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In a previous paper, the authors have developed a general theory of stochastic transport in
disordered systems. In the present paper, the theory is applied, in detail, to a prototype of
transport in a disordered system —impurity conduction in semiconductors. The complete fre-
quency dependence of the real and imaginary part of the conductivity is calculated. In par--
ticular, the calculation details the transition from an (ds dependence to essentially dc behavior
(at a finite frequency), where s -0.6-0.8, depending on temperature and concentration. The
theoretical results for frequency, temperature, and concentration dependence of the conduc-
tivity are shown to be in good agreement with the measurements of Pollak and Geballe (PG).
In addition, the ac conductivity data of PG interpreted with the present theory yield experi-
mental evidence for the existence of two-channel hopping in n-type Si.

I. INTRODUCTION

In the preceding paper' (hereafter referred to
as I) a general theory of transport via localized
states in a disordered system has been developed.
The motion of the carriers in such a system has
been modeled as a continuous-time random walk
(CTRW) on a lattice. s The carrier executing such
a CTRW makes a displacement s from each site in
time t between steps with a distribution described
by a function g(s, t). All the dynamics of the mo-
tion are incorporated into g(s, t) This s.implifi-
cation, inherent in the structure of the CTRW mod-
el, allows one to focus on the basic fluctuating
quantity in the hopping motion-the transition rate
between the sites. .That is, the transition rate is
treated as the random variable. For the transport
in disordered systems of most interest, the transi-
tion rate is a very sensitive function of the intersite
separation, so that the fluctuations in the spatial
separation are quite mild compared to those, pro-
duced by them, in the transition rate. An exten-
sive qualitative discussion of the nature of the
present approach to hopping transport is included
in the Introduction in I. The mathematical justifi-
cation of the model is detailed in Appendix B in I.

For this CTRW model the conductivity o((d) has
been determined exactly and is completely specified
by the Fourier transform (FT) of the spatial mo-
ments of g(s, t),

and

e,', ((d) =-Z s'
s go

e '"'y(s, t) dt/y(i(g)

Specifically,

D((d) =~s&4 .((o) i(u4 (i(d)/t. l —y(i(o)l,

where

e((o) = (ne'/((r)D((g), (4)

n is the density of effective carriers (e.g. , n = N„,
the acceptor concentration, in the case of impurity
hopping in a low-compensated n-type semiconduc-
tor, to be discussed below), T is the absolute tem-
perature, and D((o) is the complex frequency-de-
pendent diffusion constant. In common units, e.g. ,

D(a) (cm /sec) =(0.6V23T)[e((o) (0 'cm ')]
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for v=8&1014 em 3.
As one can readily observe from (3), knowledge

of the FT of g(s, f) determines the linear response
of the system to an electric field oscillating at
angular frequency ~. Further, if one considers
the limit ~-0, one obtains

D(0) = o,',(0)/6f, (6)

with

f = f@-(f)df, (7)

1.e. , the dc resistivity of the system 18 propox'-
tional to the mean maiting time t for a typical hop
(anywhere).

The existence of a finite dc limit for o(o1) is a
key feature of the present calculation and, as
shomn below, enables us to quantatively describe
the "transition region" from an ~' dependence to
an essentially dc behavior (at finite &o) of the con-
ductivity-a region that has not been previously
described theoretically.

Now, in the present paper, me consider a de-
tailed application of the theory to a prototype amor-
phous system lmpuz lty hopplDg eoDductlon r ln
semiconductors such as Si and Ge.s 7 A great deal
is known about this system-the impurity wave
functionss's and transition probabilities W(r).s'e
There is an extensive literature of experimental
molk ' ' cR1 x'ied out on carefully characterized
samples as mell as some important theoretical
studies. 3'4'13 18 Many key variables can be ex-
perimentally controlled to a large degree, e.g. ,
the intersite distance.

In Sec. II, the basic features of impurity con-
duction are discussed in the context of an explicit
calculation of g(s, f). First, a general procedure
is developed for the calculation of g(s, f) from the
transition rates W(r) and the local site distribution.
An analytic expression for P(t) is then derived for
a specific form of W(r), and finally, an asymptotic
evaluation of fr(ko) and hence D(o1) is made for two
characteristic donor concentrations Nn. [In the
present paper it will be assumed o', ,(~) =o', ,(0)
—=03,. The quantitative aspects of the (d depen-
dence of ot, (~) will be treated in Ref. 19 of L]

Some features of these results are (i) the com-
plete frequency deyendenee of both the real and
imaginary pR1 t of tile conductivity is calculated.
(b) All analytic expl'ess1011 fo1' tile dc conductivity,
derived with a simple form for W(r), is similar to
the Miller and Abrahamss (MA) result. This der-
ivation does Dot make use of the resistive network
model fixst introduced by MA and used in all subse-
quent theoretical calculations of o(0).13'14 (iii) The
pair approximation at higher frequency j.ntroduced
by Pollak and Geballe5 (PG) is not irvoked in this
model. All the multiple hops are included.

In Sec. III these theoretical results ax 6 comyared
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FIG. 1. Comparison of the theoretical (solid line) and
experimental values of ReD(Q). The dimensionless dif-
fusion constant D(Q) =—a(&u)/RN~etlxT}(8 o ~"Ws)], with
y=0. 5772; 0—= co/S'~e", with S'z obtained from the tran-
sition rate W(r} = Ws exp(-sr/a); a is the effective Bohr
radius and S'~c exp(-6/~T). Data for Reo(co) taken from
Pollak and Geballe, Ref. 5, Fig. 5. %~=0.8x 10~5 om
~a=2. 7x10 om, 6=6.1 meV, o~s=yD—= (T +Ra)

with the conductivity data of PG. The comparison
is made separately for two characteristic concen-
trations ND. At the lower concentration, the cal-
culated frequency and temperature dependence of
Bee(n1) is in excellent agreement with the measure-
ments of PG. In addition, strong evidence is ad-
vanced, in the context of the present theory, for
two "channel" hopping in n-type phosphorous-doped
Si. At the higher concentration and higher tem-
perature (T& 3.5 'K) the comparison with experi-
ment is reproduced in Fig. 1. The SOM line is
the theoretical curve for the real part of a dimen-
sionless diffusion constant D(Q) =D(a1—)/~~&ra, e"W„
plotted against a dimensionless frequency 0 -=n1/W»
with W„obtained from a simple expression for the
transition rate W(r) = W„e ', where a is the ef-
fective Bohr radius and 8'„~e ~1"~ and y= 0. 5VV2.
The effective activation energy 4 is discussed in
See. III and it suffices to say in Fig. 1 4 is cho-
sen to be equal to the experimental activation en-
ergy of the dc impurity conduction measured by
PG. With this single value for 6 (therefore deter-
mining 0 for a given pair of values for e1 and T),
all of the data points, contained in Fig. 5 in PG,
for T &3.5 K and for the range of values for n1/2s
indicated in Fig. 1, are replotted as a function of
Q and shown to lie on a Universal curve. The uni-
versal curve is a simultaneous display of both the
frequency and tempe~afure dependence of the ac
diffusion measurements and it approximates mell
to the theoretical curve in Fig. 1. It shouM be
stressed that there are no "fitted" parameters in
the comparisonin Fig. 1 (cf. Sec. III). A key
feature of the results in Fig. 1 is the demonstration
of R chR1 Rctex'istic dimensioDless trRDsltlon
frequency 0,. This frequency A, depends only on
Nn and a (cf. Sec. II) and earmarks the "transition



4504 H. SCHER AND M. LAX

region" between a region where Reo(~) ~ ~' and a
region where Reo(~)~o(0). The details of 0, are
discussed in Appendix B.

We conclude this section with a few general re-
marks about the nature of impurity hopping conduc-
tion. The underlying stochastic element in this
transport process is intrinsically quantum mechan-
ical. The wave function of the carrier is localized
mainly about one impurity site with a small finite
amplitude at another site. A transition between
these sites can be induced by the electron-phonon
interaction. The transition is therefore described
by the nature of the charge distribution (e.g. , the
effective Bohr radius) around each impurity site,
the electron-phonon coupling, and the perturba-
tional addition to the charge distribution at the
other site. The latter addition is largely deter-
mined by the energy difference between the states
at the two sites and the overlap or resonance ener-
gy between them. The sensitivity of the transition
rate to the spatial separation of the sites comes in
through the overlap energy. Thus, at each site in
the course of time, the carrier can abruptly change
its position to a number of others, each choice
weighted by the quantum-mechanical transition ma-
trix element described above. It is in this sense
that the hopping transport becomes a random craik
on a random media.

A random walk (RW) is a very general concept
and simply depends on the existence of a recursive
relation between the probability p„(i), of being in
the state i after n "trials, " and P„~(j), where jo i
The connection between these two probabilities is
simply the transition probability p, &

in a single
"trial, " i. e. , P„(i)=Zp,&P„~(j), where the sum is
over the specified set of states az excluding i.

For impurity conduction the hop corresponds to
the "trial, "the state i to the impurity site s, , a~

to the random network of sites s& (j0 i), and p, z
to the probability the carrier on s, hops to s~ (p, &

can have an explicit dependence on s, , sz). In
general, as discussed above, for impurity hopping
transport p&~ is a sensitive function of s, -s&, so
that the RW on the random distribution of sites can
be closely approximated in a very elegant way by
a percolation problem (for the dc case).~4 The
basic idea behind this approach is to consider any
two sites as "linked" (or joined with an open bond)
if p, z is greater than a specified value p, . If p, ~

& p, the sites s„s~ are considered "unlinked. "
The "medium" determines the transport and the
problem is reduced to finding p, . The value p, is
then used to determine the conductivity oo of the
"critical" dc conducting path and oo, in turn, is
equated with the dc impurity conductivity.

The approach in the present theory is to consider
directly the RW problem with, however, two main
modifications. The introduction of g(s, ~), dis-

cussed above, accomplishes both of these changes:
(i) The RW is generalized by replacing the dis-
crete variable n (the number of trials or hops) by
the continuous variable t (the time of observation of
the carrier motion). Instead of P„(s,), one is con-
cerned with P(s;, t), the probability of finding the
carrier at s, at time f (cf. Sec. I of I). [The con-
nection in this context to the quantum-mechanical
nature of the hopping transport is shown in the for-
mal definition of P(s„t) in Eq. (8) of L] The under-
lying structure of the RW is still analyzed in terms
of n (cf. Secs. I and III of I); however, each hop a
distance s is allowed to occur at a random time v

with the distribution of g(s, r) Th.e explicit con-
sideration of t, i.e. , the dynamics of impurity
hopping, is the important factor in being able to
treat the ac and dc hopping conductivity on the same
footing as discussed above. (ii) The random net-
work of impurity sites is replaced by a uniform
media, a lattice of sites.

The basic g(s, f) is computed by considering a
hop to an impurity on a site displaced by s in the
presence of the other N-1 impurities distributed
randomly on the lattice points. The resulting
g(s, f) is configuration averaged over all the posi-
tions of the N —1 impurities. In a random walk on
a random media one is again interested in a config-
uration average. However, for an n-step walk in
the random media, the contribution is configura-
tion averaged over the positions of the N-n im-
purities. The difference in these averaging pro-
cedures is discussed in Appendix B of I.

II. IMPURITY CONDUCTION

The qualitative functional form for p(s, f) [for a
P(s, f) =p(s)g(t)] needed to reproduce the frequency
dependence of the ac conductivity measured in im-
purity conduction was indicated in Sec. IV of I. In
the following g(s, f) is calculated explicitly, start-
ing from a basic description of known details of
impurity hopping conduction. 3 ~6

The system is specified as an n-type compen-
sated semiconductor (e.g. , Si, Ge) at a tempera-
ture low enough that all the carriers are frozen out
on the donor sites. Transport takes place by an
electron hopping from a neutral donor to a donor
ionized by a compensating acceptor. In presence
of the random electric field due to the ionized con-
stituents, the energy levels will fluctuate and the
individual hop is temperature activated (cf. Fig. 1
of PG').

To determine g(s, t) one calculates the probability
per unit time that in a time t between hops, the
vacancy on an ionized donor (near the ionized ac-
ceptor) is displaced a vector distance s to a sur-
rounding neutral donor. Fortunately, the statisti-
cal difficulties of a very similar problem were
worked out by Thomas, Hopfield, and Augustyn-
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—=-qZ W(r )
dq
dt (8)

q(t)=exp -Z W(r, )t i,]
(9)

where W(r) is the transition rate between donors
separated by r. In computing the configuration
average of (9), one makes use of the well-known
technique 7' for calculating the characteristic
function of a sum of random variables

( t}(t))= ( N (- t & (P(P,}))

iak 7) (THA) in their consideration of the kinetics
of radiative recombination of electrons trapped on
donors with holes trapped on acceptors; both are
randomly distributed. %bile they are concerned
with transitions from a minority site to the sur-
rounding majority sites, we consider transitions
between an ionized majority site and the randomly
placed neutral majority sites. To calculate I(t),
the total intensity of light emitted at time t due to
the pair radi. ative recombination, they define I(t)
=-d(q(t))/dt, where (q(t)) is the configuration
averaged probability the electron (or vacancy) is
still on the initial site at time t. Now, since
( q(0) ) = 1 and (q(~) ) = 0, I(t) is normalized to one
and, therefore, from the defining relation it is ap-
parent that I(t) = P(t). The analog of g(s, t) in THA
is, Ie(t), the intensity/unit energy at energy E and
time g.

It is not surprising there should be an intimate
connection between the pair fluorescence in semi-
conductors and the hopping transport (in the pres-
ent formulation}. The multiple path aspect~ of the
hopping has been accounted for and in (3) the diffu-
sion is "reduced" to a function of the FT of the time
spectrum of hops from a single site. In the fluo-
rescence process the light given off in recombina, .-
tion is simply a signal that a hop has occurred.
Moreover, the peak in the energy spectrum of the
light emission at a given time t [Ie(t)] is a measure
of the spatial separation of the pair of sites be-
tween which a hop most probably occurs at t [cf.
Eqs. (18) and (20) in THA ~7 and Figs. 4 and 6 in
Ref. 18].

We now adopt the procedure in THA. Let q(t)
be the probability that a vacancy on the donor at
the origin at time 1=0 remains on the donor until
time f;. This probability can decrease in time via
all the pat'allel decay channel for it to transfer to
surrounding neutral donors:

-d(q(t) &

cM

One can formally rewrite (10) as

ln(q(t)) = —No f dp(1 —e "')E(g),
where

E(p) = fd r 6(iL —W(r))

(12)

(13)

d'r W(r)e- '""(q(t)), (I't)

which is equivalent to differentiating the expression
for (q(t) ) in (10}and inserting the result into (11).
As mentioned in Sec. I in the present paper, we
will assume o, ,((d) =o, ,(0). Thus, henceforth we
consider only $(t) in quantitative detail and re-
serve a fuller discussion of P(s, t) for the paper in
Ref. 19 of I.

The form of (12) and (13) emphasizes the point,
made in Sec. I, that the structure of the CTR%
model allows one to focus on the transition rate as
the main fluctuating quantity. In particular, the
spectrum of transition rates determines g(t) and
hence the conductivity.

One significant difference between the THA treat-
ment of pair fluorescence and impurity conduction
is the form for W(r). In THA,

is the spectrum of transition rates in the system.
It is obvious from (8) that the probability/unit

time a hop occurs via one definite channel is

W(r„ t) = W(r, )q(t)

(r)p} reer" exp(- t Z (p(rt)) . ((4)
~pi

The distribution function g(r~, t) is simply the con-
figuration average of (14) holding the lattice posi-
tion r, fixed, multiplied by the probability that an
impurity is on site r~,

p(rr, t)=N ept(rr}e "r"(erp(-t 2 te(r )
ye1

(16}
where v is the lattice-cell volume. In the limit of
a large number N of donors in the total volume V
of the system (N/V= No, N, V- ~) the configuration
averages over N or N —1 donors are equivalent [cf.
Eq. (18) in THA], so that

ii(s, t)=N, oW(s)e- "&'(q(t)) . (16)

If we sum (16) over all s,

(1}(t)=Z g(s, t) = N, ~ Z W(s)e-'""( q(t) }

W(r) = W„e-",'"~, (18)

with

=exp -ND d y 1-exp —Wr t
4

a simple consequence of wave function "overlap, "
where g~ is half the effective Bohr radius g and 5„
is a constant. In hopping between majority sites,
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according to MAs [Eqs. (II14) and (II19) in MA],
s/2

W(r)= W,
' —"

i
~(r, 8)0 g )

x exp . — exp —1

(»)
where A(r, 8) is the energy difference between the
sites and cose = f' ~ p p is the dl8ylRcement be-
tween the initial site nearest the ionized acceptor,
andthe acceptor (cf. Fig. 1, Ref. 15). For phonon
Bbsorytion 6 &0 and for phonon emission b, & 0. The
approximate form for W(r) obtains for 6/a' T» 1
(which holds for the present application).

It is important to use (19) in the calculation be-
cause the energy fluctuation d, (r, 8), as well as the
separation r, plays a role (at low T) in selecting
the pairs of sites contributing to a specified range
of transition rates. However, as will be shown in
Sec. GIA, the w, e dependence of 4 axe only im-
portant in the high-concentration case (where s is
largest). In order to facilitate the calculation of
$(t) and its FT, (18) will be used for W(r) with

Ws= Ws(r/Ils) f ~b,
~
e (20)

and y, 6 taken at some appropriate mean value.
With (20) the entire frequency dependence of D(~)
can be obtained in closed form, while with (19)
detailed calculations have been performed in a
more restricted frequency range [due to the neces-
sity of choosing simple analytic forms for b (r, 8)
aypropriate to either localized hopping or extended
(dc) hopping]. In any case, details of the latter
calculation will be contRined in R forthcoming pR-
per, while the former results are in agreement
with the measurements of PG at lower concentra-
tions and/or higher temperature.

A. Calculation of f(t)

An analytic expression for g(t) using (18) is de-
rived in Appendix A and for large v (the region of
great, est interest for 0&~/2v&10s HE), the asymp-
totic form yields

InQ(v) = —(-,' q) [(Ine"r)s+ Sl (2) Ine"7 +2&(3)],
(21)

with Q(7') —= (Q(t)), v—= W„t, q= 4vN~~, @=0—.5'IV2,

and f(e) is the Hiemann f function. " In the new no-
tation

y(f) —dQ(~)
8'g

For small 7'

y(t)/W„= 2q —(-,'q+ 471') ~+ ~ ~ ~ . (22

The evaluation of g(t) using (21)-(23) is an ex-
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FIG. 2. Distribution function of random hopping times
from a site g{t) scaled by the maximum transition rate
Ws, i.e. , WPr) = 8's e~is~, with B„=s X (Bohr radius) and

8@ci- exp(—~Kg s The dlmensionless ${f)/+~ is a fQnc-
tion of v—= S'~t and q= 4'&B&~. Characteristic of g(t}/8@
for a disordered system is a slow (e.g. , nonexponential)
dependence on v'.

cellent agreement with the results for I(t), obtained
numerically, in Fig. 1 of THA (the ordinate scale
in THA is inadvertently one power of ten too large).
Adopting their I(t) curves, we plot g(t)/W„vs v in
Fig. 2 with a range of values for g. For P donors
in Si we use Rs= 12 A (this value is based on the
one calculated by MA in Ref. 3 and the alteration
a~/a„, = l. 14 required by poilak in Ref. 15). Thus,
e.g. p 0= 10~ corresponds to MD=0. 85xloie cm-s.

The explicit calculation of g(f) in Fig. 2 has
qualitative features similar to the model g(t) cho-
sen in Sec. IV of I to fit the ac conductivity measure-
ments of PG. Namely, a slow falloff (on the scale
of 7.=- W„t) with time. However, the g(t) calcu-
lated with (21) and (22) is very dispersive in time;
it falls off slower than exponential. This charac-
teristic of P(t) is conjectured to be a general prop-
erty associated with hopping ln amorphous sys-
tems. One consequence is that nth moment of P(t)
using (21) increases much faster (with increasing
n) than the same quantity using Eq. (40) of I. This
fact, in turn, implies that the CTBW process with
the above g(f) produces results (especially ac re-
sults) that could not be derived from a conventional
master-equation approach to the hoyping transport.

One can understand the dispersive tail in p(t) by
considering a simple way to derive the main part
of the analytic result in (21). The integrand in the
exponent in (10) behaves as a unit step function:
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1 -8Ãy [- W(F) tl =
I

Due to the general exponential dependence of W(r)
on r, the transition from 1 to 0 in (24) is very
rapid as a function of r. With (18) for W(r) and

(24), the integral in (10) is simply

-4m'~ g r dr= —3mN~g, ,a y 3

(24)

(25)

W(r, )t = 7'e "' ~ = e ' = 1

r, = +.Ine'I. . (27)

Inserting r, in (2'7) into (25) one obtains the lead-
ing term (for large ~) of (21) with the identification
e= y. The exact number e~ was derived in Appen-
dix A, but the main point is that e~-1. The ap-
proximation in (24) is obviously an excellent one
and is used to calculate {q(t) }10with more com-
plicated forms for W(r) [i.e. , (19)], where simple
analytic results, such as (21), are not possible.
Thus, with the interpretation contained in (20) at
any time t, the integral in (10) sums up all the
transition rates "douII" to 1/t [or ~, when the FT
of P(t) is considered]. The long tail in g(t) is re-
lated to the absence of a truncation of the transi-
tion rate spectrum, or, at any g one can "find" a
W(r), such that W(r) t- 1 [the "volume" in (25) keeps
increasing with t]. Stated in another way, if E(iI)
in (12) were truncated,

ti~ &m«: (28)

ln&q(t))„, I- -x, E(tl) du

ox'

g(t) = ti diie "'pE(tI)-e-' «'.
min

(30)
Therefore, the highly dispersive nature of g(t)

in disordered systems is related to the shape of
E{tI)for ti- 0. In particular, the lack of a "cutoff'
ill E(p) fol' ii ln a flllite neighborhood of 'tile 01'lglII,

Qua1itativeiy, the steeper the time variation of
p(t), the slower the ~ tiependence of D(Id). Hence,
one can already undex stand some features of the
experimental behavior of the ac conductivity (Figs.
5 and 6 in PG) by examining the g(t) curves in Fig.
2 Since TV@ lncx'eRses with lncx'eRslng tempel R-
ture [EII. (20)], a fixed value of t (e.g. , corre-
sponding to a fixed ~ ') slides to the right on the
I. abcissa, i.e. , it moves to a region where g(t)
has a steeper t dependence. Therefore, for a

D(n) = e '"o' [-e"(z,)-/2v]'" in,
w I.th

4 (zo) = zo- (iii)z,' - I+ Iiz,',
—@"'{z,) = 1+2Iizo —Iizsz,

(35)

(36)

(3't)

,=,(n)+ y, (n) . (s8)
In Fig. 3 we plot xz(n) and yo(n) for II = 6 x10 ' and

given up, D(~) has decreasing ~ dependence with
increasing temperature (cf. Fig. 5, PG). Similar
results hold for increasing Ns [at fixed (higher) T]
leading to lower ~ dependence of D(~) (cf. Fig. 6,
PG). The latter conclusion is somewhat compli-
cated by the fact that increasing N~ not only in-
creases Ii but also changes h in W„(i.e., 7 is not
a constant for a fixed t), but this is alleviated at
higher T, where changes in 6, are less important.
These ~, T, and ND deyendences of D(~) will be
exhibited in detail after computation of the FT of
tt(t).

B. D(u) and the Fourier Transform of P(t)

It is expedient to express the FT of g(t) in terms
of q(7). Inserting (22) into (2) and integrating by
partsp

g(m) = 1 —inq{n), (31)

where n-=~/Wo [WD= W„e", for the model using
(18)] and

q(n)= f d7 e '"'q(~)

= J d ' 7eyx(- in -Iit Ifsdzr

x (I - exp[- TW(r)/Wo]]) . (32)

Inserting (31) in (3) one has an even simpler form
for the frequency-dependent diffusion constant:

D(n) = D(&)/-go' .w, = [q(n)]-' in . -(33)
The frequency range of interest is such that 0«1
[from PG, EII. (13a), WI'I in (20) is 0.82 &&10~/
mev sec; Poilakzz used a Ib, i/II =10 'K]. In that
case (as shown in Appendix 8),

q(n)= J «e '"'q(i.)

= J, dxexp[x-inc*-iig{x)], (34)

where x= hI7' and ((x) is, generally, a rational
function of x, e.g. , from (25) and (27), g(x) = —,

' XI.
The in«g»»n (34) can be developed into an asymp-
totic series by applying the method of steepest de-
scent. 4 The leading term in the series is obtained
from the contribution at the saddle point and is
worked out in detail in Appendix 8 for the model
using (18) for W(r). The final results can be sum-
mRx'ized RS
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Q

FIG. 3. Real xo (solid line), a+i imaginary yo (dashed
line) part of the saddle point go, used in the asymptotic
expansion of the FT of the hopping time distribution g(g),
vs ft=- Q7/8'll. The 20hd straight lille is - InQ. 22 is all
explicit function of I) —= 42Nnfts2 as well as 0/I). The above
plot is for g=6&&10 . The 1imiting value q" for
xo(Q 0) and exp(-q ~~2), the value of 0 characterizing
the transition to dc behavior for g(~), is indicated above.

also, for comparison, the straight line - lnQ.
Note that x~= —InQ and I+ye/-,'Ilo- —InQ for the
region —lnA & q-~~~; this functional dependence
leads to

D( ) ++2 ~(W e-S/ler)t-s s

w, = e"w,'(r/It, )2"t /2~,

(40)

(41)

where A. is a complex constant and g is a constant
in this frelluency region (to be discussed below).

In the limit Q-o,

q(0}= 1 dxe~(x ,'q2) = vq -'"-Hi(q '/2)--
( ~-t/2)1/2e~(2~-t/2} (42)

Io 2— I I IIV&[ I I I I IIII) [ ( t I II lt I I I I I I III I I IIIIII) I I Ill+&

reduced to solving for the resistance of a network
of randomly placed junctions joined by resistors
with a prescribed distribution in value. MA chose
parallel current yaths with a string of resistors
corresponding to nearest or next-nearest intersite
hops. All other dc hopping conductivity calcula-
tions have differed in the details of constructing the
current paths, but have retained the basic network
model. In the present formulation a result simi-
lar to the MA one for o(0) was derived without in-
voking a network of resistors or specifying the
proximity of the intersite hops. The final expres-
sion in (43) is based on the use of a simple form
for the transition rate W(r). /1 more comp/ete
form for W(r) [i.e., (19)] will produce modifica-
tions in (43). In Ref. 14, percolation-threshold
criteria have been used to determine the effective
current paths. In effect, a truncation of the
type in (26). With this approach they find that
—InII(0) c-rn. For the small range in Nn considered
in Sec. III we find (43) to be satisfactory. To test
the different dependencies on Nn in o(0) (rn/rn
~No/ ), one would need a much larger range of Nn

(for the low-compensated system).
The complete numerical results for D(&) [Ell.

(33)]based on Elis. (35)-(SV) for two values of Nn
are shown in Fig. 4 (I)=6&&10 ) and Fig. 5 (I)=2.22
&&10 4). The general features of both plots are
(i) not only do the curves for D show the complete
frequency dependence of ReD including the txansi-
tion to dc, but a complete description of Imv in-
cluding the transition of ImD/Id const, cc Ke)

(ii) a &' dependence at the higher values of Q with
a constant s-0.6 (for three decases of &) in Fig.

using formula 10.4.44 of Ref. 21 for the definition
of Hi(2) (a type of Airy function) and 10.4.90 for
the asymptotic form (for large I)

t/ }. The asymp-
totic result for the exact Q(0) in (42) agrees com-
pletely with the asymptotic result fox A-O using
(815)-(817), (820), and (821). Substituting (42)
into (33), one has, for the dc conductivity,

o(0)= " D(O)

~o-~ =—

0(oj—
0(Q)

~o-5 ==

io+ =—~
3/I

2fffN

„„,I . . .„„,loe to~ to~ ~o 5 e~ io ~ to~

e oe

io'

N e 0~sms W e-2/Er~l/4e~( s~-1/2) (43)
II T 6WII

The dominant majority concentration dependence of
o(0) in (43),

exp(- -', I)-I/2) = exp [-2(rJSII,)2/2], (44)

is the same as found by MA.3 In the MA theory the
problem of calculating the dc hopping resistivity is

FIG. 4. Real $5 (solid line) and imaginary O'D (dashed
line) parts of the dimensionless diffusion constant D(Q)

=D(v)/(Joe„se V(/I/) with @=0.5772; 0 = &s/WIIe~, with—WII

defined in Eq. (20}. The plot is for q=—4'&RES=6 && 10,
@there A&=~a; a is the effective Bohr radius. In the
above, r~@=- ~~= (T gN&) ~3. Indicated in the plot are
the values for D(0) =q exp(-~q )/&7t and &
=exp(- q"~~2), the frequency characterizing the transition
to dc (cf. Appendix B 2).
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FIG. 5. Real (R3 (dot-dashed line)
and imaginary SD (solid line) parts
of the dimensionless diffusion con-
stant D(Q) = D(ar)/(go e"Wg), with
y=0. 5772; 0—= ~/8'qqe", with W~ de-
fined in Eq. (20). The plot is for
g=—4mN~~3=2. 22X 10, where R&
=pa; a is the effective Bohr radius.
The value N~+ = ND=10 cm cor-i8 -3

responds tc R& —-12 A. Indicated in
the plot are the values for D(0)

exp(- —q )/v 7r and Q~
~exp(- q ~~2), the frequency charac-
terizing the transition to dc (cf.
Appendix B 2).

4 and s -0.8 (for 15 decades of II) in Fig. 5; (iii) a
transition from the ~' dependence to dc behavior
in the neighborhood of a characteristic frequency
II, = exp(- q

'~ ) (cf. the last part of Appendix B 2
for a fuller discussion of 0,); (iv) a limiting value
D(0) yielding a dc conductivity similar to that de-
rived by MA; (v) for fixed n&, D tends to dc with
increasing temperature, i.e. , even with fixed ig,
the dimensionless frequency ~ decreases with in-
creasing T; (vi) as indicated in (40) for D(n&), one
has larger temperature dependence directly cor-
related with lower frequency dependence. The N&

dependence of the frequency dependence of D de-
pends on the value of & which, in general, is
~N~ '. Thus, the N~ dependence is best discussed
in the context of the detailed comparison with ex-
periment in Sec. III.

III. COMPARISON WITH EXPERIMENT

The experimental data that we will compare with
theory (Figs. 4 and 5) are contained in Figs. 3, 5,
and 6 in PG. Parts of these figures pertinent to
our discussion will be reproduced in this section.
The portions of the D (0) curves in Figs. 4 and 5
that are relevant to the PG results depend on the
range of ~. Now PG measured the conductivity for
10' &n&/2m &10' Hz. With the value We=0. 82&&10' /
meVsec, already quoted in the text, a typical val-
ue for W», in (41), is W»-10'~ —10~4 sec ~, depend-
ing on r, d. Thus, the smallest value for 0 (at
high T, 0-«»/W») corresponding to the ac range of
PG is 0 „-10's (of course, for the dc case II=0).
Inspection of the 0 scale in Figs. 4 and 5 shows
that a value of ~ &,-10 covers the entire range
in Fig. 4, including the transition to dc behavior,
while in Fig. 5, D(Q)&«:Q ' for»A „. This is
in qualitative agreement with Figs. 5 and 6 in PG.

For the samples with ND 10' cm, PG observed
a gradual transition from Rec(n&) ~ «»

' to Reo(c&)
&r c(0), at each fixed value of «», with increasing T.
For samples with N~ - 10' cm ', the frequency de-
pendence c(~») &cc&', s =0.8, persisted with increas-
ing T until at T -15 'K the electrons on the I' don-
ors are ionized into the conduction band of the host
Si (this will be more fully discussed below). The
only measurements of dc impurity conduction in
PG are for the samples with N& &10'~ cm 3.

Thus for the samples with N~ 10 cm and for
N& -10 cm, there are two different qualitative
dependences on ca, T for the experimental range
of these variables used by PG. We shall refer to
the former as high" concentration and the latter
as 'low" concentration. For all these samples N~
= 0.8~10 cm 3. The theory pertaining to each
concentration case is in Figs. 4 and 5, respective-
ly, and will be discussed separately in Secs. III A
and III B. Before this analysis, we want to point
out that these theoretical results for D(&») include
both the ReD(n&) and ImD(n&) and although the com-
parison with experiment, in the present paper,
deals mainly with ReD(«»), we would like to make
the following observations concerning ImD(«»).
Figure 3 of PG is a log-log plot of both the Re and
Im parts of c(«») vs «»/2s for a sample with Nn
= 1.4x10' cm 3. The plot is a series of straight
lines with the slopes varying slowly with tempera-
ture; i.e. , Rec, Imc«rc&', where s(T) is equal
to 0.VQ at 3 'K and 0.74 at 12 K. At each temper-
ature T, this slope s is an average over three
decades of frequency (s is also a very slowly vary-
ing function of c&). A convenient u&ay to show the
relation between Reo and Imo and also demonstrate
the & and T variation in s is to make use of the
Kramers-Kronig relation for this frequency range
This relation [quoted in PG, Eq. (2)] is
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TABLE I. Comparison of real and imaginary parts of 0.

s = (2/7r) tan ~ emo/Reo. )

0.81
0.81
0.79
0.79
0.78
0.75
0.76
0.72

Figure 3 in PQ, see text.

Experiment
Co/27I (HZ)

1O'
10
1O'

10
1O'
10
1O'
10

T ('K)

3
3
4.2
4.2
8
8

12
12

s = (2/ ) tan (Ima. /Reer)

0.83
0.82
0.82
0.81
0.80
0.78
0.76
0.73

"From Fig. 5 in text.

The oryb
n (=&/rv, ."~&')

2x10~
4x10 ~

1O-'

4x10 ~~

2 x 10-'2

10
1O-'4
1O-"

Im(o)/Re(a) = tan(2sv) . (45)

(We have not made the separation o -=o —od, [PG,
Eq. (I)] since this is unnecessary. ) Thus, if we

compare the experimental and theoretical value of

s = {2/v) tan ' (Imo/Reo),

we simultaneously consider the ratio of Imo to
Reo and the point-wise" variation of s with u and
T. On the left-hand side of Table I me list the val-
ues of s [in Eq. (46)] for a range of ro and T from
Fig. 3 of PG and on the right-hand side of Table I
the theoretical value for the same quantity s as a
function of fl (from Fig. 5). The near equality for
the two columns of s values indicates that the ex-
perimental and theoretical value of Imo/Reo are
in good agreement. In addition, it shows that the
asymptotic calculation of D(co) (cf. Appendix 8)
preserves the Kramers-Kronig relation (cf. Ap-
pendix A of I). ' The trend towards smaller s with
increasing T and decreasing ig in both columns of
Table I are also in agreement. In Sec. IIIB me
show that the temperature range 3-4.2 'K corre-
sponds to ~-10 so that the theoretical value s
= 0.82-0. 81 corresponds well with s = 0.81-0.79
in the left-hand column of Table I. As analyzed in
Sec. IIIB for T &O'K we conjecture that a new

hopping channel comes in [based on the tempera-
ture dependence of D(&o)] and the comparison in Ta-
ble I at the higher T is more complicated. We re-
serve discussion of this feature at higher T until
Sec. III8. For a high-concentration case we com-
pare Reo and Imo in PG, Figs. 6(a) and 6(b) for
the sample with N~=1. 1&&10 cm . For this
case we restrict the comparison to the higher-
temperature range T &4 'K (this restriction is fully
detailed in Sec. III A). In Fig. 4, the D(Q) curves
are computed for N~ = 2.7~10' cm ', which is a
factor 2. 45 larger than the concentration of the
sample under consideration with 1.1&10' cm
Thus, the values of s in Fig. 4 can be expected to
be somewhat smaller than the experimental values.
Further, in Fig. 4 the dependence, ReD, Ima
~ 0' (s =0.6), is only over an fl range ~ 2 decades,

(— ) N (1 —1 35K )D ~ (47)

where K= N~/N~ and e is the host dielectric con-
stant [the form of (4'I) is valid for %&0.03]. The
larger the. concentration N& the shorter the dis-
tance between the acceptor ion and the nearest
compensated donor and thus the further i.nto the
Coulomb mell of the acceptor ion. The E-depen-
dent correction" in (47) is due to the presence of
other nearby acceptor ions.

At finite frequencies and low temperatures the
ac hopping is localized [cf. (27) and PG] and the
effective activation energy &,«& ~. As co decreas-
es or T increases hops occur over larger dis-
tances and &off &. Thus, for ac hopping &,« is
~ dependent and at low temperatures, the smaller

ff is an important feature. At higher concentra-
tions, & is not only larger in magnitude, but the

hence the relation in (45) is not as useful. In Figs.
6(a) and 6(b) (of PG) at 4. 2 'K: the ratio Imo/Reo
varies from 1.83 at 10' Hz to 1.2 at 10 Hz and at
6.2 'K: Imo/Rem= 1.6 at 10' Hz, 1.25 at 10 Hz,
and 0.32 at 10' Hz! (A ratio Imo/Reo= 1.4 corre-
sponds to s = 0.6 [from (46)].j This is in good
qualitative agreement with Fig. 4, especially the
fact that the curves cross and Reo &Imo at lower
fl (decreasing &u, increasing T). Thus, for both
concentration cases the ratio Imv/Reo, derived
from Figs. 4 and 5, compares well with the mea-
surements of PG.

A. High Concentration: ND& 10' cm

For the high-concentration samples, the activa-
tion energy ~ associated with the dc impurity con-
duction is &-5-6 meV. Figure 1 in PG and Fig.
1 in Ref. 15 are pictorial representations of the-

origin of the activation energy (the Mott-Conwell
model) for low-compensated semiconductors. In
general &~N~ . MA have derived the following
expression for low-compensated semiconductors:

8'( 1 1;$5)
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derived from the individual data points, with 0',m,
=0.95rll, Wo in (41), and e" Wo= I. 46&1 0" sec ',
8&= 12 A, K=r&. The comparison is made with

~I/4e~( 2 ~-I/8)/ I/8 (49)

(48)

For the sample with XII=2.7&&101~ cm s (r/=6
x10 1) the left-hand column of D(0),»I shows a
nearly constant value while a slow increase with
increasing T is observed for the right-hand column
of D(0),„„.The latter behavior just reflects the
need for a slightly larger &,„~t for this tempera-

data. In Fig. V we plot D(~~) vs 10/T derived from
(5) and the values of c(ro) in Fig. 6. The solid line
is D(0) and for 1.6 &10/T &2. 85 the data points lie
on a straight line (the lower dashed line) with a
slope corresponding to ~ = 6.1 meV. For 0.8
& 10/T & 1.6 the dc points lie on a line with slightly
larger slope (-1% larger). We have not fitted the
points to one straight line but simply use &=6.1
meV. The sharp rise in D(0) at the upper end of
the temperature range results from donor ioniza-
tion illto tile conduction balld (cf. PG alld discussion
in Sec. III 8). In Table II we list the values of

FIG. 6. Real part of the conductivity Beo'((d) vs 10/T,
replotted from Pig. 5 of POOak and Geballe, Bef. 5 (cf.
also Bef. 26) for 10/T &2.85. The dc impurity conduc-
tion o.(0) is the solid curve, the other values of Beg(co)
correspond to the frequencies, ~/2m, indicated above.

IO

energy differences between the donor sites (which
give rise to &) vary more rapidly with donor .

spatial separation. At lower concentration all in-
tersite distances are increased and the donors are
typically in regions of slowly varying potentials.
One can thus conclude that the use of (18) with a
mean & instead of (19) is inadequate at high concen-
tration. The use of (19) would give rise an addi-
tional r~-dependent term of the form exp(- I) [ln(WO/
Ill)] //IT), where n and P depend on the functional
form of &(r, e). The consequences of this addi-
tional term are diminished at higher 'E, lower ND,
and lower &. For this reason we compare the the-
oretical x'esults in Fig. 4, obtained with the use of
(18) to the higher T measurements of PG on the
high-concentration sample, in Fig. 5 of PG. 6

This temperature region (T &3.5 'K) includes the
extremely interesting measux'ements of the transi-
tion to dc, for each fixed frequency, as a function
of increasing T. In Fig. 6 we replot the data 6

corresponding to 10/T & 2. 85 to show all the points
we use in our analysis. The transcription has
been accomplished with an Edwin digitizex and the
solid line in Fig. 6 is a result of the plotter con-
necting the data points of the dc conductivity, i.e. ,
a best" straight line has not been fitted to the dc

4

IP-6—

IO-9—

IP-lo—

IO-I I—

Io '2 I

0.00 0.50
I

I.OO

I

I.50
Io/T

I l

2.00 2,50

FIG. V. Real part of the diffusion constant Bea(~) |de-
rived from the measured values of Beo (~) in Fig. 6 with
the relation BeD(co)(cm /sec) = (0.6723T) Beo-(~} (0 cm" )]
vs 10/T. D(0) is the solid curve and the dashed lines are
explained in the text [above Eq. (48)].
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TABLE H. The dc impurity conduction in g-type Si.

Ng), Nj
(cm 3) (sec ~)

2.7x 10~'

2.3 x 10"

. 1.1x 10 ~~

3.36x 10

2.62
2.51

2.39
2.24
2.01
1.82

2.3
1.6

&(0)erat
x 10&

2.95
3.36

3.54
3.25
3.61
3.33

1 79x 10
2.24 x 10-'

10jr
1 67
1.43

1.25
1.11
0.92
Q. VV

Lj(0) „
x105

4.12
4.89

5.43
5.69
V.01
6.70

&(0)th
x 105

2.87

1.75 x 10-'

Mt
6.1

5.0

a (MA)
meV

~(Esv)
meV

~M. Pollak and T. Geballe (unpublished data).

ture range, discussed above (cf. Fig. V). The
average of the former D(0),~, values is 3.34x10~
which is a factor of 1.1V larger than D(0),„. The
agreement is good. Also contained in Table II is
unpublished data of PG 6 for a sample with &o
= I.Ixi0~' cm ' (rt= 2.44x10 '). The individual
data points were not shown on the o{ig)- vs-I 0/&

plot, just a straight line with a slope correspond-
ing to &„„=5.0 meV. Two 10/T points were cho-
sen arbitrarily and the associated D(0),„„evaluated
as in (48), with the appropriate constants. The
average D(0),~, is 2.02x10 ~, a factor of 1.15
larger than D(0),„. Again, the agreement is good
and indicates the No dependence of (49) (at least
for this concentration range ln Sl) ls very satisfac-
tory [cf. the discussion following (44)].

The right-hand columns of Table II are various
activation energies. The values for &,~t were al-
ready discussed; & (MA) is evaluated from (4V) with
es/@=1. 15x10 ~ cmmeV (cf. Fig. 2, Ref. 15). A

better agxeement with ~„,t is obtained with an ex-
pression for the activation energy in low-compen-
sated semiconductors recently derived by Efros,
Shklovskii, and Yanchev ' (ESg.

6= (es/c)(0 99)iV' 3(1 —0 43''t ) (50)

where p-0. 7. EST take into account the possibil-
ity of a second unoccupied donor in the vicinity
of the acceptor ion, which influences the energy
of the first one.

In Fig. 1 we plot D(Q) vs 0; the solid line is the
theoretical curve for ReD(&) reproduced from Fig.
4. All the points are obtained from Fig. 7 by di-
viding each value of ReD(ap) by the same factor as
in the denominator on the right-hand side of (48),
the corresyonding 0 is obtained by computing ~/
Wo exp(- A,„„/~T), with &„,~= 6. 1 meV. The most
striking aspect of the ~ plot in Fig. 1 is that the
four separate curves, each wit a. f~ed value of
&o/2v, in Fig. V now lie on a universal curve. In
other words, Fig. 1 is a simultaneous display of
boN ttM frequency and temberature debendence
of the ae diffusion. In Fig. 7 each curve, for

fixed ig, "merged" with the dc at some tempera-
ture T«(M), a function of the particular rg Re.-
plotted in Fig. 1 the transition to dc for all the
curves in Fig. 7 is characterized by one value of
&, which is designated 0, -=exp(-q 't

) [cf. dis-
cussion following Eq. (822)]. The spread in limit-
ing values of D(0) for the four frequencies in Fig.
1 is again a reflection of the need for a slightly
larger &,„,& for 10/T & 1.6 (cf. Table II). The
three highest-temperature points for r~/2w = 10s Hz
present a special problem. The experimental er-
ror, at this frequency and in this temperature
range (corresponding to the largest dc loss: o- 5
x 10-~ 0-'cm-'), is expected to be large (-30%).
These points have been reduced by 1.3 in Fig. 1,
but still lie outside the limiting values of the other
frequencies. This feature aside, the agreement
with the theoretical curve is quite good (the maxi-
mum deviation is -1.5).. In this regard, it should
be stressed that there are no "fitted" parameters
in Fig. 1. The basic parameter 4,~, needed to
reduce the cc data is determined in an indepen-
dent measurement of the dc impurity conduction.

B. Low' Concentration: WD -10' cm 3

At low concentration, following our discussion
in Sec. IH A, the approximation in (18) of using an
average activation energy 4 is expected to be a.

reasonable one. Therefore, in Fig. S, all the data
corresponding to one concentration, N~= 1.2x10
cm s, from Fig. 6(a) in PG are reproduced. Again,
using (5) we ylot ReD(~), derived froin the points
in Fig. 8, vs 10/T in Fig. 9. In addition to the
data points there are a number of solid and dashed
lines in Fig. 9, which represent our analysis of
the temperature dependence of ReD(~). At the
high-temperature end (T&15 'K) the near vertical
dashed line in Fig. 9 clearly shows the ionization
of the P donors into the conduction band of Si. The
line divas drawn to pass through the two points with
the highest values of ReD(~) for ~/2v = 10s, 10' Hs,
respectively. The slope of the line corresponds to
an activation energy of 42 meV. The ground-state
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cannot be accounted for by the approach to the
nearly vertical dashed line discussed above. There
is an "intermediate-" temperature behavior of
BeD(~g) between the donor ionization at one end and
the low-temperature small (apparent) activation
behavior at the other end. The four solid lines in
Fig. 9 pass through points obtained by subtracting
the value of the extrapolated low-temperature line
(for each ~) from the respective data points (at the
same ~) in this intermediate region. The lines are
parallel and suggest an additional activation energy
in the analysis of the temperature dependence of
ReD((o).

Except for the ionization region, at each fixed
T the frequency dependence in Fig. 9 is ReD(&)
~~', s-0.8. Thus, if the approximation in (18)
using an average 4, is any good, the temperature
dependence for ReD(~) should follow from (40);
i.e. , the data points in Fig. 9 (for T& ionization
region) should lie on four parallel lines, with
slope corresponding to (1 - s)h. The temperature
dependence of ReD(~) in Fig. 9 is complicated by
the fact that there seems to be two separate sets of
lines. A low-temperature get with slope cor~re-
sponding to (0.18)(1.7 meV) or 4 = 1.7 meV and the
higher-temperature set with slope - (0.2) (12.7

I I I

2.00 6.00
I I I I

IO.OO l&.00
T toK)

I I

I8.00

energy for a & donor~9 in Si is g~=45 me&, where
&„ is measured from the bottom of the conduction
band. The temperature dependence of the density
of electrons in the conduction band of an n-type
semiconductor, at low T, is given by3

FIG. 8. Real part of the conductivity Reo'(co) vs T('K),
replotted from Fig. 6(a) of Pollak and Geballe, Ref. 5,
for one value of the Donor concentration N~=1. 2 & 10
cm . The values of Reo.(&) correspond to the frequencies
~/27r, indicated above.
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n=(Ã ~ —1)(m,xT/2vtt ) ~ exp(-E~/KT) (51)

for a partially compensated semiconductor Ifor
if= 0, the activation energy for n is —', e~ ]. Thus,
(51) accounts for the temperature dependence of
D(~) = x Vb(~)/N„e in thi's temperature region; also,
note that the transition into the conduction band
wipes out the frequency dependence of BeD(~).
The latter behavior is analogous to the transition,
shown in Fig. 1 for the high-concentration sam-
ple, from ~-dependent localized hopping to ~-inde-
pendent deEocalized impurity conduction.

The four parallel dashed lines pass through the
low-temperature points and it is clear that the
strong departure from these lines when 10/T& 1.7

IP-IP

IP-I I

Io-l2 I I I I I I I I I

p 00 I 2 5 4 5 6 7 8 9 IO
IOXT

FIG. 9. Real gart of the diffusion constant [derived
from the measured values of Reo(~) in Fig. 8 with
the relation geD(fd) (cm /sec) = (0.6723T)Reo.(~) (Q ~ cm )]
HeD(~) vs 10/T. The solid and dashed lines are explained
in the text (cf. Sec. III 8).
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meV) or t) = 12.7 meV. We will argue that the two

values for 4 for the bvo temperature xegions are
evidence for bvo distinct hopping "channels. " The
low-temperature channel (t), =1.V meV) is asso-
ciated with the more familiar hopping ere have been
discussing: An electron on a neutral donor in its
ground state hops to the ground state of a. vacant
donor, The 4 is produced by the fluctuations in
the ground-state energy of the donors, vrhich in turn
is due to the presence of ioni. zed donors and accep-
tors Al.though the dc impurity conductivity of the
sample under consideration (in Fig. 9), Nn = l. 2
x1018 cm 1, %=0.066, has not been measured [ac-
cording to the theoretical results in Fig. 5 even at
high temperature, T-20', the dc impurity conduc-
tlvlty wollld be very 8111all, o(0)-10-' 0-'cm '],
one can still obtRin RQ estinlRte of 4~~t~ Using. the
sample parameters, in (50) 6 (ESY)= 2. 2 meV, and
for t), (MA) we must use Table II in Ref. 8, since
X&0.08, to obtain b, (MA) =2. 18 meV. Thus,
A, , -2.0-2. 2 meV and 1.7 mev/b, ~, -0.6. With
this estimatey one sees thRt + = 1 7 meVy obtRlQed
fxoxn the low-temperature slope in Fig. 9, is a
very x'easonable value for the effective activation
energy in the ac hopping regime. Further, the
fact that I)/b, ,„„-80%is consistent with the discus-
sion above, that the effective 4 for the low-con-
centration samples is almost frequency indepen-
dent, i.e., t),{r,8) [cf. (19)] has a slow spatial
VRX'l RtlOD,

The high tem-perature channel (A = 12. f meV),
me claim, is hopping between an electron in the
ground state on a neutral donor to the (excited)
split ground state of R vacant donor. According to
the effective-mass theorye the wave function of the
ground state of the P impurity in Si is a linear
combination of the "simple effective-mass" vr Rve
functions, each associated with one of the six con-
duction-band minima. Thus, the P-donor (ls, m
=0) ground state is sixfold degenerate. This de-
genex'Rcy ls yR1 tiRBy lifted by the intQraction of
the completely symmetrical (AI) state with the do-
nor nucleus, thus producing corx'ections to the ef-
fective mas-s ground state (valley-orbit splitting).
The splitting of the 1s, m =0 state is the difference
between the observed ground-state energy and the
effective-mass value; for P donor 9 in Si it is 13
+8 meV. The lowest excited state1' {2t), )n=0) is
34 meV above the ground state. Hence, 6=12.7
meV, obtained by dividing the (apparent) activa-
tion energy, corresponding to the slope of the soli.d
lines ln Flg, Oy by 1 s~ ls ln good agreement %lth
the ground-state sphtting 13+3 meV. The pro-
posed hopping mechanism is, thus, plausible. The
fix'st basic question is: Ax'e the tÃo hopping chRD-

nels, with such a large difference in activation en-
ergy(a factor of p. 5}, compatible? To answer this'

we sketch a theory for the two distinct hoyyiIIg

channels. Returning to (9), we write

Q(t) = axe(-) [w~{))+ wg(r)I t), (52)

where Wl 2(r, ) is the transition rate with activation
energy 6& 3 and hl«42. Again, computing the con-
figuration average, as in (10), one can obtain

hl(q(t)}=-tt, f d'rf1-exp[- WI(r)t]]

X,—f d'r[1 —exp(- W,{r)t)] . (58)

The main point to be emphasized in the structure
of (58) is that Rs R consequence of conf lgul'Rtioll

averaging, fax' parallel decay channels one does
not add the transition rates to determine a net
rate, W„,{r)= Z&z W, (r,-), but one adds u)eigIIted
values of 1-exp[- WI(rI)t]. Proceeding one step
further, using (18) for W(r) and (24), one has, ex-
plicitly,

»(Q(t)}=—(s»n)r'(I) —(3»v)r'(a) ~

where
r„„=R„"'ln(e"W,"' e 'I'" t) .

(54)

So, without a great deal of more detaile, ven
though r, &&&» r, &z& at low temperature, they can
become comparable at higher temperatures (es-
pecially as R"' & R"' and W01' & W"') When the
latter occurs, the temperature dependence of the
second term on the right-hand side of (54) will
obviously dominate the temperature dependence
of (Q(t) }. We will put the whole discussion on a
more intuitive basis: At higher temperatures, to
satisfy the condition in (24), W&(r)t- 1, for fixed t,
the 4l channel includes larger interdonor hops,
while the ~3 channel can provide hops with com-
parable transition rates using shorter interdonor
distRnc es,

The second basic question is: What are other
possible mechanisms' One could try to interpret
the temperature dependence of RSD{~) in Fig. 9
as the transition to a dc impurity conduction [with
R~. ,=2. 54meV, 1. e. , {0.2)(12.V meV)=2. 54

1116V] siIIlllRI' to tile beilRviol' of RSD(&g) ill Fig, 7,
Besides the point that the theoretical value, fxom
Fig. 5, is o(0) -10 19 0 lcm I„ the obvious fea-
ture of the transition in Fig. 7 is that the frequency
dependence dim&sishes With iDcl eRsiQg T. In Fig.
9 the frequency dependence is RSD(~) ~ &oL' with
lllcl'8Rslng 7 llll'tll lolllzRtioll (111'to 'tile colldllc'tloll

band). Similarly, one may argue that the apparent
change in activation energy for ac conductivity in
Fig. 9 ls analogous to the three activation ener-
gies (e, , i =1, 2, 8) observed in the dc impurity con-
conduction in n-type Ge and p-type Ge first studied
extensively by Frttzsche&I 11 and, more recently,
by Davis and brompton.

~a In this notation, ql is
associated with ionization (into the band), el with
1mpurlty iloppillg coIldllctlon Rlld &3 wl'tll 801116 ill-
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FIG. 10. Comparison of the theoretical (solid line) and
experimental values of ReD(Q). The dimensionless dif-
fusion oonstantD(Q)j(go~~, e Ws), with y=0. 5772; Q
=—~/W~e", with e"W~= Woexp(- 4/~T); Wo defined in Eq.
(41). The experimental values of ReD(Q) are derived
from the values for ReD(co) in Fig. 9 for 10/T &1.7 (one
data point, 10/T=9. 32, (d/2m=10~ Hz is off scale, as
indicated by arrowhead above) with 0~=r =0.6r~ (cf.
text at the end of Sec. III B), 8 =1.7 meV, Wo = 0.82 x 10 /
meV sec rcf. Eq. (41)j. The theoretical curve for ReD(Q)
is reproduced from Fig. G.

10 and 11, the agreement with theory for the fre-
quency and temperature dependence is quite good.
For hopping between the split ground states of the
donors the assumption of a nearly constant b in
(18}is expected to be a very reasonable one and
with the choice of o,', = 0.9 rso (which is the aver-
age nearest-neighbor interdonor distance) the nu-
merical agreement in Fig. 11 is excellent. It
should be pointed out that the numerical agreement
is quite insensitive to the value of Ws [cf. (40)].
In Fig. 10, the numerical agreement is off by an
over-all factor of -2. 5, even though there has
been a partial "fitting" to the theoretical calcula-
tion. The value of o~, is chosen to conform to the
values of the dominant intersite ac hopping distance
used by PG in Table III of Ref. 5 for the same
sample. At 10 'K the lowest value of r in Table
III of Ref. 5 is r= 180 A. We have used o, ,= 150
A at much lower temperatures. The smaller value
for o, , is a partial compensation for the approxi-
mation of a constant 6 at these low temperatures.
The variation of 4 inthis low-concentration sample
at low temperatures is still a factor in a careful
numerical agreementa between theory and experi-
ment.

termediate conduction process. The various theo-
ries of q2 are reviewed in Ref. 12. Fritzsches
suggested a& could be the energy required to put a
second electron onto a neutral donor site (i.e. , a
transition to a D band}. Thus, the higher-tem-
perature conduction process in Fig. 9 could be the
&~ one showing up in an ac measurement. We rule
this possibility out because all the theories de-
scribed for &z involve a transition from a localized
transport mode to a delocalized transport mode in
some kind of intermediate band. Again, such a
transition would necessitate the decrease in fre-
quency dependence of ReD(z} with increasing T.
The significance of the above discussion points out
the importance of both, simultaneous measurement
of frequency and temperature dependence in the
study of these conduction processes (e.g. , in
amorphous materiaisss).

We have not yet worked out the theory with the
two hopping channels present simultaneously, but
have merely assumed the temperature dependence
of each one to dominate in their respective regions.
In Fig. 10, we plot the low-temperature data, 10/
T & 1.7 of Fig. 9, with 6 = 1.7 me& and Qp = 1 2
x 10 4 sec- and in Fig. 11 the higher-temperature
data 10jT& 1.14, with b = 12. '7 meV and Ws = 2
x10ts [the Ws are determined from (41)]. The solid
lines in Figs. 10 and 11 are the theoretical curves
for ReD(~) reproduced from Fig. 5. In both Figs.
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IO
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FIG. 11. Comparison of the theoretical (solid line)
and experimental values of ReD(Q). The dimensionless
diffusion constant D(Q) = D(co)/(6 cr~se~W~), with y=
=0.5772; Q—= v/W~, withe"Wz= Woexp(- ch/~T); Wode-
fined in Eq. (41). The experimental values of Re2)(Q) are de-
rived from the values for ReD(cu) in Fig. 9 for10/T &1.14,
withu~, =r=0.9r~, 4=12.7meV, Wo =0.82&&10 /meV

, sec [cf. Eq. (41)]. The theoretical curve for ReD(Q) is
reproduced from Fig. 5.
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IV. CONCLUSION

In summary, the model stochastic process of a
continuous-time random walk on alattice has been
demonstrated to be an excellent approximation for
impurity hopping conduction in semiconductors.
Even with the convenient simplification of assuming
a constant energy fluctuation for the basic intersite
transition rate, the theory is capable of correlating
a considerable amount of experimental data (cf.
Fig. 1). The general agreement with experiment
lends credence to the main assumption of the mod-
el-the basic fluctuating quantity in hopping motion
is the transition rate between the centers. The FT
of the function g(t) completely determines the fre-
quency dependence of the conductivity and g(t), in
turn is simply related to the characteristic func-
tion of the sum of random transition rates (the
parallel channels leaving a site). It is interesting
that the CTBW with a single-site independent P(t)
seems to be an adequate approximation even though
it is known that there are inequivalent hopping sites
(depending on their proximity to the acceptor ion).
One can generalize the CTRW to include two differ-
ent g(t). In fact the CTRW model of hopping trans-
port can serve as a "theoretical laboratory, "where
one can examine the effects of more and more
known details of hopping motion, e.g. , using (19).
Also, one can use the theory to parametrize the
transport in amorphous materials3~ and polymeric
systems where the details of the microscopic
process are not yet well understood.
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APPENDIX A: ANALYTIC EXPRESSION FOR Itj(t)

Now,

f e-'" exp(- Te ")dx= T ' y(a, T), (As)

where y(a, T) is the incomplete I' function. 2' Thus,
the exponent in (Al) is

8 d 8 ~'y(~T)
da a=i

For large T (T ) 10),

(A4)

y(a, T) =r(a) -T' 'e-'

Therefore,

a-1 (a-1) (a-2)x 1+— + ~ ~ ~j 7' j

g
d'

, T 'y(a, T) =-, T 'r(a)
da ' , i da

6e' 6
+ 4

l'~~ + ~ ~ ~

Dropping the second term on the right-hand side,
the first term is equal to

l dlnI' a
3 1

dlnI' a

d lnI" a

( T)}{
T 'y(a, T) = Z

( ), (A7)

the derivatives in (A5) are just the polygamma
functions. " Thus,

(Q(t) ) = exp(- ~3 [(lne"T) +Sf(2) lne"T+2$(8)]),
(A8)

where y= 0.5772 ... , $(2) = 1.645 .. . , &(8)
=1.202 . .. . The series expansion of (A3) is

Inserting the expression for W(r) in (14) (which
depends only on I r I) into (10), one has

(Q(t)) =exp[ 4wN~ J (I-—e ~{"")r'dT]
0

= exp(- q J [1—exp(- Te ")]x'dx),
(Al)

with T=- W„t and TI= 4vNnR,'. The x in-tegral in the
exponent of (Al) is integrated by parts and rewrit-
ten with a parameter a to obtain

p 00

x e "exp(-Te ")dx
4 0

hence (A4) is equal to

(- T)"
27)T Z

( )Q

{{}{1}}= exp (ee Z (- T)"

For small T (T(1),

(Q(t)) =1-2gT+(-,'}7+2q')v + ~ ~ . .

Thus,

(A8)

(A9}

(A10)

e '"exp(-Te ")dx
3 da ~0 -e i

(A2)
Q(t)/W}}{=2q —(~ q+ 4TI )T+ ~ ~ ~ (A11)
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APPENDIX B: EVALUATION OP Q(Q) BY SADDLE-

POINT METHOD
from (810) into (89),

I4+ 2 ' ys tanya —I) —ye = 0 (812)
The Fourier transform (FT) of g(f) determines

the ac diffusion constant D(~). In the following,
we use the saddle-point integration technique as a
general method to obtain $(taI). A purely numeri-
cal evaluation, using the fast Fourier transform is
not adequate, as the range of interest for (d spans
many decades,

We first rewrite p(ioI), using (18), as

p(i(o) =1- iQq(Q), (81)

where Q=Io8 "/W„and

q(Q)= f dv8 '"'q-(v) . (8
Vfe shall be interested throughout in the FT of

q(r) in (82) for Q« l. In that case, with

q(Q) = f'dv8 '"'q(-.)+ f, dv 8 '"'q(v),

the first integral. being of order unity [cf. (A10)],
and the second of order Q I (the effective range of
t)~ oils llas

q(Q) =f dv 8 '"'q-(v) . (84)

Now~ (812) ls solved foI' gs 111 tel'IIls of yep

go=[(ystanye) +ye+I) ] -ystanys ~ (813)

where the plus sign of the radical is chosen so that
xs&0 (which corresponds to v&1). The right-hand
side of (813) will be designated go(yo) andnote it is
an even function of yo. In the present calculation
we consider a range of N~ such that q ~&166.66.;
thus for )yol &-,'w, go(ys) =I) IIs. As yo-(-,'w),
tanya-+ ~, and xs(yo)-0, but as ye- (-,'w)„ tanya- —~, and go(yh)-+ ~. In the intervals (II+-,')w
& ye& (I+-,')w(n=0, 1, 2, ...), gs(ye) monotonically
decreases from+~-0. We insert ge(yo) into
(810) and determine ys from the graphic solution of

cosye/go(ye)ye = 2I)/Q (814)

The left-hand side of (814) is an odd function of
yo and also it is an explicit function of g. In Fig.
12 we plot the positive values of the left-hand side
of (814) for I) = 6x 10 g (i.e., Ã~ = 2.7 x 10II cm 3).
The solutions yo(Q, I)) of {814)are simply obtained
by the intercepts of this plot with the hox imontal

The large v' form of q(v) can now be used in (84)
[cf. (A6)] and with a change of variable, g= inc,

q(Q) = f dge~[g IQe -(~)2-] . (85)

To use the saddle-point method~4 the integral in
(BS) is recast as a contour integral in the complex
z plane (z=x+iy),

q(Q) $d 8e(e)

with I= real line (g & 0) and

C(z) =-z —fQW —(~)g';

(as)

(87)

C'(g) =1 —fQW -~g' (as)

88: 1 —I)(gs —ye)+Q8 oslnye=0 ~

4(g) is analytic in the finite z plane. The contour
of integration is now distorted, to pass thxough a
saddle point of eo"' along a path of steepest de-
scent: Im@(z) =1m'(ze), where go is a stationary
point of 4(z), i.e., 4'{ge)=0.

g. Stgtionury Points of 4(s)

To obtain the stationary points of O(z) we set
the derivat'kve

tO
i l l l

I

P 10'—

Oo

l l l 1 l

!

!

!

!

!

!

!

!

!

!

!

Sm 7w'r

Q8 o = 2I)go yo/cosye (all)

Im- 2q~, y, +geocosXO=O (810)

To solve (89) and (810) for xo, yo, we first sub-
stitute

FIG. 12. Positive values of the function f(yp)
=8~0 oosyo/gavo vs yo, used in the graphic solutionfor the
stationary point g& of 8{g) [of. Eq. (87)). f{yP is eval-
uated using Eq. (83.3) for xp and q = 6 x 10"3. Solutions for
yp(Q) are intercepts off(yp) vrith the horizontal lines cor-
responding to the different values of 2II/O.
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ues of g, we conclude

xo = —lnQ —q(lnQ)
—yJ(-,'v) =1 —2q(- lnQ) . (B18)

2—
hJ

0 —""""
0

p

-4—

2 4 6 8
I I I I I I

IO I 2 14 16 I8 20
"o

FIG. 13. Trajectories of the stationary points ~p(Q)
=xp(Q}+iyp(Q) of 4'(e) [cf. Eq. (87)] as a function of de-
creasing 0 (indicated by arrow). The trajectories lie in
nonoverlapping strips.

q(Q) = eo "o' [-O"(zo)/2v]

where

@(zo)=zo ( rI)zo 1+bozo

(B15)

(B16)

—O"(z,) = I+2qzo -7Izo2, (Bn)
using the relation iTie'o = 1 —qzo. The leading
term is obtained by simply considering the contri-
bution to the integral (B6) in the neighborhood of the
saddle point. The phase in (B15) is determined in
a manner to insure that the integration contour
passes through the saddle point along a path of
steepest descent. 4 The full asymptotic expansion
can be obtained by taking account of the entire
path of steepest descent. ~ In Fig. 3 we plot xo(Q)
and yo(Q) for rl= 6x 10 2, also for comparison the
straight line, - lnA. Calculating zo for other val-

lines associated with each value of 2q/Q. The
corresponding values of xo are obtained with yo(Q,

rl) inserted into (B13).
As evident from the plot there are multiple solu-

tions of C '(zo) = 0. In Fig. 13 the trajectories of
zo(Q) are shown, with the arrow indicating the di-
rection of decreasing Q. Each grouP of zo(Q) lie
in nonoverlapping strips parallel to the real axis
with the strip (- —2v & yo &0), adjoining the real axis,
containing the solution with the correct limiting
dc value (cf. below). The other solutions give ex-
ponentially decreasing contributions as 0- 0.
Therefore the contour in (B6) is distorted to pass
through the saddle point just below the real axis
and lie along a path of steepest descent. There is
no "interference" along this path from any other
saddle points.

2 Leading Asymptotic Term for Q(Q)

The leading term in the asymptotic expansion of
q(Q) is

C(zo)--,'g ' ', —4 "(zo)-2q' '.
'hence,

O(0) 2o &/2/2
( 1/2/ )-1/2

(B20)

(B21)

The value for q(0) in (B21) is in agreement with
the asymptotic evaluation 1 of the exact result

q(0) = q "'vHI(q "') (B22)

in (42) in the text.
The characteristic frequency in this model, us-

ing the simple transition rate, for marking the
change from ac to essentially dc behavior is 0,.

= e " . A simple interpretation of this value for
Q, follows from an examination of (B5). The
peak of the function exp [x—(~2)x ] occurs at the
maximum of the exponent: x, =q ' '. For 0 such
that Qe" = 1, for x & x, (i.e. , —lnQ & q '/'), the
exp(- iQe") term acts as an effective "cutoff."
However, for —lnQ &q /2, the factor exp(-iQe")
no longer acts as a "cutoff" because the function
exp [x—(~2)x ] is dropping rapidly for x& x„ i.e. ,
it is already "cutoff, "hence, exp(- iQe") is super-
fluous in effectively modulating the area under
curve. Therefore, for 0 & 0, there is essentially
no Q dependence of the integral in (B5).

The complete numerical results for

8-"D(~)/, o,' .W„-=D(Q) = q(Q)-' iQ, -
for N~=2. 7&&10' cm and ND=10 8 cm 3 are shown
in Figs. 4 and 5 and discussed in the accompany-
ing text.

3. Higher-Order Asymptotic Terms for Q(Q)

The expansion parameter for the asymptotic
series for q(Q) is not obvious for the region:

These results are obtained by inserting xo= —lnQ
+ e and —yo = —2'2(1 —5) into (B9) and (B10) and re-
taining linear terms in q, 5. Such a procedure was
suggested by the numeyiegE results obtained in
Fig. 3, for the region

»1/2

-inn)7l"' '
1Q -1/2 n1/2 (B19)

$0 = —2QQ

[The last result follows from substituting xo(yo)
=rl ~/2 into (B14) and assuming yo« 1.]

Inserting (B18) into (B15),
—inn & q-'/2

q(Q) = (ieQ)

X exp(- q [-,'(- lnQ ——,'io)2+ ~ ~ ~ ] ](2v)'/2

or, roughly, q(Q)«Q ' """,where 5(Q) varies
slowly with Q. In the dc limit Q- 0, [cf. (B19)]
&0- n Xo- o--1/2
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—lnQ&g ' . For the region -lnQ&g '~', one can
assume Q-O and use the asymptotic series for the
Airy functions

O(0) = g-t/' x Hi(q-t/')

terms:

Q(Q)-e "o'[2/- 4 "(z ))' '(1+ C),

C -=-', [g (1+2'( —gz', }'(1+2qzc—ilzas)-'

(B26)

where

t/2 -1/4 an &/a/8 Q C i} (B24)
&0

C, = I'(»+ -', )/[54'~ ir (u+ —,'));
clearly the asymptotic expansion parameter is

-1/'2

For the general case we follow the procedure in
Morse and Feshbachs~ and derive for the first two

--,'(1-qzea) (1+2gza-qzaa) '] . (B2'7)

The dependence of C in (B27) on Q, ti is rather
complicated, however, we make the following sim-
ple observations: For -lnQ&g ~, C is nearly
constant and at most C =0.1. For -lnQ&g
zs- r(

'/' and C- $ i}'/, which is identical to the
second term of the sum in (B24). Thus, C is at
most -10% correction for the range of Q, 7I con-
sidered here.
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