )@go/8
and is not necessarily small compared with &0
=gp, eHo/h. Our calculations have tacitly assumed
an infinite medium or spherical sample, so that
this shift does not occur. Since the experiments
on Ni were performed on cylinders and disks, it is
necessary to investigate the possible effects of
sample shape on the linewidth. We show below that
there is likely to be no effect, and thus our results
can safely be applied to nonspherical samples.

For simplicity we consider samples with equal
transverse demagnetizing factors. Then we have

g& E& 'o'=0. However, gzE,'&P' is nonzero and giv'en

by

ZF"' = D (Bl)

This gives rise to a frequency shift which cannot be
treated as a small perturbation. The quantity D is
proportional to N, —3, where N, is the demagnetiz-
ing factor in the z direction and N, = —, for a
sphere. We redefine 3C0 as

Ko =R,„—heros, + 2D (S, ) S, = R,„—hgps, , (B2)

where (Vp=(t)o 2D(s, )/h is the new unperturbed
resonance frequency and corresponds to what would
be calculated using the Kittel ferromagnetic-reso-
nance formula. '

The dipolar perturbation then becomes

(M, [M (t)+M (- t)]+ [M, (t)+M,(- t)]M )
4(M, M )

(A10)
Then, through use of (A7) together with the fact
that

(X(t)a) = (Aa(- t))

for any operators A and J3, we can put (A4) into
the form (A10) as well, and hence produce the de-
sired result

F(t)=C(t) .

APPENDIX 8: EFFECT OF SAMPLE SHAPE

po= e-'"o/Trpo

is used to calculate thermal averages.
With (A6) and (A7) it follows that

j d1 ( XXM LIC,e XXM XR e )
0

(As)
3C' =K„„—2D(S, ) S, ,

and correspondingly go [Eqs. (2b) and (17c)] is
redefined as

g,'=2 F,',"(s;s;-lv-'(s, )s.), (B4)

= [(1-e '""o)/no o](M, 6+6M )

=[( ""o—I)/a ](8M, +M 8) . (A9)

Thus the factors resulting from integration can
be made common to both the numerator and de-
nominator of (A5), so that

where N is the total number of spins.
The quantities g«0 are unaffected. The relaxa-

tion rate would then be calculated using (1) with &up

replaced by (d0 and g0 replaced by g0. We now dem-
onstrate that the second moment (gogo ) is the same
as (aoao)

We have for spin —,
'
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g()go" &=~ F,',"F)',)" (s;s;s;s;&+,'(D-R)'(s. s &
From the commutation relation [;$„$ ]=2S„we
also have

where

—-', DR
)
K E,',"((s; s; R. ) + ( s..s; s, ))),

(B5)

(S,S ) =(S S,)+NR,

since ($,) =—2NR for spin —,.
By combining (Cl) and (C2), the results

(c2)

R=2N '(Sg) (ae) (s,s &=

is the relative magnetization for spin —,'. When
this is decoupled as in Sec. III, it reduces to

) t ) P F(0)~(0) ( s+ s -) (ss se )
fg Al

--,'(DR)'(s.s ) . (B7)

Let

e ~""oNR
( s s.' ) =

are obtained, so that

(s,s)+(ss,)=NR

(c3)

a„=&s;s;&-&s;&(s;)=&s;s;)--,'R', (Ba) = NR coth —,
'

phoo, (c4)

so that

(g,'g,") = Z F,',"z,',"(s;s;)h/„.
kjk

(B9)

which is equivalent to Eq. (37), since ph(do=gpelfo//
k~T.

APPENDIX D: N =+ 1 TERM AT I.OW TEMPERATURE

(gogo ) = &gogo) (Blo)

the value for D=O. A similar result is expected
to hold for the fourth moment.

Thus, any effect of sample shape on linewidth
can probably be accounted for by the trivial opera-
tions of replacing ~o by 2o and using the Lorentz
field H( =H, +4v(-,' —N, )(M, & for calculation of ther-
mal averages, i.e. , using (B2) in the unperturbed
density matrix. Since experiments are performed
at constant frequency, we may assume that B, does
not vary with temperature, so by calculating tem-
perature dependence at constant field we have
actually accounted for the effect.

In the above we have used the simplification dis-
cussed in Sec. III of decoupling for equal as well
as unequal indices. For cubic symmetry, how-
ever, the result (Blo) may be shown to hold equally
well if decoupling is made only for unequal indices.

APPENDIX C' DERIVATION OF EQUATION (37)

Since S.; and S are proportional to M, and M,
respectively, we may use Eq. (A7) with 6 = $. to
show that

In this equation both (S;S, ) and h» are nonvan-
ishing only over distances which are small com-
pared to the sample dimensions. That is, the cor-
relation length )(

' is much less than the macroscop-
ic sample size. We therefore conclude that the
summation in (B9) converges well before the sam-
ple boundaries are reached, since the summand goes
essentially as z owing to the restriction imposed
by (S;S, ) ))(» of keeping ),/ and v» coupled togeth-
er. This implies that (gogo~) is independent of
sample shape, and hence

Equation (18d) and Fig. 3 show that the second
moment associated with the M=+1 change in the
Zeeman quantum number is nonzero at T=O. This
would imply a sizable combination to the zero-tem-
perature linewidth as originally suggested by Kef-
fer. We examine the question in detail here and
show that this term really does not produce a T
=0 linewidth for conditions appropriate to the re-
ported measurements in K~CuC14 2H~O and in Ni.

The correct expression for the relaxation rate
q is given by Eq. (1), from which we have

~
(1) (2g (S 2

&
)-) Q F(1)~(-1)

fgAl

d7[e("0'(S, (-v)$/(-~)$;S, &

+ e "0'(S(( 7')S/( v)-S~ S, )]-(Dl)
upon using Eq. (17d) in (1). Here )I") is the M =+1
part of g and

s+(& )
(3!+xv/)) s+ - ()e „v/))ex (D2)

At very low temperatures we replace the trans-
verse components by magnon operators in the usu-
al way":

$'= a e'" (D3)

(28 t]a t -(lt r( (D4)

where a~ and at are, respectively, annihilation and
creation operators for a magnon of wave vector k.
Thus,

( a~~ a„)= n„, ( a), a„)= n~ + 1,
($,$ ) = e ""0(SS'.) (cl) where n„ is the magnon occupation number. It is
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important to nate at this point that the association
of S~ with a m'f. g.:,'.~on creation operator implies that
the ground state has spins aligned in the +z direc-
tion, and this is consistent with (),.-. being a positive
quantity in Eq. (Dl). [See also Eq. (82), where
we explicitly show the Zeeman ground state to hav'-.

S in the + e direction. ]
The time dependence of the magnon operators is

given by

at, (v ) = a'„e'"&', (»)
a, (~)=a, e '"&", (D6)

where co~ is the spin-wave frequency and ~„+0. In

the low-temperature limit where n, «1, Eq. (Dl)
then reduces to [note that the argument of the time
correlations in (Dl) is —v]

8 S2

H, & ~+vM, (sphere) (Ds)

in order for spin waves to exist with ~~ as low as
Since the saturation magnetization Mo is

only" 46. 5 Oe in K2CuC14 2820, it is clearly im-
possible to satisfy Eq. (DS) for the applied field of
3 kOe. The experiments on Ni were carried out in

a disk magnetized along its axis, ' for which it is
not possible to have ~~ = —,'coo for any values of Hp

or Mo, and in a cylinder magnetized along its
axis, ' for which the requirement is

rise to three-magnon interactions, 3 of which only
the splitting can contribute to relaxation at zero
temyerature. Examination of the spin-wave mani-
fold shows that, for a sphere as used by Ford and

Jeffries in the K2CuC14 2H20 experiment, we must
have

&0& 2vM~ (cylinder) . (DS)

The energy-conservation 5 function in Eq. (DV)

states that there must be magnons of frequency co~

= —,'coo available to provide relaxation of the uniform-
mode (@=0)magnon. This will be recognized as
the condition for splitting of the 4=0 magnon into
magnons of wave vectors k and -k. Since the
M =+1 component arises from the S', S& terms of
the dipolar Hamiltonian, the above result is en-
tirely consistent with the fact that these terms give

For Ni we have 2pM0=3. 2 kOe, so it is still not
possible to have ~„=—,'coo in the fields of 5 kOe and

upwards as used.
We conclude therefore that although the M =+1

second moment is finite at zero temperature, there
can be no M =+1 contribution to relaxation for the
values of Ho and Mp considered here, since it is
not possible to conserve energy for the splitting of
a k = 0 magnon into magnons k and —k.
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