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A general theory of stochastic transport in disordered systems has been developed. The
theory is based on a generalization of the Montroll-Weiss continuous-time random walk
{CTRW) on a lattice. Starting from a general mobility formalism, specialized to hopping
conduction, an exact expression for the conductivity 0{&)for the CTRW process is derived.
The frequency dependence of 0{co) is determined by the Fourier transform of the zeroth and
second spatial moments of the function P(s, t), which is equal to the probability per unit time
that the displacement and time between hops is s, t. The conductivity corresponding to char-
acteristically different types of hopping distributions is discussed, as vrell as the basic ap-
proximation in adopting a CTRW on a lattice to transport in disordered solids.

I. INTRODUCTION

Charge conduction entirely by "free-carrier"
band transport is the biggest casualty in going from
an, ordered to a disordered solid, At present there
is a great deal of interest in a wide range of non-
bandlike means of transport of both charge and ex-
citation in disordered or amorphous solids. Be-
sides having important applications to areas such
as xerography~ and optical-memory devices, 3

amorphous systems are a, basic and natural exten-
'sion of the physicist's study of solids.

The lack of long-range structural order is the
central essence of the problem; this lack of order
causes a random potential to exist in the solid.
The random potential can give rise to a distribution
of localized electronic states4 as well as the ex-
tended bandlike states. 5 Therefore, the nature of
electronic transport can either be the more famil-
iar band type (free-carrier motion with occasional
scattering from potential fluctuations), with the
localized states acting as traps, or there can be
transport among the localized states. ~

Carriers can move from one localized center to
another by hopping. ' To describe hopping quanti-
tatively, one must first know how the electron on
one center communicates with another center. For
this part of the problem one must know the elec-
tronic wave functions and from them calculate the
transition probabilities between typical centers.
The transition rate, in addition to depending on the
parameters describing the wave functions, must
depend on the spatial separation between the cen-
ters and on the energy difference between the ini-
tial and final state.

The second part of the problem involves the task
of describing the site-to-site motion of the electron
among the statistically distributed centers against

the background of the random potential, which
causes fluctuations in the local energy levels.
Since the transition rate is a sensitive function of
both the local separation and local energy fluctua-
tion, the hopping transport wiQ depend critically
on the details of the statistical distribution of these
parameters. Therefore, even given a knowledge
of the nature of the localized centers and their dis-
tribution, one has to deal with the difficulties as-
sociated with the stochastic aspects of the site-to-
site transport. This must be solved in order to
describe, quantitatively, time-dependent transport
in amorphous materials, vhich is the main aim of
the present formalism.

We offer a new approach to this problem: it is
to study in detail a stochastic process that contains
the essential elements of hopping transport and
yet is entirely tractable to analysis.

The process considered is a generalization of the
Montroll-Weiss model of continuous-time random
walk (CTBW) on a discrete lattice. t The central
approximation we make in adopting this process to
hopping conducti. on is justified by an analysis of
the structure of an arbitrary "path" in the CTBW
and comparing this to an analogous quantity in a
configuration-averaged random walk (BW) on a
random medium. In a system with a large number
of hopping sites the difference in the two processes
can be shown to be small.

The simplifications inherent in the structure of
the CTBW model allow one to focus on the basic
fluctuating quantity in hopping motion, that is, the
transition rate between centers. The basic quan-
tity that determines the conductivity is the char-
acteristic function of a sum of transition rates,
each treated as a random variable.

In Sec. II the relation between the frequency-de-
pendent conductivity v(~) and a RW is established.
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The formalism of this section is based on a gener-
alized theory of mobility, ~~ which is specialized to
hopping conduction. In Sec. III the generalization
of the CTR% model of Montroll and%eiss is described.
Stress is placed on the main mathematical results
that are used in Sec. Ip, wherein the frequency-de-
pendent diffusion constant D(~) of this stochastic
process is calculated (exactly) and a number of
representative examples are discussed [o(~)
= (ne /bT)D(~), where n is the density of effective
carriersj. One of the examples typifies the quali-
tative features for D(~), observed in impurity con-
duction in semiconductors. In a following paper, ~3

hereafter denoted as 0, a detailed application of
the present theory is made to conduction among the
impurity states in a semiconductor, which is the
prototype of a disordered solid.

It must be etFEp'kgg28 gd at the outset that the trans-
port theory developed in Secs. II-IV, as applied to
impurity condition in II, represents a dramatic
departure from previous considerations of this
problem (cf. references in II). Specifically, there
are two basic parts to this new approach: (i) The key
quantity to determine, in a calculatian of the can-
ductivity a(~), is a probability function P(s, i) .
The function P(s, i) is the probability of finding a
carrier at a point s at time t if it was at the origin
so=0 at t=0. Starting with general linear response
theory, it is shown (Sec. II) that o'(~) is propor-
tional to the product of (g with a weighted space
average of the Laplace transform, P(s, i+) of
P(s, f). In general, in calculating a quantity such
as P(s, f) one has to consider all the possible paths
from sa(=0) to s that the carrier can traverse in a
time 7 with 7 —t. One must consider v & t because
the carrier can arrive "earlier" than f and "wait"
there until, at least, f; before hopping away. Each
of the paths must be "assigned" a "weighting" fac-
tor, i, e. , a measure of its relative contribution
in determining P(s, f). This measure naturally re-
flects the probabilities for the hopping time for the
displacement along each intersite "link" of the path.
For a fixed path or fixed configuration of sites the

hopping times vary over a wide range from site to
site. It is important to reiterate that in order to
contribute to P(s, i) the sum of all the hopping
times over- each path must be t. Kith these con-
straints each local configuration must be consid
eyed in the context of a tota/ path. Now, in addi-
tion, one must not only take into account allthe
paths (with their proper weighting) on a fixed array
of sites, i.e. , a total set of impurities with a given
location Ps,), but one must average over all pos-
sible distributions of impurity locations. In other
words, the probability of finding the carrier at s
at time f for a fixed array of sites at $s,j is
P(s, i; ps,J). Since it is impossible to experimen-
tally measure Ps,$ for a given system (sample) one

must study the properties, in any theory, of an
ensemble of these systems. Even for a given
system, carriers initially at widely different loca-
tions experience different parts of the same fixed
impurity site distribution. Thus, for a system
with macroscopic spatial homogeneity (as con-
sidered in I and II), an average over the initial
carrier locations is also contained in the ensemble
average. Hence, the key quantity P(s, i) is equiva-
lent to (P(s, i; (s,$)), where the average is taken
over an ensemble of all the site locations (s,)
weighted according to some assumed distribution
law. The site-distribution law is almost always
assumed to be a random distribution with the ne-
glect of spatial correlations.

As the final step in calculating the conductivity
o(~) one must take the Laplace transform of P(s, i).
Further insight into the dynamics of hopping trans-
port can be obtained simply from the well-known
properties of a Laplace transform. For an im-
pressed frequency +, the main contribution to the
Laplace transform P(s, iru) comes from P(s, f)
with i& ~ ~. Moderately high ~ (& is usually re-
ferred to some maximum transition rate of the
system) implies, therefore, short times. At short
times, P(s, f) falls off rapidly for large s. Thus,
moderately high ~ implies hopping among all the
sites (with total hoppina times less than ~ ) within
some effective radius s(&u), i.e. , only localized
hopping. For ~-0, the pertinent time domain of
P(s, i) increases and thus s(~) increases. How-

ever, because o (~)~ ~ (P(s, i&)) (where the angular
brackets indicate a weighted space average), it is
shown rigorously (Sec. IV) that for ~-0, hopping
transport confined to any localized region does not
contribute to o(~). To reiterate, in the limit
~-0, only nonlocalized hopping is significant.

(ii) A model stochastic process is used to cal-
culate the hopping transport along all the paths
contributing to P(s, i). In the model (Sec. III) the
probability that the time between hops is in the
interval (f, i+b, t) and the displacement is s, is
equal to p(s, f)b.f. The model process is a general-
ization of the Montroll-Vfeiss CTR%. The
hopping is from any point on a lattice to any other
with the displacement and time at each hop governed
by p(s, f). In applying this process to impurity
conduction one must consider hopping only between
positions of the impurities which occupy a random
selection of a finite (large) number of lattice points
in some volume V. In II the function P(s-so, i) is
obtained by taking into account the transitions from
a given site to the random array of impurity loca-
tions, in a definite configuration. The result is
then averaged over all configurations holding s, so
fixed. In addition, the calculation of g(s-so, f) in-
cludes a factor weighting the probable occupancy
of the lattice point s. In Appendix B it is shown
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that any arbitrary n-step path of a RW through the
random medium of any configuration of the impurity
positions (s,}has a one-to-one correspondence
with a path in the CTRW. Further, it is shown
that the essential difference between impurity
hopping conduction, where the function correspond-
ing to g(s —so, t), varies from site to site, and the
CTRW lies in the procedure for performing the
configuration average. For a system with a large
number of hopping sites it is argued that this dif-
ference in the averaging procedures is small.

The basic result is in Sec. IV where it is shown
that D(&) is equal to a simple function of the zeroth
and second spatial moment of the Laplace trans-
form g(s, i~) of P(s, t).

II. GENERALIZED THEORY OF MOBILITY

The starting point for our study of hopping con-
duction is a generalized theory of mobility, ~~ which
in essence is the Nyquist formula~4 relating admit-
tance (mobility) and noise. This is a generaliza-
tion of the Einstein relation between mobility and
diffusion constant to nonzero frequency ~ and
can be given in the form

g(+) = (e/s T)D(u),
where

4 Re D(&g) = 4 f cos(gt&v(t)v(0)) dt (2)

is the noise (velocity-fluctuation) spectrum at fre-
quency v = &/2v expressed by the Weiner-Khinchin
theorem as the Fourier transform of the velocity
autocorrelation. The conductivity is given by
the usual relation

v((g) = net((o), (3)

where n is the density of effective carriers. The
importance of (2) is that a knowledge of the fluc-
tuations of the equilibrium ensemble in the absence
of the electric field permits a calculation of the
linear response of the system (mobility). The re-
sult is quite general and depends mainly on the
tacit assumption of an average spatially homoge-
neous system.

The relation as it stands is inconvenient to use
in a hopping model since it refers to velocities
rather than positions. However, as shown in Ap-
pendix A, the relation can be rewritten in the form'

D(&u) = ——', &o' fo e '"'dt&[r(t) —r(0)]'&, (4)

where ~ is understood to contain a small negative
imaginary component, which can be interpreted
as a weak coupling of the system and the universe.
The complex ac diffusion constant is now deter-
mined by the spectrum of the time-dependent mean-
squared displacement and Eq. (4) therefore is a
suitable basis for a study of hopping motion.

The limitation of the system to hopping conduc-

tion comes in with the specification of the ensemble.
average in (4). A system of sufficiently low den-
sity of centers (e.g. , donors), between which hops
take place, is considered such that the carriers
can be considered localized. It is therefore rea-
sonable to choose a set of orthonormalized local
basis functions P, = Q(r —s), where s is used both
as a position vector, and as a name for a localized
site, and for this low-density system it is reason-
able to take

&y, IrIy, ,&=s5(s, s') . (5)

where f(s) is the equilibrium distribution function
for the initial "carrier" position.

The density matrix in (6) now determines the
ensemble average in (4) and one obtains

([r(t) —r(0)] &
=Tr[(e'"'re '"'-r) p]

where

=Z (s —so)'P(s, tI s„0)f(so),
st +

p(s, tl s„o)= I & s
I

e-'"'
I s,& I

' (8)

is the probability of finding a particle at site s at
time I;if it started at site so at time t=0, H is the
Hamiltonian (divided by 5) describing its motion.
The main purpose for introducing the local basis
(5) can be seen in (V)—it breaks up continuous
space into discrete denumerable "regions. " The
final form in (V) has a meaning which is intuitively
obvious-the mean-squared displacement is simply
a sum over all the "regions" of a product of the
square of the distance between them, the prob-
ability for the carrier to be at s at time t if it
started at so at t= 0, and the probability of being at
so at t=0 [f(s)].

If (V) is now inserted into (4) we have our basic
relation for the frequency-dependent diffusion con-
stant

D((g) = —
8 (g2 Z (s —sg) P(s, (g,' so)f(so)

$'
~ 8g

where

P(s, &,' so) = fo e '" P(s, tI so, 0) dt (10)

is the Laplace or causal Fourier~~ transform (FT)
of P.

At this junction in the formal theory [(9) and

(10)], one apprdach to take is to develop a trans-
port equation for P(s, tl so, 0) and attempt an ap-
proximate (self-consistent) solution that would
incorporate certain features of the low-density

The approximate equality in (5) can almost be taken
as the definition of localization for our system.
Correspondingly the equilibrium density matrix is

p,„,~f(s)5(s s'),
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system. Instead, an exact calculation of P(s, t I so,o)
[hence, P(s, &o; so)] is considered directly (without
a transport equation) for a stochastic process that
contains essential elements of the hopping problem
but yet is entirely tractable. The importance of
(9) and (10) is that a relation between conductivity
and a stochastic process is established and one can
then calculate P(s, t I so, 0) for a suitable process
without reference to its formal definition in (8).

III. CONTINUOUS-TIME RANDOM WALK

The stochastic process we wish to consider in
detail is CTRW on a discrete lattice. Montroll~~
and Montroll and Weiss~o (INW) in a series of pa-
pers have developed the theory of BW on lattices
with the use of generating function techniques. In
particular, MW have introduced an ingenious way
of incorporating lattice walks with a continuous
time variable into the basic theory.

We refer the interested reader to this excellent
series of papers ' for the necessary background
in RW on discrete lattices.

In this section, a generalization 9 of the work of
MW is presented. Let R„(s,t)b, t be the probability
for a walker to just arrive at s between time t and
t+4t in n steps, if it started at t= 0' and s0 = 0,
where

reach s at time t, etc.
The restriction to the initial condition

R,(s, t) = &.-,8(t-O')

is assumed and (12) is multiplied by z" and
summed over n to obtain

R(s, ~; z) —z Zp(s —s', u) R'(s, u;z) =8- (18)
S

where

4(s, u}= fo dt e "'g(s, t)

Equation (18) is easily solved with the use of
Pour ier transforms (k= 2vr/N, r—, = integer)

U(k, I z) =Z R(s, u; z) e "',
with the result

R(s I; z)=N Q
(r 1 —zA u

where

(2o)

R(s, t;z) —zZ dr/(s —s', t v)R(s—', 7;z)
s' ~

= 0;,06(t —0') . (l7)

One now takes the Laplace transform of (17) to
obtain

As = s~ aq+ sp a2+ s3 a3 A(k, u) =Z y (s, u) e '"" (21)
with the component s& equal to an integer and the
vectors a„the unit primitive translation vectors
of the lattice. The walks are restricted to be on
infinite lattices or on finite lattices (Ns distinct
points) with periodic boundary conditions. ~~ The
set of functions satisfy the generalized recursion
formula

R„.,(, t)=Z f, d y( - ', t- )R„(', )
(12)

if p(s, t)ht represents the probability the time be-
tween steps occurs in the interval (t, t+at) re-
sulting in a vector displacement s. A generating
function is now introduced to solve the difference
equation in (12):

R(s, t; z) = Z z" R„(s,t) (18)
n=0

(14)
n=o

is the probability per unit time for a walker to
just reach s at time t and

(n(s, t) ) = (s, t; z) ~, = Z nR„(s,t)
n=0

is the mean number of steps per unit time to just

Many of the results of immediate interest in the
present paper can be obtained directly from
R(s, t; z), i.e. ,

R(s, t; I) =Z R„(s,t) = R(s,t)-
C(t)=1 —f, y(~)d~,

with

y(t) -=Z y(s, t) (24)

Taking the Laplace transform of (22) we obtain a
simple final expression:

P(s, u) = R(s, u) [1—g(u)]ju, (25)

where R(s, I) is equal to the right-hand side of
(20), with z = 1. The physical interpretation of the
Laplace variable u [and hence P(s, gg)] is completed
in Sec. IV when we calculate the diffusion constant

which can be called the generalized structure func-
tion of the CTRW.

We now introduce the function P(s, t), which is
equivalent to P(s, tl 0, 0) in Sec. II, the probability
of being (found) at s at time t if initially at s = 0.
It is evident that in determining P(s, t) one must in-
clude the possibility that the walker arrived at s
earlier than t and simply waited there at least un-
til t l, e.

P(s, t) = f,'R(s, ~) e (t r) d~, - (22)

where R(s, t) is defined in (14) and 4(t) is the prob-
ability that the walker remains fixed in the time
interval [0, t],
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for this CTRW process.
An analysis of the structure of the n-step walk

contribution to P(s, f) is carried out in Appendix B
and compared to the analogous quantity obtained in
a configuration average of a RW on a random
medium. The latter comparison is necessary in
order to establish the validity of applying the CTRW
process, considered here, to impurity conduction
in II.

(27)

The sum over s tn (27) can be accomplished easily
by recognizing

(28)

where U(k, zz; z) is defined in (19) and k = szzr/N. —
From (20),

2U
(k. z~; »I ~p= ~ [I-A(k, z(.)]-'I „p
S'A -.

(k, ~,}I „., [I—A(o, z&)] '

P P + -8 2g

Using the definitions in (21) and (24),

A(O, ~) = g(iv)), (so)

8 A, (k, zing) I„,-Z s y (s, z(u) (32)

As the average fluctuations in (4) are those of a
field-free equilibrium ensemble and the system
under consideration is assumed to lack any intrinsic
asymmetry, the first moment of the generalized
structure factor A(k, i') vanishes. Thus, sub-
stituting (29), (30), and (32) into (27), one finally
has

D(~) =
p e~mN(~) i&d tj (i&g)/[1 —g (i(d )],

e,' (~)-=2 s' j(s, iw)/y(im) .

(88)

(s4)

The diffusion constant for the CTRW in (33) is a

IV. DIFFUSION CONSTANT D(w) FOR RANDOM WALK

One can now connect the discussion of Secs. II and
III with the relation

P(s, (g, sp)I;p p=P(s, M)I,„., -=P(s, ird). (26)

Thus, specifying the initial condition f(sp) = 5;, p in

(9), one can directly calculate D(iy) for the stochas-
tic process outlined in Sec. III. Inserting (25) into

(9),

simple function of the zeroth and second spatial
moment of the FT of the basic hopping distribution
function g(s, f). The reason P(z~) occurs in the de-
nominator of (38) is a reflection of the fact that we
are considering a sum over many different paths to
each point and we also sum over all the points of
the lattice.

The expression for D(~) in (33) has been put in a
form to resemble a formula previously derived by
the authors. 0 In the latter work the spatial and
temporal distribution at each hop were considered
independent of each other. In the present formal-
ism the previous result can be obtained by setting

g(s, &)=p(s)4(&),

with

Zp(s)=I .

(85)

(85)

Inserting (35) into (34), the only change in (38) is
o, ,(op)-c, , where o, =Zspp(s). Thus, the main
effect in a conductivity calculation of a space-time
correlation at each hop is to include a frequency
dependence in the rms displacement. This simple
consequence results from the fact that D(zp) is just
the second spatial moment of ~p(-)~pP(s, iru). It
should be stressed, that (35) is a sufficient but not
a necessary conditionto have oz, (~) —gz, .

Characteristic of hopping among the random sites
in an amorphous system is the dominant fact that the
hopping time is exponentially dependent on the
hopping displacement. That is, a small variation in
displacement leads to a change of orders of magni-
tude in hopping time. A clear experimental dem-
onstration of this fact is shown in Fig. 2 of Ref.
21, which is a study by Colbow on the radiative re-
combination of donor-acceptor pairs in GaP. The
time of light emission is plotted against the pair
separation responsible for this light. The plot
shows that a variation in spatial separation of al-
most a factor of 3 leads to a change in emission
time of five orders of magnitude. The emission
time in the radiative recombination process is a
direct measure of hopping time between sites. In
II, in fact, we establish an intimate relation be-
tween the present formulation of hopping transport
and the FT of time-dependent pair luminescence.

Thus, the frequency dependence of o, ,(~) is ex-
pected to be very slow (changing by a factor of 8
over many decades of ~). The dominant & depen-
dence is in g (iso). The quantitative aspects of a
detailed calculation of the expression in (34) will
be contained in the forthcoming paper mentioned
in Ref. 19. In the present paper we shall ne-
lect the + dependence of o, . However, the
importance of retaining the general form of
y(s, i) for a discussion of the connection between
the CTRW and a RW among the random impurity
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sites can be seen in Appendix 8. In that discussion
a simplification in the enumeration of the random
configurations of hopping sites obtains in impurity
conduction as the impurities actually lie on lattice

'

points. ~
In taking the dc limit ((o - 0) in (38), a familiar

form is recovered:

D(o) = H..(0)/6t, (37)

with

t= f, ty-(t)dt, (38)

the mean time for a hop (anywhere) or mean waiting
time. It is assumed that the carrier does make a
hop at some time (no permanent traps) and there-
fore P(t) is normalized to unity [(/)(i(o)- 1 as (d -0].
The existence of a finite dc conductivity for the CTRW
process can be traced to the divergence of the sum
over s in (27) . By explicit calculation in (28)-
(30) and (32), one observes Z;-(d for ~-0. If
the s sum is restricted, e.g. , Is) &z then

rmax
(d' Q s'B(s, 0)„.„0 (88)

S

and D(0)- 0. In other words, any restriction of the

hopping motion to a localized spatial region results
in a vanishing contribution to the dc conductivity.
Transport in the dc limit is obviously related to
unrestricted carrier range or current flow.

y(t) =)(() t)"e "'/r( +1), (4o}

where v 2nd X are two arbitrary parameters (X can
be considered the minimum transition rate in the
system). The FT of (40) is

g(i(d) = (1+ i(d/)() " ', (41)

from which one can obtain

dp(i(d) i
V+ 1

d(' )
I Ql&0 y 7

where t is the mean waiting time [cf. (38)]. Al-
ternatively, t, X can be chosen as the independent
parameters, and substituting (41) into (33) one can
write

2

D( ) rms

6 (I ~ ~/)();tx 1
(43)

A range of values of the two parameters t, X will
be considered, that produce distinctive types of

A. Example

To gain some insight about the results obtainable
with the use of (33) and (37) before going into an

extensive first-principles calculation of P(s, t) and

g(t) (in II) we shall consider some representative
examples assuming the form (35) for P(s, t). In

particular, a versatile functional form for g(t)
(normali. zed) is

and therefore

g(t)-5(t-~) &

which, when substituted in (48), yields

D(M) =2 o, ,[2 (d cot(2 (dt) —~2 i(d] ~ (45)

In this limit the BW is, in fact, the one discussed
initially in Bef. 11. That is, the steps occur at
fixed regular intervals, t=at. It is interesting to
note that ReD((()) in (45) exhibits resonance behavior
for (d = 2n)(/t or when the time to hop coincides with
an integer multiple of the period of the ac signal.
This should not be surprising.

In the second case, t) =1, and one obtains the
simple exponential decay P(t) = Xe 1', and for this
distribution

D((d) = ~+o, ,)(, (46)

a result which is completely independent of fre-
quency. The parameter X ~ simply plays the role of
of a time scaling factor. With the exponential form
for ii)(t) there is only one transition rate in the sys-
tem, so. the frequency response of a system is
connected with the possibility of more than one or
a range of transition rates.

The case tX™-0is an example of a spread of
transition rates. This type of distribution is neces-
sary to describe impurity hopping (cf. II). In the
well-known results of Pollak and Geballe (PG)
the real part of the conductivity Reo((d) varies as
', where s-0.7-0.9, in the frequency range
10 -10 Hz.

For the high-frequency limit l iso/Xl » 1 in (43),

D( )
.o2 )( /g)1-t1 ((r/'2) (1-Ix) (47)

If the identification 1 —t )=s is made in (47), o(.u&)

(o' and Imo((d)/Reo(ro) =tan —,'vs. Therefore, the
parameter t A. must be small in order to describe the
basic ac hopping results. One determining rela-
tion for the parameters is th=0. 1-0.S. The other
relation that fixes the values of t, X can be obtained
from the dc diffusion constant in (87), which is
independent of A.. In PG, Fig. 5, the measure-
ments [Re(&r) vs 10/T] on a heavily doped sample,
donor concentration N~ = 2. 7&& 10 cm, acceptor
concentration N„=0.8&10 cm, exhibit both ac
and dc impurity conductivity (the only example of
such measurements reported in their paper). Using

(1) and (3) for n=¹,
D((o) (cm2/sec) = 0. 6723 T[o((d) (0 1 cm 1)] (48)

random-time distributions. A particular choice is
a sequence of values for t X(: (i) t)(- ~, (ii) t A=1, .

(iii) t X-0. The first corresponds to the limit of
a highly peaked distribution. For a fixed t, let
g~ oo;

(44)
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and evaluating o(0) at T= 3 'K, D(0) = 5x 10 ~4 cm2/
sec. For the rms displacement in (3V), o, ,- rv
= 10 6 cm; thus. t = a, J6D(0) —3. 3 sec and, with
A. = 0. 1, X= 0.03 sec ~. The distribution (40) with
v= -0.9 and X = 0.03 is a very wide one (long tail
for t & t). PG needed a distribution of pair life-
times G(v) varying as ~ ' (for s=0.9).

As an independent estimate of A. , note that A. sets
the frequency scale. For ~ & X, D(~) exhibits es-
sentially dc behavior and for ~ & X, D(&o)-~'. More
precisely, if the absolute value of the denominator
in (43) is taken, one finds that D(~) &c id' when

(~/A. ) "»1. The minimum value of ~ sati. sfying
the latter condition for A. -0.03 is ~-10. Al-
though PG did not make measurements for
0&~&10', an estimate of ~-10 for the "turnover
frequency" is certainly reasonable (at 3 'K).

As a final consideration involving the last hopping
distribution, we would like to point out there is
something disturbingly unphysical about D(~) «&'
for arbitrarily large ~ or the singular nature of
g(t) CC t 0'9 for t- 0. This behavior simply denotes
the fact that a maximum transition rate has not
been put into the system. Such a maximum rate
would correspond to the smallest effective impurity
separation. A physically more realistic (normal-
ized) distribution leading to a finite value for small
E would be

~( )
&l&(t+ n.)j 'e

(49)I'(I - s, nX)

where now n is an additional parameter and I'(u, v)
is the incomplete I' function.

The results for D(~) using (49) are similar to the
ones obtained using (43) for the case when n~ & 1.
However, for n~ » 1, the leading term of D(~) is
independent of ~ and D(~}-o, ,X(nA, ) 'e ~/6
'xI'(1- s, nA). With a value n- 10 ' sec, which cor-
responds to a high-frequency "turndown" of (d-10 '
rad/sec one obtains D(~)-10 5 cma/sec. This
value of the high-frequency diffusion constant
agrees well with the values obtained by Tanaka
and Fan" at ~/2m=9x10' Hz.

V. CONCLUSION

A general theory of stochastic transport in a
disordered system has been developed. It is
based on a generalization of a model process: the
Montroll-Weiss (MW) CTRW on lattice.

The theory is considered to have wide applic-
ability as the main assumption in adopting the
CTR%' to transport in an amorphous system is a
difference in the procedure for taking configuration
averages of products of transition probabilities.
This difference is small in a sy' stem of a large
nmnber of hopping sites and an exponential depen-
dence of the intersite hopping rate on distance (cf.
Appendix B). In particular, the theory leads to a

We wish to thank Professor E. W. Montroll and
Dr. S. C. Maitra for useful and interesting dis-
cussions. A special thanks to Mrs. Nancy Kaiser
and Mrs. Nancy Rickey for typing the manuscript.
We appreciate a critical reading of the manuscript
by Dr. S. Kirkpatrick.

APPENDIX A: DISPLACEMENT FORMULA FOR DIFFUSION'
CONSTANT

First, (2) is inverted and use is made of the
evenness of ReD(~) and stationicity (v(t)v(t'))
= (v(t- t')v(0)) to rewrite the result in the form

1
( () (')}=— ( ) '"""d

w 00

(Al)

simple expression for the frequency-dependent con-
ductivity in which the frequency dependence is de-
termined by the Fourier spectrum of the spatial
moments of the function P(s, t). The function
g(s, t) is calculated, in detail, for the case of im-
purity conduction in H. In general, the spectrum
of transition rates of the system is used in an ex-
plicit determination of g(s, t).

The CTBW process, as described in this paper,
can be generalized to include a number of different
g(s, t). One can associate a basis of inequivalent
points with each lattice point. Montroll has con-
sidered this generalization for the familiar RW
(steps taken at regular time intervals) in Sec. IV
of the second paper of Ref. 11. In the case of two
points per unit cell the function p(s] of Sec. IV is
replaced by 2x2 matrices, e.g. ,

p11(s} pl2(S)

p, ( ) p, (.) (50)

where p,z(s) is the probability that a carrier on the
jth lattice point in an arbitrary cell makes a transi-
tion, in one step, to the ith lattice point of a unit
cell which is displaced by s from the originally
occupied one. The inclusion of the continuous time
variable would be a straightforward extension of
MW and Montroll. Basically, P(s, t) would be
replaced by matrix of dimension m& nz for m
points per unit cell. In general, the main neces-
sity for the use of different P(s, t) is that there
may be inequivalent sites in the actual system
(microscopic inhomogeneity) such that the transi-
tion rates from one of these sites is not included
in the total class of transition rates from another
site. An example of this type of situation can be
found in impurity hopping in low-compensated semi-
conductors (cf. Sec. II of II). The inequivalent
sites refer to different positions in the vicinity of
the ionized acceptor (i.e. , the Local potential).
Some aspects of this problem are discussed in II;
however, the replacement of P(s, t) by a matrix will
be the subject of another paper. ~
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Displacement (x component) can now be obtained
by integration:

&[X(t) -X(0)]'&= f, dt' f, dt" (I~(t') x(t")&

4 I „1—cosQIt
~ (A2)

Now

—{[x(t)—x(0)]'& = — '

dQI sin(gt ReD((g)/(gdt F
Q

(A3)

d
Res(QI) =-,'QI

'

dtsin(ot —&[x(t) —x(0)]'&, . (A4)

Rlld llIteg1'R'tillg by pRx'ts (R8811n11ng Rn 8 eol1vex'-

gence factor),

ReD((o) =- —,'QP, f,
"

eosQrtdt &[x(t) —x(0)]'& .
(A5)

The Kramers-Kronig relationship requires that

()=- ', (
1

""Rea(QI')

px'oviding

ID& } l~-&/l~l as
I

But
s'kn&df'—g
—

&
—dv =cos+t. (A7

'F
i Qg- QP

Thus, using (A5) and (AV) in (AS) and then adding
the result to (A5), we obtain

D(QI) =-', (o' f,
"

dte '"'-,'([r(t)-r(0)]'& . (AS

APPENDIX 8: STRUC1 URE OF n-STEP WALK IN
CONTINUOUS-TIME RANDOM WALK AND RE-

LATION TO RANDOM WALK ON RANDOM MEDIUM

To analyze the structure of the I-step walk in
the CTR% we examine the basic recux sion relation
&12):

B„(s,8„t)=Z f,'dvy(s s, t--I)ft„.I(s, sQ, I),
(81)

where R„(s,8Q, t) txt is the probability for a walker
to ]ust arrive at s between time g and t+ hg, in
II steps, if itstartedoutat t= 0'from s„and g(s, 1.)nI.
repx'esents the probability that the time between
steps occurs in the interval (I, I + n, v') resulting
in a, vector displacement s. As evident fxom the
form of (81), a determination of the probability
(density) function A„(s,8Q, t) at time t reIIuires
a knowledge of the entire time history of the car-
rier motion (t~I'~ 0). The process is non-Marko-
vian. 36 To simplify the discussion me shall vgork

mainly in Laplace space, i.e. ,

ff„(8 8Q, u) =Z y (8 —8, u)R„I(8, 8Q, u).
(82)

Thus, in Laplace space (82) has the form of a more

familiar RWIQ on a lattice. We now iterate (82)
and derive

a„(s,s„II,}= Z j(s s-'" "-, u)
pn-j. ), , 8 (1)

xy(s'""-s'"-" u} ~ ~ ~

x y(s~" - s~", I) y(8"' - 8Q, 8) . (83)

T11e total conti'1butioll to g„(8~BQ~ II) ls R sl1111 of
products of n factors of &&8~"—8"-",II}, t= 1,
... , n(s'"'=-s, s'" -=sQ). A specific set of s"'
(i=1, ... , n 1) -"labels" a "path" and the product
of the corresponding n factors of P "weights" the
relative measure of the path in a determination of
Z„(s,sQ, u).

If we iterate dixectly from {81)and take each
range of integxation as an integral number of inter-
vals of width ht and sum over this discrete set of
time intervals, e.g. , t=Idt, 7=/b, t, l=o, ..., I.,
we generate for each set of s"' a sum of products
of n p{s"'—8"' ", I'"' r t)r t factors. The sum is
over all combinations of integers E'~' such that

6t5 I I = I tXt = t. - (84)
ai

However, for our present purpose the simpler
characterization of the n-step walk in Laplace
space (83) will be considered. Using (25) and (14)
vie can &&rite

J„(s,sQ, I)=If„(s,sQ, g) [1—y (u)]/II, (85)

where P„(s,8Q, u) is the Laplace transform of
H„(s,8Q, t) the probability of being (found) at s at
time t aftex' n steps if initially at so. The second
factor on the right-hand side of (85) is the Laplace
'tl'RIlsfol'111 of 4(t), def1ned 1n (23), t11e px'obRbIlity
that the &balker remains fixed in time interval
[0, t]. The properties of 4(t) can be obtained from
(23) and the fact that P(0) = 1,

e(0)=1, C( )=0, —„,=y(t). , (BS)
'i

In 11 we use the notation {Q(t) &
=- 4(t) and discuss

this probability function and its Laplace transform
in considerable detail.

Vfe shall now examine an g-step random walk on
a random medium (RWRM). The random medium is
R 8««N+ 1 impurities (or hopping sites) located
randomly on lattice points in a volume V. Both
N a,nd V can be considered as arbitrarily large vgith

the constraint N/V= N~, a fixed density. A given
configuration of N sites iS d'esignated as ps,}.The
initial position of the carrier at so is always fixed.
The analog to (81) in the random medium is

6t„{8,sQ, t I/sI})

I d1 w(s —s, t —7 I(8,})
s E/s])
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x(R. ~(s' so, v
I {s&}» (BV)

where $„(s,so, t l{s,}}and W(s, t I{s,})are defined in
the same manner as B„(s,t} and (l)(s, t), respectively.
There are two essential differences between (Bl)and
(BV): (i) In the former case (CTRW) the position
vectors s, s, etc. , could correspond to any lat-
tice point. All knowledge of the fact that there
are N hopping sites must be included in a calcula-
tion of ())(s, t). In the RWRM all the position vec-
tors s, s correspond to the net {s,}of hopping
sites, i. e. , the sum over s in (BV) is only over
Ps, }[the point s is included in the sum if we assume
W(0, t l{s,}}=0]. (ii) In contrast to the CTHW, in
the RWHM the dl„(s,so, t l {s;}}is a function of the
positions of ail the hopping sites {s,}in addition to
8~ sol also~ the transition probabilities W(s —s i

tl {ed}vary f»m»« to site; i.e. , in addition to
a dependence on s —s; the 5'function depends on
the relative positions of all the {s,}to s .

The site dependence of W(s- s, t 1 {s,})needs to
be clarified. In II, Eq. (14), we determine

W(s-S', t
I {.;})=W(s-s')q(t; ."), 0 8)

()(t;8)=e px(- f()('(s, -s)), (BQ)

where W(s —s ) is the (quantum mechanical) two-
body transition rates between an impurity at s to
an impurity at s, and Q(t, s ) is the probability
that the carrier remains on site s for at least a
time t since it hopped there. The transition rate
W(s —s ) between any two sites always has the
same form, it depends only on the vector displace-
ment s —s (three-body transition rates are not
considered). The explicit site dependence of (88)
is in the Q(t; s ) function in the sense of (89). One
ean easily see from (88}and (89) that

t&
oO

dt + W(s-s, tI{s,})=— dt @ ' = l.
0 (810)

The sum of all. possibilities for leaving a site is
equal to unity, independent of the site. To under-
stand this constraint consider the following situa-
tion: A site s„hasno nearer than average neigh-
bors. Thus, to leave s„acarrier must jump a
larger than average distance. As the transition
rate is exponentially dependent on displacement, the
probability that the carrier leaves s„:atsome time
t is smaller than from a site with nearer neigh-
bors. However, (810) must be satisfied. Thus
the jumps to far neighbors from s„must somehow
be enhanced. The main point to be made now in
this discussion is that the transition rates W(s,
—s„)between s„and any site s, are not enhanced;
rather Q(t; s„)is enhanced. From (810) one can
observe for a site with no near neighbors, the

probability to semen on the site is larger. Thus.
the Q(t; s) function in (89) has the explicit site
dependence (relative to the fixed configuration
{s,})and it "soaks up" the normalization of (810)
from site to site.

The form of the time dependence of (BV) is simi-
lar to (Bl). o As in the CTRW we take the Laplace
transform of (BV) and iterate:

(X)(if &
Xp(s& t ~ ~ ~ t 8&)( 1)t

~ o ~ ~ PT1

with

(814)

Z p(sg i ~ ~ y 8))( g) = I&
gN 1$ 0 ~ 0 j 81

where each s, sum extends over all the lattice
points in t/o Vfe assunle each impurity is random-
ly located on the lattice:

(815}

N 1p(s„.. . , s„,)=g p(s, ),
1~1

N 1
Z .p(s„... , s„,) =g Z p(s, )=1.

8$

Thus

p(s, ) = v/V.

Foz simplicity, we first consider

6'(s~ so i u
I {s&}}= &n-» .(g&

040 $8 Q fff]

x w(s-s'"-" uI{s})~ ~ ~

x w(s('& s„uI{s,}). (811}

To compare (811)with (85) and (83) of the CTRW
we first must consider s to be an arbitrary lattice
point [as it is in (85)]. Thus, we must multiply
(Bll) by the probability that the s is an impurity
site, ¹/V =K»v, where v is the cell volume (for
the simple lattice we are considering V/v is the
number of lattice points in V), In both RW so is
an impurity site by definition of the initial condi-
tion. In addition, we must multiply (811)by the
function Q(u; s) and finally, as discussed in Sec. I,
the result has to be configurationally averaged
over all random distributions {s,}of %impurities
on V/v lattice points. Hence

(p„(s,s(), u) = (xvvd-t„(s, s(), u I{s,})q(u; s))(g, &

(812)
is to be compared to

P„(s,s„u)= ft„(s,s„u)e(u), (813

with (83) for R„(s,so, u).
To explicitly compute the configuration average

in (812) we must consider sums of the form
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X~1

+I(2 II II)= + . ZIP(oI) oIIIIIO(II;o) III )o(s —2'", II/(sI))Io(s"I-s„m((sI))) (ooo)
~ 0 ~ 0 ~ Si $i 6 fsg}

1
Z & q (u; 8)N 5W(8 —8„I

~
(8 )) W (8, —8, g

~
(8,])& p(8, ),

)~i 8) Sg
(821)

~I+I ~I+I

where &
~ ~ );, is the configuration average over sl ~ ~ ~ 8. .. 8„1~ ~ ~ 8„1.We Insert (819}and observe

that since each 8, sum is now unrestricted (extends over all lattice points),

+2(8 80 8) + &Q (u; 8) N~vw(8 —s, u
~
[86)w(s —80, u ~.&s,})&, (822)

It is obvious that

6'„(8,80, I)= Z &q(N; s)~,ew(s-s'"-", 1~ Ps,))" iv,~w(s") -s„8~(s,])&,„,)
gin-i)

(823)

In II, E(ls. (14) and (16), it is shown that

&q(t; 8)&=&q(t)&-=e(t)

(i)t'ill) W(s'- s0, t
~
(s,))&- =)I)(s-s„t). (825)

Thus, the difference between(P„(s, 80, u) in (823)
and P„(s,s» u) in (813) with (83) for A„(s,s(„I)
is in the procedure for taking the configuration
average,

For eI)ery path in (823}, i.e. , for every given
set of fsI", i = 1, ... , n —I], there is a one-to-one
correspondence with a path in the CTRW [(813)and

(83)]. For each of these paths (each term of the
sum} in (823) one holds the 8"' fixed and then
averages the product of Q(u; 8) with the n W fac-
tors over all possible configurations of the re-
maining N- n impurities. For the same path in the
CTRW one proceeds by writing N~l)W(s"' —s" ",
I i{s,]) for the ith step and then averages over all
the N impurities exceyt the ones at s~", s~' ".
Hence, from (825) for s" '- s"', we have a P(s"'
—8" 1', u) factor for this ith step. Now in a sys-
tem with an arbitrarily large number of impurities
N, the difference in the averaging procedures
shouM be very small. In other vrords, each step
s~' i'- s"' in the averaged 8%'BM can be thought
of as taking place against a background of all pos-

sible configurations of a very large number of im-
purities. The fact that a small finite number
s'", ... , s"-",s"",... , s'"-" remain fixed n
all these possible configurations should not be
consequential. In any case, one can in principle
compute (823) for each n and qluantitatively com-
pare the result to (813) with P(s, t) and C (t) deter-
mined from (825) and (824).

%e continue now with this analysis. In perform-
ing the configuration averages in (823) one must
exercise care. Each step of a given path is de-
fined by fixing one transition rate in (88) and (89)
and allow all others to vary, e.g. , for so-si,

W(81 80o t
I {8IH= w(s, —s,) e-""I-'»'

xexp —t W s,.-so - .
In order to do the configuration average one then
drops the restriction on the sum in the exponent
of (826). In other words, only the explicit steps
of the path are fixed, all others varied. Now, for
the actual computation of the average the product
of terms in (823) has to be in separable form [cf.
Ref. 29 and II, E(I. (10}]. Therefore, it is neces-
sary to consider .s„(s,s„t) (the details of the fol-
lowing calculations are reserved for the payer in
Ref. 19). For n=1 and 8,=0,

+,(s, O, t) =~,~ (Ws) g dT e-"')' exp(- X,fd'x[1 —exp[- TW(r) -(t- T) W(r s)]/), —

P, (s, 0, t) =N~vW(s) f dT e ~' e pI(-xi)t0 f 82T(2 —exp[- TW(r)] —exp[- (t- T)W(r —8)]]).

For s= 2 one obtains

8, (s, O, t) = Z (~ ~)2W(s-s"') W(s" ) dT dT'exp[- W(s-8" )T'-W(8"')(T-T')]
g(i) o))) 0

x exp(- &VI) f d T(1—exp[- (T —T ) W(r) T W(r —8 ) —(t —T) W(1' —8)]j') (829)
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and for Pa(s, 0, t) the same expression as (829) except the 1- exp( ~ ~ ~ ) term is replaced with

2 —exp[- (7 7-) W(r)] —exp[ —r W(r s-'")]- exp[- (f- 7)W(r s—)] .

The difference between 6 „andP„is simply the re-
placement of an average of a product of n+ 1 Q's
by a product of n+1&Q)'s. More specifically, the
replacement is of the type (830). To evaluate the
integrals in (82V)-(829), one must now insert a
definite function for W(r). For W(r) = W„e
[as in 11, Eg. (18)] the integrals are very difficult
to calculate. The details of such a calculation for
g = 1, 2 will be contained in the paper in Ref. 3.9.
One can, however, gain a semiquantitative under-
standing of the comparison of {82V) and {828). At
either end of the 7 integration in (82V) the integral
in the exponent is the same as the corresponding
one in (828). In particular, for small 7' [W(s)r
& 1] in both (82V) and (828), exp( ~ ]-&Q{f)).
Now, in general, both exp( ) terms can be ex-
pected to vary slowly as afunctionof v[cf. Paper II,
Egs. (21), (24), (25), and (2V)]. The slow varia-
tion in 7 is due to the exponential form of W(r)
(cf. Ref. 19). Thus, a very reasonable approxi-
mation to (82V) and (828) is

s', (s, 0, f) =P,{s,0, f) =X,e &q(f)& (1-e-""').
(821)

I

For W„f&1,Q(t) ™I,so

P, (s, o, f) = A,~W(s) f, (832)

the probability of being at s increases with t. How-
ever, for W„f»1 [cf, II, Eq. (21)]

P, (s, 0, t) =X,e&q(f)&

= ~,e exp[-$ v~~', [In(w„f)]'), (822)

the probability decreases with t and the decrease
depends on the concentration of hopping sites. For
large t one is not likely to find the carrier locally
confined.

Thus, we have shown the relation between the
CTRW, using (825) for p(s, f), and the RWRM. The
averaging procedures in the two cases turn out to
produce similar results for two reasons: (i) The
number of hopping sites in the system volume V
is very large; (ii) the exponential dependence of
W(r) on x leads to a relatively slow f variation of
&Q(t)) [cf. II, Et(. (21) and Ref. 19]. The careful
quantitative comparison between the two processes,
based on calculating integrals of form shown in
(829), will be continued in a forthcoming paper.
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In a previous paper, the authors have developed a general theory of stochastic transport in
disordered systems. In the present paper, the theory is applied, in detail, to a prototype of
transport in a disordered system —impurity conduction in semiconductors. The complete fre-
quency dependence of the real and imaginary part of the conductivity is calculated. In par--
ticular, the calculation details the transition from an (ds dependence to essentially dc behavior
(at a finite frequency), where s -0.6-0.8, depending on temperature and concentration. The
theoretical results for frequency, temperature, and concentration dependence of the conduc-
tivity are shown to be in good agreement with the measurements of Pollak and Geballe (PG).
In addition, the ac conductivity data of PG interpreted with the present theory yield experi-
mental evidence for the existence of two-channel hopping in n-type Si.

I. INTRODUCTION

In the preceding paper' (hereafter referred to
as I) a general theory of transport via localized
states in a disordered system has been developed.
The motion of the carriers in such a system has
been modeled as a continuous-time random walk
(CTRW) on a lattice. s The carrier executing such
a CTRW makes a displacement s from each site in
time t between steps with a distribution described
by a function g(s, t). All the dynamics of the mo-
tion are incorporated into g(s, t) This s.implifi-
cation, inherent in the structure of the CTRW mod-
el, allows one to focus on the basic fluctuating
quantity in the hopping motion-the transition rate
between the sites. .That is, the transition rate is
treated as the random variable. For the transport
in disordered systems of most interest, the transi-
tion rate is a very sensitive function of the intersite
separation, so that the fluctuations in the spatial
separation are quite mild compared to those, pro-
duced by them, in the transition rate. An exten-
sive qualitative discussion of the nature of the
present approach to hopping transport is included
in the Introduction in I. The mathematical justifi-
cation of the model is detailed in Appendix B in I.

For this CTRW model the conductivity o((d) has
been determined exactly and is completely specified
by the Fourier transform (FT) of the spatial mo-
ments of g(s, t),

and

e,', ((d) =-Z s'
s go

e '"'y(s, t) dt/y(i(g)

Specifically,

D((d) =~s&4 .((o) i(u4 (i(d)/t. l —y(i(o)l,

where

e((o) = (ne'/((r)D((g), (4)

n is the density of effective carriers (e.g. , n = N„,
the acceptor concentration, in the case of impurity
hopping in a low-compensated n-type semiconduc-
tor, to be discussed below), T is the absolute tem-
perature, and D((o) is the complex frequency-de-
pendent diffusion constant. In common units, e.g. ,

D(a) (cm /sec) =(0.6V23T)[e((o) (0 'cm ')]


