
PHOTOI UMINESCENCE AT HIGH EXCITQN DENSITIES IN CdS

Pis'ma Red. 7, 464 (1968) [JETP Lett, 7, 360 (1968)].
"A. A. Rogachev, in Proceedings of the ¹inth International

Conference on the Physics of Semiconductors, Moscow, 1968
(Nauka, Leningrad, 1968), p. 407.

"A. S. Alekseev, V. S. Bagaev, T. I. Galkina, O. V. Gogolin,
N. A. Penin, A. N. Semenov, and V. G. Stopachinskii, Zh.
Eksp. Teor. Fiz. Pis'ma Red. 12, 203 (1970) [JETP Lett.
12, 140 (1970)].

"V. E. Pokrovskii and K. I. Svistunova, Zh. Eksp. Teor. Fiz,
Pis'ma Red. 9, 435 (1969} [JETP Lett. 9, 261 (1969)].

'"Y, Nishina, T. Nakanomyo, and T. Fukase, in Tenth
International Conference on the Physics of Semiconductors-
Extended Abstracts, Cambridge, Mass. 1970 (U. S. AEC„Oak
Ridge, Tenn. , 1970), p. 163.

"U. Heim, O. Roder, and M. H. Pilkuhn, Solid State
Commun. 7, 1173 (1969); E. Gobel, H. J, gueisser, and M. H.
Pilkuhn, Solid State Commun. 9, 429 (1971).

"T. Goto and D, Langer, Phys. Rev. Lett. 27, 1004 (1971);
R. F. Leheny, R. E. Nahory, and K. L Shaklee, Phys. Rev.
Lett. 28, 437 (1972).

"V. M. Asnin and A. A. Rogachev, Zh. Eksp. Teor. Fiz.
Pis'ma Red. 9, 415 (1969) [JETP Lett, 9, 248 (1969)]; see C.
Benoit a la Guillaume, M. Voos, and F. Salvan, Phys. Rev. B
5, 3079 (1972) for a recent review.

' J. R. Haynes, Phys. Rev. Lett. 17, 860 (1966),
"A. Mysyrowicz, J. B, Grun, R. Levy, A. Bivas, and S,

Nikitine, Phys. Rev. Lett. 26A, 615 (1968); R, S. Knox, S.
Nikitine, and A. Mysyrowicz, Opt. Commun, 1, 19 (1969); H.
Souma, T, Goto, and M. Ueta, J. Phys. Soc, Jap. 29, 697
(1970); J. B. Grun, S. Nikitine, A. Bivas, and R, Levy, J.
Lumin. 1/2, 241 (1970).

'- H. Sourna, T. Goto, and M. Ueta, J. Phys. Soc. Jap.
31, 1285 (1971).

"C. I. Yu, T. Goto, and M. Ueta, J. Phys. Soc. Jap.

32, 1671 (1972).
'-'-S. Shionoya, H. Saito, E, Hanamura, and O. Akimoto,

Solid State Commun. 12, 223 (1973).
-"R. L. Shaklee, R. F. Leheny, and R. E. Nahory, Phys.

Rev. Lett, 26, 888 (1971).
'- R. R. Sharma, Phys. Rev. 170, 770 (1968); R. K. %'ehner,

Solid State Commun. 7, 457 (1969); J. Adamowski and S,
Bednarck, Solid State Commun. 9, 2037 (1971).

-"O. Akimoto and E. Hanamura, Solid State Commun.
10, 253 (1972); W.-T. Huang and U. Schroder, Phys. Lett.
38k, 507 (1972).

'- S. A. Moskalenko, Fiz. Tverd. Tela 4, 276 (1962} [Sov.
Phys. -Solid State 4, 199 (1962)].

-"R. C. Casella, J. Phys. Chem, Solids 24, 19 (1963).
'-'I. K. Akopyan, E, F. Gross, and B. S. Razbirin, Zh. Eksp,

Teor. Fiz. Pis'ma Red. 12, 366 (1970) [JETP Lett. 12, 251
(1970)].

-"B, M. Ashkinadze, I. P. Kretsu, S. M. Ryvkin, and I. D.
Yaroshetskii, Zh. Eksp. Teor. Fiz. 58, 507 (1970) [Sov.
Phys, -JETP 31, 271 (1970)].

R. I.evy, J. B. Grun, H. Haken, and S. Nikitine, Solid
State Commun. 10, 915 (1972).

"L. V, Keldysh and A. N. Kozlov, Zh. Eksp. Teor. Fiz.
54, 978 (1968) [Sov. Phys. -JETP 27, 521 (1968}].

"V. A, Gergel, R. F. Kazarinov, and R. A. Suris, Zh. Eksp.
Teor. Fiz. 53, 544 (1967) [Sov. Phys. -JETP 26, 354 (1968)].

"%. F. Brinkman, T. M. Rice, P. O'. Anderson, and S. T.
Chui, Phys, Rev. Lett. 28, 961 (1972); E. Hanamura and M.
Inoue, in Proceedings of the Eleventh International Conference
on the Physics of Semiconductors, Warsaw, 1972 (unpublished}. ).

"K. L. Shaklee and R. F. Leheny, Appl. Phys. Lett. 18, 475
(1971).

"J. Bille, H. Liebing, and P. Mengel, Phys. Status Solidi B
53, 353 (1972).

PH YSI CAL RE VIEW 8 VOLUME 7, NUMBER 10

Dispersion Curves and Elastic Constants of Graphite
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Lattice vibrations of the hexagonal graphite crystal are analyzed using two-body carbon-
carbon interaction potentials. The potential parameters are obtained from estimates of the
long-wavelength frequencies of graphite and a knowledge of the nitrogen-nitrogen potential
parameters. The dispersion relations along high-symmetry directions are calculated showing
excellent agreement with the experimental observations along (00$). The elastic constants
of graphite are also calculated and compared with the available experimental data. There is
general agreement between the theoretical calculations and the experimental observations.

I. INTRODUCTION

The lattice dynamics of graphite have been dis-
cussed by severa, l authors using few-parameter
Born-von Karman models. ~ 6 The unknown param-
eters of the models are fitted to the experimental
data such as specific heat~ and the measurements
of phonon dispersion relations. e The graphite
structure assumed in lattice-dynamical calculations
cox responds to the hexagonal crystal structure
where sheets of carbon atoms are stacked on one
another and held by van der Vfaals forces. The

forces in the sheets are due to the strong covalent
forces. This structure is highly anisotropic in
properties such as thermal expansion and elastici-
g V

In this paper we intend to analyze the lattice vi-
brations of graphite in the hexagonal crystal struc-
ture. The lattice-dynamical model employed will
be the usual Born-von Karman model in which sig-
nificant interactions between carbon atoms are
represented by finite-value force constants. How-
ever, our approach will be different from previous
attempts in the use of analytical potentials for car-
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used to arrive at reasonable estimates of the car-
bond-carbon potentials of interaction. In Sec. IV
the dispersion relations and the structure factors
along high-symmetry directions are calculated.
Section V includes the calculation of the elastic
constants and their comparison with the experi-
mental data. " In Sec. VI the essential features of
our work are summarized and some of the struc-
tural characteristics of graphite are discussed.

H. DYNAMICAL MATRIX OF GRAPHITE

6)

FIG. 1. Hexagonal primitive unit cell of graphite.
Carbon atoms are shown by open and full circles and tri-
angles.

bon-carbon interactions. This will result in a few-
parameter model rather than a few-force-constant
model of graphite. Two-body analytical potentials
of interaction have been successfully used in the
analysis of lattice dynamics of organic solids such
as naphthalene and anthracene and inorganic
solids such as sodium azide. " With the two-body
interaction potentials the properties of graphite are
essentially predicted rather than fitted to the model
parameters. This will be illustrated by the calcu-
lation of the dispersion relations and the elastic
constants.

In Sec. II the structure of graphite and the sig-
nificant carbon-carbon interactions are introduced
and the dynamical matrix is calculated. The ele-
ments of the dynamical matrix are given in Appen-
dix A. Although the number of unknown force con-
stants is irrelevant when using two-body interac-
tion potentials, the force constants are reduced in
number for the sake of simplicity of the dynamical
matrix elements. The reduction in number of
these constants is made according to the proper
symmetry reductions belonging to the point group
of graphite crystals.

In Sec. III the information on the long-wavelength
frequencies of benzene molecule and the nitrogen-
nitrogen van der Waals interaction potential are

The familiar structure of graphite consists of a
hexagonal structure~s in which the carbon atoms
form covalently bonded planes which are stacked
parallel to one another. Within the planes each
carbon atom forms covalent sp~ bonds with three
other carbon atoms resulting in a hexagonal ar-
rangement very similar to the structure of benzene
ring. The hexagonal unit cell of graphite is shown
in Fig. 1 with the direct lattice vectors

a,, = —,
' ax+ —,

'
v 3 ay,

] A ] f A

ap = —
g Qg+ 2 V 3 Qp y

a3= c2'
y

where a = 2. 456 A and c = 6.696 A. The basis of
this unit cell consists of four carbon atoms located
at positions of 000, 3 30, 00/ 3 Q and labeled as
carbons 1, 2, 3, and 4, respectively. The notation
nqn~n3 refers to the position of carbon atoms in the
unit cell given by n,a&+ n&a3+ ~as.

We will consider the neighbors of each of these
atoms in two categories of the in-plane and out-of-
plane interactions. For the in-plane interactions
either (11), (22), (12), or (33), (44), (34) interac-
tions are possible. For the out-of-plane interac-
tions the possible interactions are (13), (14), and

(23), (24). The in-plane neighbors of the carbon
atom 1 are shown in Fig. 2(a). There are six (11)
interactions at a separation of a, three (12) inter-
actions at a separation of a/v 3, three (12) inter-
actions at a separation of 2a/v 3 and six (12) inter-
actions at a separation of v&~a. The three (12) in-
teractions at a separation of a/v3 are due to the
strong covalent bonds while the remaining interac-
tions are due to the weak van der Waals forces.
Figures 2(b) and 2(c) show the out-of-plane carbon-
carbon interactions. There are two (13) interac-
tions at a separation of —,'c and six (14), six (23),
and six (24) interactions at a separation of (—,

' c
+ 3a ) ~ . The interactions given in Fig. 2 are con-
sidered to be significant and all have separations
less than 4 A.

In studying the dynamics of a crystalline lattice
the dynamical matrix M is defined in terms of the
force constants $~(l', kk') as

~„(q, hn') = ~„,(q, uu') f',„Z ~ (O, nn"), -(2)
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FIG. 2. Using the no-
tation of Fig. X, (a) the
in-plane neighbors of
carbon 1, (b) the out-of-
plane neighbors of carbon
2, and (c} the out-of-
plane neighbors of carbon
1. The neighbors of all
carbon atoms can be con-
structed from the infor-
mation given here and
the graphite cxystal
symmetry.

(b )
(c)

where

~„(q, kk') =Z'y„, (f', kk') e"' T~ .

The indices 4 and P' represent the atoms in a unit
cell, r~~„, = r(f'k') —r(0k), with r(lk) being the posi-
tion of the atom 4 in the unit cell l. Defining r
= rt„, the force constants p„„(l', kk') are given by

if V(r) is the potential of interaction between the
two atoms k and k'. The interaction potential V(r)
will be assumed to have the Lennard-Jones form:

V(r) = 4~ [(a/r)" —((r/r)']

making the dynamical matrix M a function of the
yotential parameters o and &. The diagonalization
of M at different wave vectors q using the equation
of motion

m& U=MU (6)

will provide the dispersion relations &o(q) and the
polarization vectors U.

ln general the force constants Q„,(l', kk') can be
treated as adjustable parameters and fitted to the
experimental data if the use of an interaction po-
tential V(r), as suggested above, is not considered.
The force constants Q„„are usually large in num-
ber and due to limited experimental data, it is
desirable to reduce the number of these force con-
stants as much as possible. One method of force-
constant reduction is the use of the point-group
symmetry of the crystal. The force-constant ma-
trix P, being a property of the crystal, transforms
under a symmetry operation S belonging to the
point group of crystal in the form

Q(l, kk') = S Q (I„KK')S (&)

It is obvious that if the indices l Ak' and I.ZE' be-
come identical, Eq. (V) provides relations among
the force constants of Ak' interaction, hence re-
ducing the number of the unknown force constants.
In other words, if an interaction is invariant under
a symmetry operation S, its force constants can
be reduced in number using Eq. (f).

The graphite space group is given as C~ by
Vfyckoff. ~s There are, however, recent studies of
the graphite structure which suggest the possibility
of the D 6„space-group symmetry. '4 %'e will not
show yreference for either one of the space groups
and will try to generalize our calculations such
that the effects of both space groups are included.

The space group Ce„contains the symmetry op-
erations of identity E, two Cs(z), and three o'„,
where one corresponds to the yg plane of Figs. 1
and 2 and the other two are placed 120 apart. In
addition, there are three glide planes [v„(-,' c] which
include the z axis and are located 30 from o„
planes. There are also one twofold screw axis
[C2(z) I —,c] and two sixfold screw axes [C s'(z) I —,'c].
The space group D46„contains 24 elements which
are the result of the direct product of the 12 ele-
ments of Ce„space group with the group C, which
contains the identity and inversion symmetry oper-
ations. In what follows, we will consider the sym-
metry reductions of the typical force-constant ma-
trix of an interaction using the symmetry opera-
tions of the space group C4~ since the addition of
the center of inversion will not influence the sym-
metry reductions and the results will be valid for
De„space group as well. One can obtain the ex-
pressions for all of the force-constant matrices
using the given typical force-constant matrices
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and Eq. (I).
The in-plane (ll), (22), (38), and {44) interac-

tions have the same positions and separations as
given in Fig. 2(a) for the (ll) interaction. The
general fox"m of their force constant matrix is

xx xsi xg

y(100, u~) = y,„y,„y„. , u = 1, 2„s, 4 .
gg' gsi gg

(8)
Howevex', these nine fox'ee constants are not inde-
pendent. For example, using the twofold screw
axis and Eq. (7), Q(100, ll) is related to $(100, 33)

, and by virtue of the sixfold screw axis and Eq. (7),
p(010, ll) and Q{110, 33) are related. Using the
full reduction by the screw axes and glide planes,
it can be readily shown thRt

Qg

y(100, uu) = ,' Ws(p, —n,)—
l ~S (tii —iii)

Pl

I =1, 2, S, 4 (9)

where ns=p„„(100, kk), p, =p~(100, kk), and y,
= y,.(100, ~I).

The three (12) interactions at aj&8 separation
Rre lnvRriRnt under 0'y symmetry opex'Rtions re-
sulting in

0,3 0 0

Q(g —,'0, 12) =
l 0 ps vs

0 v2 yz

(lo}

where ns=p (-'. -.'0, 12), ps=4, „(-', —,'0, 12), Ws

interactions at a separation «RPa ha«no sym-
metry reduction and their force constants are of
the form

84

4'(0 go 12)= '

I14 P4

where n4= Itl ($-s'0, 12), P4= Q»(+-,'0, 12), y4

where ns= It„„(-,'-,'0, 12), P, = Q,„(-', -,'0, 12), ys
= Qgg(

—„' —,'0, 12), and vs= p, (—,
'

—,'0, 12). The three
(12) interactions at 2ajv 3 separation show the
same type of invariancy under rr„, symmetry opera-
tions and have a force-constant matrix of the form

s 0 0

Q(—,
'

—,0, 12)= 0 Ps vs

0 vs

=y, (&-,'0, 12), q, = y„„(&,'0-, 12), 4=y„,(& ', 0-, 12),
and v4= Q„(+s-,' 0, 12). The (34) force constants are
readily obtained from the (12) force constants using
the screw axis and glide-plane symmetry opera-
tions along with Eq. (V).

The (13) interaction is invariant under o„and
Cs(z) symmetry operations resulting in the force-
constant matrix of the form

0 0

y(00-,', lS) = O as O,
loo„

where OIs= $„„(00-,', ls) and ys=p„(00-,', l8). The
(14), (24), and (28) interactions are all invariant
under e symmetry operations and have identical
geometry and separations. The typical force con-
stant has the form

0 0

4'(s s k~ 23) = 0 Ps

0 vs

where as=/ (-,'-,'-,', 23), P» Q (-,'-,'-,', 23), ys

Agg(Y 3 so 23)i and vs Agg($3 2 p 23)
In using central two-body potentials of

interact-

ionn some of the force constants will have a value
of Eel'o. These 111clude vs, vs, $4, and v4, In
writing the dynamical matrix elements according
to Eq. (2), we will set these force constants equal
to zero and do not include them in the dynamical
matrix. The dynamical matrix elements are sum-
marized in Appendix A.

HI. POTENTIALS OF INTERACTION

There are two types of carbon-carbon interac-
tions in graphite. In each sheet the interactions of
a carbon atom with its three nearest-neighbor eax-
bon atoms are through strong covalent forces.
These correspond to the force constants ns, Ps,
and ya. The rest of the interactions, including the
out-of-sheet interactions, are all due to the van
der Waals forces. Hence only two types of poten-
tials are needed in order to fully specify the car-
bon-carbon interactions in graphite.

For the carbon-carbon van der %Rais potential
we made use of the similarities of carbon and ni-
trogen atoms. The electronic structure of carbon
atom (M= 12, Z= 6, ls 2s 2p ) and lliil'ogell a'tolll

(M=14, Z='7, ls 2s 2p ) are very similar and it is
believed that the carbon-carbon and nitrogen-ni-
trogen van der %'Rais potentials of interaction will
be very much the same. The potential parameters
for the nitrogen-nitrogen van der %Rais interac-
tions are obtained by Kuan, VYarshel, and Schnepp
from various intexmolecular potentials of solid @-

From conditions of zero uniform stress and
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TABLE I. Character table and selection rules for
crystalline graphite. Raman (R) and infrared (ir) activity
are specified by g for allowed transitions and f for for-
bidden transition.

c6v E c2 2c3 2c6 3o'v 3o'd nf nf np

Ai
A2

Bf
B2
E
E,

1 1
1 1
1 —1
1 -1
2 —2
2 2

1
1
1
1

—1
—1

1 1 1
1 -1 -1

—1 1 —1
—1 -1 1

1 0 0
—1 0 0

a a
0 0 0 f f
1 1 0 f f
0 0 0
3 2 1 a a
1 1 0 a f

~z

+ 1+2 cosQ
Uz(+ 1+2 cos@)

2 cos @(+1+2 eos Q)

4 2 2 2 4 2
0' 180' 120' 60' 0 0
3 —1 0 2 1 1

12 —2 0 4 4 2

6 2 0 2 2 2

the experimental lattice energy they obtain

c = 3. 345 A, e = 37 'K . (15)

We will assume these values to be the same as the
carbon-carbon van der Waals potential parameters.

The covalent force constants or the parameters
of a potential for covalent forces can be obtained
from the long-wavelength frequencies of graphite.
The information on the complete set of the long-
wavelength frequencies of graphite is lacking at
present and only two of the normal mode frequen-
cies have been observed and assigned. ' In our
calculations we mill consider an alternative route
in estimating the long-wavelength frequencies of
graphite and mill compare our results with the
available measurements. The long-wavelength fre-
quencies will then be used to calculate the potential
parameters of the covalent forces.

The atoms within a sheet of graphite have a
structure much like the atoms in a benzene mole-
cule. The benzene molecule is a well studied
molecule with many of its normal-mode frequen-
cies established in frequency and assignment. '~

Since a benzene ring has the same structure of car-
bon atoms as the carbon atoms in a sheet of graph-
ite, it is possible to do a group-theoretical analy-
sis of graphite and compare it with the group-the-
oretical analysis of the benzene molecule. From
this comparison approximate values for the long-
wavelength frequencies of graphite can be obtained
using the measurements available on the benzene
molecule.

The character table and the selection rules for
graphite crystal, with the point group C6„, are
given in Table I. The number of the normal modes
of various types and their activity in the infrared
and Raman spectra are obtained from the relevant
equations"' and the character tables. n» is the
total number of normal modes under a symmetry
species i, n& is the number of internal vibration
modes with nz being the number of pure transla-
tions under a symmetry species. Raman and in-

frared activity of a mode are specified by letters
a and f designating allowed and forbidden transi-
tions, respectively.

It is seen from Table I that there are two active
modes of species A1 and two active modes of spe-
cies E1. From a study of the dynamical matrix at
q =0 and the relative magnitudes of the covalent and
van der Waals force constants it can be shown that
for all practical purposes the frequencies of the
two species A, are degenerate in value and so are
the frequencies of the bvo species E&. Hence, in
comparing our group-theoretical results with those
of the benzene molecule, those frequencies that
first involve the relative movement of carbon
atoms, and second satisfy the above degeneracy
requirement, must be chosen for the graphite-nor-
mal-mode frequencies of vibration.

The group-theoretical analysis of benzene mole-
cule assuming C6„point-group symmetry is avail-
able' and the comparison of its symmetry species
with those of graphite are given in Table II. It is
interesting to note that the frequencies given in
Table II not only satisfy the symmetry require-
ments, but they show the expected degeneracy of
graphite frequencies of A1 and E1 species. The
values chosen for graphite-normal-mode frequen-
cies are taken as the averages of the frequencies
of benzene molecule. These are

e(A&)=1000 cm ', ur(E&)=1550 cm ' . (16)

TABLE II. Comparison of graphite and benzene-molecule
symmetry species assuming ce„point group.

Benzene molecule Graphite
Benzene-molecule
frequency (cm" )

Ag

Bg

g(
g)

'Reference 16.

Ag

A)
g)
g(

991.6
1008
1485
1584.8

The above values are supported by the recent mea-
surements of Brillson et al. of

&g (Ej ) = 1588t 5 cm and co (E2) = 1574 a 1 cm
(17)

The frequencies in Eqs. (16) provide us with suffi-
cient information about the potential parameters
of the carbon-carbon covalent interactions. Ex-
pressing the force constants n& and P in terms of
a two-body interaction potential, me obtained

g= 1.174 g, e = 6.35 x10' K . (18)

It should be pointed out that the group-theoreti-
cal treatment of graphite using D6I, space-group
symmetry'~ and of the benzene molecule using &8„
point-group symmetry" result in the same conclu-
sions as given in Eqs. (16). These calculations will
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FIG. 3. Comparison of the calculated (solid line) dis-
persion curves and the experimental observations (full
circles) along (0, 0, ]).

not be repeated here and in the following sections
we will calculate various properties of graphite,
using potentials of Eqs. (16) and (18), and compare
the results with the available experimental data.

IV. DISPERSION CURVES AND STRUCTURE FACTORS

Using the carbon-carbon interaction potentials
the dispersion relations along (0, 0, (), (0, $, 0),
and ($, 0, 0) are calculated. Dolling and Brock-

2

, , e' '
~ ~ Uke (19)

has a nonzero value. b& is the coherent scattering
amplitude, M& is the atomic mass, R& is the posi-
tion, U(k) is the atomic displacement from equi-
librium, and W& is the Debye-Vfaller factor asso-

house' have measured the dispersion curve along
(0, 0, g) which is assumed to be the longitudinal
acoustic branch. Our theoretical calculations are
compared with these experimental data in Fig. 3
showing an excellent agreement between the two.
This agreement gives support to the assumptions
made in Sec. III in connection with the carbon-car-
bon potentials of interaction. It is observed from
the polarization vectors along (0, 0, $) that the
dispersion curve in Fig. 3 is the longitudinal
acoustic branch up to (0, 0, —,) and the longitudinal
optic branch from (0, 0, &) to (0, 0, 1). The two
high-frequency modes, not shown in Fig, 3, have
values of e (E,) = 46. 6 x 10 Hz and &o (A, ) = 80. 1
&&10' Hz corresponding to 1550 and 1000 cm ', re-
spectively, and are 6 functions along (0, 0, $) with
no dispersion.

Thedispersioncurvesalong (g, 0, 0) and (0, g, 0)
directions are given in Fig. 4. The frequencies
of the acoustic branches reach considerably higher
values compared to the acoustic branches along
(0, 0, $) direction. This is explained by the differ-
ence in the nature of interaction forces along and
perpendicular to the z axis of graphite. Because
of the large scale of frequencies in Fig. 4, the $
= 0 transverse-optic frequency at 0. 56'7 &&10 Hz
is seen very similar to an acoustic mode.

The dispersion relation ~(q) is measured by in-
elastic coherent scattering of neutrons from single-
crystal specimens. The condition of finite-scat-
tering cross section is satisfied if the structure
factor

50-

Vl
CL
O

C4O

C
Eb

CF
4t

LL

40

30

20

FIG. 4. Calculated dis-
persion curves of graphite
along (0, $, 0) and ((,0, 0).

10

01.0 0.8 0.6 0.4 0.2 0.2 Q.C, 0.6 0.8 1.0
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ciated with the 0th atom in the unit cell.
Considering that only carbon atoms are present

in graphite and assuming that the Debye-Vfaller
factor is close to unity, we define the structure
factor in the form

(2o)

v = kb, + kb2+ l b~, (22)

where Ski are integers and 5& are the reciprocal
lattice vectors

1- 1
'=a "usa y '

(28)

where

Q=2v7'+q . (»)
& is the reciprocal-lattice vector of graphite given

by

1 1 1
q= 2v —$„x+ $„y+—g,2 (24)

where the components of ( vary between zero and
one.

The calculated structure factors along (g, 0, 0)
and (0, 0, $) directions are plotted in Fig. 5 as a
function of Q. It is interesting to note that the
structure factor along ($, 0, 0) is independent of
the choice of Q„and it depends only on the phonon
wave vector q„. The same branches are marked
with the same integers on the dispersion curves and
the structure-factor curves. The structure factor
along (0, 0, $) has a value of zero for the longitudi-
nal-optic mode $ = 1.0 meaning that the optical pho-
non at (0, 0, 1) should not be observed. The (0, 0,
1) phonon observed by Dolling and Brockhouse, on
the contrary, is quite sharp. This discrepancy in
part may be due to the imperfect graphite crystals
used in the experiment.

V. ELASTIC CONSTANTS

The phonon wave vector q is defined as

The elastic constants of graphite are calculated
using the method of long waves. Vfe will not go
into details of these calculations and only give the
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C(4Ve)( f(key)(+ gaVB)( ~ (26)

results for a solid in which the interactions be-
tween atoms are through central forces. The elas-
tic constants c „~& are defined as

N„(22) N„(23) N„(23)

INI= N„(23) N„(33) N„(34)

N~„(23) N„~(34) Nv~(44)

(33)

Table III provides the comparison between the
calculated and experimental" elastic constants re-
vealing good agreement in c33 and c44 and showing
poor agreement in C11y C12, C13~ and CBB' It is in-
teresting to note that the theoretical results satisfy
the Cauchy relation c»= c44 which is not observed
experimentally. In the experimental observations
c,~ and c~e have a ratio of 6: 1 while Eq. (25) gives
a 3:1 ratio essentially independent of the magni-
tude of the interaction farces.

In an attempt to explain the observed discrepan-
cies we calculated the Young moduli of graphite for
the two sets of values in Table III assuming a poly-
crystalline graphite with random distribution of
the grain orientations. Using the V&II approxima-
tion22 23 which relates the single-crystal data to the
values of polycrystalline data, we obtained a value
of 40x10" dyn/cme for our calculations and a val-
ue of 17x 10~~ dyn/cme for the experimental values
in Table III. This compares with the observed av-
erage Young modulus of graphite of -1x10"dyn/
cm .~ It should be pointed out that the &&II approx-
imation has been quite satisfactorily applied to a
large number of materials of cubic, tetragonal,
and trigonal symmetries ' so long as the density
of the polycrystalline specimen is sufficiently close
to the theoretical value. In the case of graphite,
Young moduli have been experimentally measured
using specimens with densities considerably dif-
ferent from the theoretical value of 2. 26 g/cme.
Although this may explain the difference between
the values of Young moduli, the reason for discrep-
ancies in our calculated elastic' constants and the
experimental observations is not clearly known.

Denoting the atomic separations r~~. by r and the
derivatives of the interaction potentials dV(x)/dr'
and d V(x)/d(x ) by V' and V", respectively, the
functions f,e» and g„ve& are given by

~gI II
fkkev)4 — 4-4 ~ re+vs) V

Va
(26)

and

g„vek = —Z Z P„„(kk')
l
Z M„„„(kk")

lVa kk' fkV

where

44.s„(kk')= „s k.s Zv, V' kyar. x,r„v") .
(me

'
v

(27)
v, is the unit cell volume and the matrix P~„(kk')
is the inverse of the matrix N e(kk') where

24 q Z V'+4K'rr~V ), k=k',. "
r'a' l'A'

(26)
It can be very easily shown that for the elastic

constants c~q, cue, cue, c44, cee, and cee the f ~„
are all finite valued and satisfy the Cauchy rela-
tions, i.e. ,

(29)fie =fee 4 fie =fee

The calculations of g,~„show that it is nonzero
only for c11 and c12 elastic constants and that VI. DISCUSSION

N s(kk )= 'I —kll gZV' —4Zx xaV)"
(m,m„) l'

k&k

g11 g12 ' (so)

g~~„ for c13, c3&, c44, and c« is identically zero.
The value of g» is given by

g„=(- 1/v, ) [P„(33)+ P„(44) —2P„(34)]

x [M,„„(14)+M„(12)p
where

The lattice vibrations of the hexagonal graphite
crystal are studiedusing two-body analytical poten-
tials of interaction of the Lennard- Jones type. The
potential parameters of the covalent interactions are

TABLE III. Observed elastic constants {in 10 ' dyn/
cm ) of graphite and the corresponding values calculated
from Eq. {25).

1p„(ss)= „
P„,(44) =

III

P,„(34)=
fNi

with

N,„(22)
N (23)

N„(22)
N,„(23)

N„(22)
N„,(as)

N„(23)
N,„(44)

N,„(as)
Nvw(33)

N„(as)
N „(34)

(32) C12

~86

C33

C13

&44

106+ 2
18+ 2
44+ 2
3.65+ 0.1
1.5+ 0.5
~0.4

Elastic constant Observed

230.4
76.8
76. 8
3.8
0.22
0, 22

—3.15
—3.15

0
0
0
0

227. 2
73.6
76. 8
3.8
0.22
0.22
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FIG. 6. Structure dependence of the dispersion curves of
graphite crystal along (0, 0, $).

obtained from the long-wavelength frequencies of
graphite. These are in turn estimated from the
internal frequencies of benzene molecule. The
carbon-carbon van der Waals potential is obtained
from the two-body interaction potential of nitrogen
atoms which are very similar to the carbon atoms
in size and the electronic structure. Using the
two-body carbon-carbon potentials, a number of
properties of the graphite are calculated. These
include the dispersion relations and the elastic
constants. In calculating any property, the com-
parison generally shows excellent agreement when-
ever experimental observations are available. The
good agreement is not unexpected since similar
modelse-~~ using two-body potentials of interac-
tion have been quite successful.

Although the assumed model has shown itself to
be quite reliable, we considered the possibility of
a deviation from the assumed graphite structure
which is mentioned by Wyckoff. '3 He states that
the position of the carbon atoms 2 and 4 may not
be in the same plane as the atoms 1 and 3 and
gives the position vectors of 000, 3 3v, 00&, -', —', —,

'
+ v for atoms 1 through 4, respectively. The value

of v is stated to be zero for practical purposes,
and cannot exceed 5% of c in value.

It was hence decided to set up a model in which
the carbon atoms 2 and 4 have a displacement v
varying from zero up to a value of 0.05'. This
means a reconstruction of the force constants and
a new dynamical matrix since the changing dis-
tances produce not only asymmetry in interactions
but also introduce a larger number of force con-
stants. The increase in the number of force con-
stants will not be troublesome since they are readi-
ly determined using the two-body interaction po-
tentials. The new dynamical matrix is set up and
diagonalized along (0, 0, t) for three values of P
= v/0. 05=0, —,', and 1. The results given in Fig.
5 show the sensitivity of the dispersion curves to
small structural changes and also indicate that
for all practical purposes v is zero and the posi-
tions of the carbon atoms are in a single plane.

It should be pointed out that our treatment of
graphite is essentially a rigid atom one. A better
model of graphite will be through a shell-model~5
consideration of the carbon atoms. The shell
model of graphite is supported by the observation
of infrared-active modes. ~s Although carbon atoms
do not have a static charge, the infrared activity
of graphite modes is indicative of the deformation
of the charge distribution of the carbon atoms
which can only be accounted for by a shell-model
lattice-dynamical treatment. Since a good fitting
of the experimental data with the shell model re-
quires the use of a rather large number of unknown
adjustable parameters, we believe that a shell-
model treatment of graphite will be possible only
when detail dispersion data exist through neutron-
scattering experiments.

In conclusion we would like to emphasize the use-
fulness of the two-body potentials in the analysis of
lattice vibrations of crystalline solids. A knowl-
edge of the interaction potentials can be obtained
from a variety of measurements. ~ The potential
approach is most useful in studying crystalline
solids where the available information is limited,
or in studies where the large number of atoms per
unit cell complicates the picture even though there
is a reasonable amount of data available. It is
also of interest to note that by using the two-body
analytical potentials one can avoid the problem of
fitting the force constants to the available data
which is shown to be possible for a wide range of
alternative sets of force constants.
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APPENDIX A

The dynamical matrix elements M„„(q, O'Ia') of
graphite are listed here. For the sake of simplici-
Q the wave vector g in the argument of the dynami-
cal matrix elements is suppressed.

M„„(ii)=4n, (c,c, —i)+(6P, -2n, ) (c', -1)-D,
=f(n1 p1 D1)

M„„(il)=f(P„n„D,),
M„(11)= 4y1(c1+ C1ca —2) —Da -=g(y1, D1),

M (11)= u 3 (n1 —p1)8182, M»g(ll) = M g(ll) = 0 )

M)1(88) = Mly(l 1), i, j = x, y, z

M (22) =f(n„p„aa), M„(22)=f(p„n„D,),
M (22) =f(y„D,),
M„,(Z2) =M„,(li), M„.(22) = M„.(22) =0,
M1~(44) = M)1 (22), 8, j= x, y, 2

81= 2 n 5 + 3 (no + ps) + ~22 (n 2 + pa + no + pa + 2n 8 + 2 ps) p

D, 2y, -+ Gys+ 8(ya+ y, + 2y,),
&8= 8(no+ ps)+ 2(na+ pa+ na+ pa)+ 6(ns+ ps) i

&8= ey4+3(ya+ya)+ 12ys,

cs) + nacv+ (2 na+ & pa) (cs cs) + ns(C10+ cll) + (g no+ g ps) (cia+ cia + C18 + C15)

+ 2 ~3rls(C12 c18+ C18 C1s)+at n288+(g na+f pa) (Ss+ 88) + n885+ (4na+ gps) (So+ So)

+ ns(818+811)+ (gns+g ps) (818+ S18+ 818+ 81s) + 2~&1I8(812 818+ 818 - 815)J

f(na s pa & n8 t pa t ns t ps & 94) &

M»»(12) f (pa & na & pa t na i p4 l ns i 04) l

Mgg(12) ya(ci + c5+ cs) + ya(cp+ cs+ co) + ys(cao+ c11+cfa+ c18+ c18+c15)

+ 2[ya(88+ 85+ 88)+ ya(81+ 88+ 88) '+ ys(818+ 811+812+ 818+ 814+ 815)],

M„,(12) = ——,~3(na —pa) (cs —c,) ——,
' ~8(na —pa) (cs- cs) —4 &8(ns- ps) (c12+ c1, —C18 —c,s)

-0. 5q (-2cio+2C11+C12- ca- ca+ c15) +2[--,' ~3(na- pa)(85- 8) - l ~3(na pa) (88 Ss)

—g ~8(ns —ps) (812+ 818 —818 —81s) —o 51is(- 281o+ 2811+81a —818 —818+ 815)1

M„.(12)=M„(12)=0,
M (34) = M„*„(12) for all x and y,
M (13)=2nsca,

M„„(13)=M (13),

M„(18)= 2ysca,

M„„(14)=2ca[nsc4+(-,'ns+ —,'p, ) (c,+ cs)f

-@ca[n888+ (-.ns+ g ps) (85+ 88)1

M,„(14)=f(P„n,),
M„(14)= 2ysca(ca+ cs+ cs) —i 2ysca(88+ 85+ 88),

M„„(14)= - —,'~8(n, —P,) (8, —8,) (8, -ac,),
M„g(14) = —&8 vs(85 —Ss) (8'8 —aca),

M„(14)= vs(288 —85 —88) (88 —ica),

M„„(28)= M (14) for all x and y,
M„„(24)= M„*„(28) for all x and y .

The e, symbols are

C1 = COBW)»,

cs =cos(gw)») ~

Ca=COB(W8» —»W)») ~

c,= cos(2w&„+ —,'8(,),
C18 —Co:S(wg„+ f-w$ )

ca = coswg, , ca = eoswf, ,

cs = cos( —wg„- —,'wg„),

c,= eos ( —54-w&,),
co = cos( —2wg»+ gw(») ~

C11.= COS(- w(»+ 8 wing) )

C12= cos(-3wt»» w(») l 018 = COB(-2wg» —
8 wing) ~

cas=cos(3wg» —
2 w$») ~ c„=cos(2wg„- f wg„) .

The symbols 8, correspond to the sines of the same
argument as the above given cosine functions.
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The ground state of a model exciton-phonon Hamiltonian is studied using variational techniques. A
single-exciton band is considered in the tight-binding model; the exciton is coupled to Einstein phonons
through a short-range linear interaction. We first verify that a variational wave function corresponding
to simple displacements of the lattice coordinates (analogous to the Lee—Low-Pines wave function for
the polaron) leads to an unphysical result: For strong exciton-phonon coupling the effective mass of the
excitons depends discontinuously on the parameters of the Hamiltonian. We obtain an improved trial
function by studying an exactly soluble problem: an exciton hopping between two sites and coupled to
a phonon field. The new trial function allows distortion of the Gaussian form of the phonon wave
function as well as displacement. Analogous trial functions are used to calculate the energy and
effective mass for a one-dimensional lattice with nearest-neighbor exciton hopping. The results are a
continuous effective mass and a substantial improvement of the ground-state energy over the
Lee—Low —Pines trial function. Arguments are given that the qualitative behavior of the ground state is
independent of the dimensionality of the lattice, so that the one-dimensional calculation performed here
is adequate.

I. INTRODUCTION

The interaction of an exciton or an electron with
lattice vibrations leads to a number of interesting
effects. ' 3 If the exciton-phonon interaction is
weak, the major effects are a reduction in mobility
due to scattering, the introduction of phonon side-
bands in optical absorption, 4 6 a small change in

mass, etc. For very strong coupling the phenom-
enon of self-trappingv' occurs. Here, the distor-
tion of the lattice in the vicinity of the exciton
leads to a large increase in effective mass. At
high temperatures, the motion of the particle
through the lattice changes from band type to ac-
tivated hopping. 9

This paper is concerned with the transition be-


