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residual scattering which is isotropic. Anisotropic relaxation of
the electron distribution by dislocations, contraction voids,
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deviations resulting from the changing angular nature of the
electron distribution (assuming, of course, that such anisotropy
does not happen to exactly match the particular distortions
generated by umklapp processes).
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thesis, Appendix (Cornell University, 1971)(unpublished).
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coupled with the fact that the pseudopotential and phonon
spectra assumed here are really appropriate only to potassium,
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The problem of calculating the induced charge density around a strong impurity potential is well known to
be a most diAicult one, and hence the need for approximate schemes. In this paper we show how to
construct, in a simple manner, full self-consistent densities which may then be used to check an approximate
procedure. We use these densities to check the accuracy of a method introduced by Sjolander and Stott to
calculate positron annihilation rates. We rederive the Sjolander —Stott equation for a general attractive
impurity potential and demonstrate that for infinite-mass impurities this equation gives very good results (far
better than linear response) at small distances from the impurity, but long-range effects are not satisfactorily
respresented. This conclusion seems to be independent of the electron density, the form of the impurity

potential, and whether or not exchange and correlation effects are included. Finally, our analysis suggests
that retention of on.ly the first term of the Hohenberg —Kohn —Sham gradient expansion gives a good
representation of exchange and correlation for the calculation of electron densities.

I. INTRODUCTION

The charge density surrounding an impurity
placed in an electron gas is of considerable inter-
est to many solid-state physicists, but unfortun-
ately its calculation is usually a most formidable
problem. Langer and Vosko have provided the
solution to the problem in the limit of weak im-
purity potentials using linear-response theory.
But to go beyond linear response into the regime
applicable to strong potentials is most difficult.
Even the solution to the self-consistent Hartree
equation fox the system, let alone Hohenberg-

Kohn-Sham or Hartree-rock schemes, requires
prodigious effort, and hence it is of interest to
develop approximate and simpler procedures which
go beyond linear response. One such scheme has
been developed recently by Sjolander and Stott
(referred to as 88) to calculate positron annihila-
tion rates, though it can be applied to a much wider
range of problems. The SS integral equation for
the charge density is particularly interesting be-
cause the authors demonstrate that it gives much
better results than the linear-response method
for a repulsive Coulomb potential using the Hartree
approximation. Unfortunately, due to complica-
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tions arising from the presence of bound states,
they were unable to provide similar information
for an attractive Coulomb potential. Nevertheless,
the SS theory is sufficiently interesting to warrant
further investigation and it is the purpose of this
paper (a) to point out a relatively simple method
for checking approximate schemes such as de-
veloped by 88 and (b) to apply this method to the
SS theory, in order to make a quantitative estimate
of its validity for a wide range of attractive po-
tentials.

In Sec. II we outline the derivation of the SS in-
tegral equation for a general impurity potential.
We should point out that this equation is valid not
only for an infinite-mass impurity (fixed impurity)
but also for a finite-mass impurity such as a posi-
tron where recoil effects are important. In Sec.

~ III, using an approach introduced by Geldart et al. ,
we describe the procedure used to obtain the self-
consistent Hartree charge distribution correspond-
ing to an external potential. The power of this
procedure lies not only in the ease with which the
self-consistent Hartree solution is obtained, but
also in the fact that any local exchange and cor-
relation approximation may be introduced with
virtually no further computation effort required.
This enables us, then, not only to ascertain the
accuracy with which the SS equation (or for that
matter any other scheme) reproduces the exact
Hartree solution, but also to provide an assessment
of its ability to include exchange and correlation
effects. We elaborate further on this point in
Sec. III. Finally, in Sec. IV we summarize the
results, which prompt us to conclude that the SS
equation gives remarkably good results for small
x (near the impurity) both with and without exchange
and correlation, but that the results get progres-
sively worse as x increases; in fact, the long-
range oscillations are not reproduced satisfac-
torily.

II. INTEGRAL EQUATION FOR PAIR CORRELATION
FUNCTION

Consider a two-component system where the
elements comprising the two systems are not nec-
essarily point charges. I et us write the general
interaction between elements i and j of the same
component or opposite components as

z,z2e'y 2(rf —r,)

where n and P take the values 1 and 2 and refer to
the two components. Z& and Z& are —1 or +1 de-
pending on whether the interaction between com-
ponents 1 and 2 is attractive or repulsive.

Now let us apply weak external potentials
V'(x, t) and V (x, t), where V (x, t) acts only on
component 1 and V (x, t) only on component 2.
These two external fields introduce a new term in

the Hamiltonian given by

2
*

Hf =E
~

ff (x, t) V (x, t) dx,
0~1

where n (x, t) is the density operator. From lin-
ear response, the induced density distributions
of both components are given by the equation

-i 2

n'(x, t)„,= —Z i
dx'

)f

(2)

t

x dt' n, t n'x' t' x' t' . 3
wOO

The commutator of Eq. (3) is to be evaluated with
the unperturbed ground state. The Fourier trans-
form of Eq. (3) yields

. 2

ff (q, (o)„,= -Z )f '(q, &o)V (q, (o),
0~1

where

y' (q, &e} = (i/Vff) f e'" (f[n;(t), rf2 (0)])dt

In Eq. (t), q4 0. We have used the symbol n„ to
denote the equilibrium density of the frth compo-
nent. The static density-density correlation func-
tion (n 2(0)8(0)) is to be evaluated in the ground
state. It is easily related to y (q, fu) by

(n=,(0)n';(0)) = (tf/v) Vlm j )f' (q, (o) d(o „(8)
where again q40.

For arbitrary, small, external potentials
V (x, t), the induced densities are given exactly by
Eq. (3) or (4}. We may construct aPProximate
induced densities corresponding to the same ex-
ternal potentials in the following manner. We in-
troduce, as do SS, effective fields which act on
the two components as if their elements were non-
interacting and which take the form

2
V ff(x, t) = V(x, t) +2 g (x —x')n (x', t)„~dx'

/=i

Vis the volume of the system and

ff-(t) = f e"*n'(x, t) dx .
e

Now the final interest is in the density distribution
surrounding the elements of the two components.
These are of course related to the pair correla-
tion function g 2(x), the Fourier transform of which
can be written

g"'(q) = (»)'& (q) +y~(q),
where
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where (' (x) is an effective particle-particle in-
teraction. The induced densities are then

n (q. (d) i.a = -
Xo (q ~)F.n(q ~)

=-)(f(i,~)I) (Pi, ~)

+E ('(t(bP(t(, ro)...),
Xo (q, (d) = &[n;(&),n;(0))&e'"'dt

0

f0(k) -f0(k+ q) dk
I ~(k+q) —e(k)+I(0+f6 (2~)'

(11)f (k) is the zero-temperature Fermi function,
s(k) = I k'/2m„and m, is the mass of the element
of the ~th component.

So far, both Eqs. (4) and (10) are valid for
arbitrary densities of the two components. We
next restrict one component (component 1) to the
limit of zero density. Comparing Eqs. (4) and (10)
in that limit yields the following relation:

X"(q (d) =-Xo(q (d)(}) '(q)X"(q &)

To complete the analysis in this section we must
introduce some approximate form for the effective
interaction (})' (x). Following 88, we write

v(})"(x) =e'z, z,g"(x)vy" (x),
where g (x) is the pair correlation function be-
tween components 1 and 2. The errors introduced
by the approximations in Eqs. (9) and (18) are not
at all clear Rnd we will attempt to investigate
precisely these errors in Sec. III.

Using Eqs. (6)-(8), (12), and (13), we obtain
the following integral equation for y~a(q):

—@s' ZZ e ~ ~p )s'(O

12( )
ZiZ2 ~12( ) ~

'q q 13( &)~la( &)d~& Im I 1( ) as(
gggnp

Equation (14} is sufficiently general to include any
form of interaction between components 1 and 2 as
well as between elements of component 2. If one
were to evaluate X (q, (d} for a general interac-
tion —say, via Feynman graphs —the only change
from the electron-electron response function would
be to replace the Coulomb interaction lines by
lines appropriate to the desired interaction.

In Sec. III we concentrate on the case of an
electron gas interacting with a general impurity
potential. For that case Za= —1, and X~2(q, &g) is
simply the response function of an electron gas
which can be written in terms of the dielectric
function as

22( )
q 1

4~8' a(q ~))
Inserting this result into Eq. (14), we find

y"(q) ={@'y"(q)+ [I/(2w)']

x f q q Y'(q-q'8 "(q'}dq']f(q)

»EO

f(t()=, (m; ),,(ti, ~) i — ))d~
Sgf 1~ 1

4g n,n,

HI. CALCULATION OF CHARGE DENSITIES FOR STRONG
ATTRACTIVE POTENTIALS

Equation (16) is valid both for the case of in-
finite-mass and finite-mass impurities. It is es-

[- (I'/2m) v'+ v(x)]y, (x) = e,(t,(x), (18)

which 18 not R self-consistent equRt1on Rnd ls eRsy
to solve. Then we construct the density

t)n(x) =Q (f)~(x)y, (x) —n(),

where n0 is the unperturbed density. Now we may
rewrite Eq. (18) in the form

[- (tf'/2m) v'+ V,„,(x)+ V.„(x)]y, (x) = e,y, (x),
(2o)

pecially useful in the case of finite-mass impur-
ities, where the usual static nonlinear Hartree
procedu1'e 18 not applicable~ Howevers 1n this
paper we shall confine our attention to the infinite-
mass or fixed impurity. It is most probable that
our conclusions concerning the accuracy of the SS
equation [Eq. (16)]will also apply to the finite-
mass impurity.

A quantitative assessment of Eq. (16}is possible
if its solution can be compared to the exact self-
consistent solution for some impurity potential.
We obtain a self-consistent solution using a method
introduced by Geldart et al. ~ Instead of starting
with an external potential and constructing the cor-
responding self-consistent density distribution,
we reverse the process and construct the external
potential corresponding to a given self-consistent
distribution using the following procedure. Sup-
pose we solve the equation
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V„,(x) = v(x) —V„,(x) (21)

5n(x') „, 5E,.(n)
(22)

and we take V,«(x) to be some local self-consis-
tent potential which is a functional of 5n(x). For
example, in the Hohenberg-Kohn-Sham (HKS) ap-
proach

C

-4—
g4l

where the first term is the usual Hartree term and
the second embodies the exchange and correlation
effects. Thus by solving Eq. (18) and using Eq.
(19), we have achieved the HKS self-consistent
solution corresponding to the potential V„,(x) given
by Eqs. (21) and (22). For the Hartree self-con-
sistent solution it is only necessary to recalculate
V„,(x) using just the first term of Eq. (22). Fi-
nally, we emphasize that the validity of the fore-
going procedure depends on the maintenance of
charge neutrality, which demands that

J 5n(x}dx= f [V V,„,(x)/4ve ]dx

This is satisfied for any neutral v(x).
Note that with an arbitrary attractive V,„,(x) we

can easily eliminate the problem of bound states
at all metallic densities simply by demanding that
v(x) has no bound states. Furthermore, the den-
sity 5n(x) is valid for any choice of a local 5E„(n)/
5n in Eq. (22). Thus, if we expand this term in a
gradient expansion, any order may be investigated
without great effort.

For the calculations presented in this paper, we
have chosen v(x) to be of the form

v(x) =voe "I'/x (23)

We chose this form because the resulting V„,(x) is
of a nature similar to that of an ionic potential in
that it has a Coulomb singularity at the origin
coming from v(x) and a Coulomb tail at large x
coming from the Hartree term. In Fig. 1 we plot
V„,(x) for two sets of the parameters vo and a and
for the electron gas density parameter x,=3. For
each choice of vo and a two versions of V,„,(x) are
displayed, one containing only the Hartree term
and one including an exchange and correlation ap-
proximation which will be discussed later.

I et us now return to Eqs. (16) and (17). For a
fixed impurity and vanishingly small density of
component 1 (m, -~ and n, -O), yo(q, e) of Eq. (11)
becomes

yo(q, (d) = (vin, /h)5((o),

and hence

where we take Z~ = 1, since our interest is in an
attractive potential. In Eq. (16), (((( (x) is related

to V',„,(x) of Eq. (21) by

-e'y"(q) = V„,(q) . (26)

Using Eqs. (25) and (26), we can now solve Eq.
(16) for y (q) or, equivalently, for 5n((f) and com-
pare th@ result with that obtained from the full
self-consistent solution. However, we feel that
an easier and more accurate approach is to do the
following. Since the density distribution of Eq.
(19) is given in coordinate space, we prefer to
transform Eq. (18) to yield the result

5n(x) = ff(x -x')V~(I("(x') dx'

+ (1/n, ) f v„f(x-x'} ~ v„,(gf('3(x')5n(x') dx',
(27)

where we have made use of the relation

5n(x) =y"(x)/n,

and

f(x) = ff(q) "s*dq/(2 )' v. (2S)

At this peint we could solve Eq. (27) directly for
5n(x) and compare the result with the full self-
consistent solution which we shall refer to as
5n, (x). However, since our objective in this paper
is only to check the accuracy of this equation, we
prefer to adopt the following approach. We simply
insert the known 5n, (x) into the right-hand side
of (27) and determine the resulting 5n(x), which
of course differs from 5n, (x), the difference being
a measure of the accuracy of (27). We do this
for two self-consistent schemes, (a) the Hartree
where 'we set 5E„(n)/5n= 0 in Eq. (22) and (b) the
HKS approach.

A. Nonlinear Hsrkree Approximation

In this case the density of Eq. (19) is the exact
Hartree solution corresponding to V„,(x) [(21) and

2
x (O.u.)

FIG, 1. The potentials V~~+) [defined by (22)] used
in this paper. In each case a, (see (23)] was taken to be
1 Bohr radius and z~ =3. Solid curve, inclusion of
Hartree term only; dash' curve, inclusion of Hartree
term and first term of the HKS gradient expansion.
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(22)]. At first sight it is not completely clear
whick dielectric function c(q, 0) should be used in
Eg. (26) to generate the solution of Eq. (2V) cor-
responding to the Hartree case. However, in the
limit of linear response ['V„,(x}-0]the correct
function is the random-phase-approximation (RPA)
dielectric function given by

2 j 2 2

+ 2 2+ 8~
n( 0) 1 kTr 4k' —q q+ 2k'

gg g — y

where kT& is the Thomas-Fermi screening paxam-
eter. Since Eq. (27) is independent of the strength

of P'2(x), this same function should also be used
in the nonlinear regime.

For the purposes of computation we chose to in-
sert 6n, (x) into the right-hand side of Eq. (2V) and
then write it as an explicit function of v(x) and
6N, (x). Using Eqs. (21), (22) (6E,J6n=0), and
(26) in (2V) with the fact that (2V) is invariant under
a rotation around the x axis yields, after some
algebra,

6n(x) = 6n~(x) + 6n„~(x),

.p OO

&Ng(x) = 16, I(1 —
0 e(q) jo(qx)q'dq —16m'

'

x6n, ( x)G( xx') dx',
16v . I, eq 0~ 0

t2 BG

no 2 Bx ex'
'0

&(x,x)-(2 )~
~ I,l-, ( ) g, (qx)g, (qx)q dq,

sa(x, x')
=

(2 )3 I 1 —
( )

jo(qx) jg(qx')q'dq,
0

Q(x) =4v f 6s,(x')x"dx',

(31)

and j,(qx) and j&(qx) are the usual spherical Bessel
functions, v(x) is in rydbergs, and all lengths in
ao Qo

The fact that e(x) appears explicitly in Eqs. (30)
and (31) and not V„~(x) arises because we have
used Egs. (21) and (22}, where again M„(n)/6n
=0. The term 6n&(x) is simply the linear-response
density for V„,(x) and 6n»(x) is the nonlinear cor-
rection.

Using the form (23) for e(x) and taking a = 1.0
Bohr radii and values of no = —0.35 and —1.00 Ry,
we have evaluated Eg. (29) at r, =3. The results
are displayed in Pigs. 2 and 3, where we compare
the linear-response term (30), the full nonlinear
result (29), and the exact solution 6n, (x}. Also
included in these figures is a plot of Eq. (29)
evaluated using the Geldart- Taylor dielectric
function. The poor results obtained illustrate the
importance of choosing the right dielectric func-
tion for the problem. It is interesting to note that
as the strength of V„,(x) is increased (see Fig. 1
for a comparison of the two potentials), the linear-
response term becomes completely unsatisfactory
at small x. On the other hand, the nonlinear den-
sity agrees very well with the exact solution for
both potentials. Unfortunately this very good
agreement does not persist as g increases, and it
is quite clear from the figures that the long-range
osciQations shower no improvement over the linear-

response results. Essentially the same results
where obtained at other electron gas densities and
also with other forms of e(x). Hence, we conclude
that the use of the RPA dielectric function in the

0.007-
v =0.55
o =I.O

0.006

c- 0.004

~ 0005
Cl

0.002

I I

0 I 2 4
x(o.u.)

FIG. 2. Hartree densities calculated using the appro-
priate V~tg), with y0=-0. 35 Ry. Solid curve, full seM-
consistent Hartree density; dotted curve, linear-response
density using HPA screening; dashed curve, density cal-
culated using Eq. (29) and RPA screening; dot-dashed
curve, density calculated using Eq. (29) and Geldaxt-
Taylor screening.
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0.04

0.03

0.01

include the term 5E„(n)/5n in Eq. (22). The ques-
tion is what should we choose for this term. HKS
have suggested that 5E„(n)/Bn can be expanded in
a power series of the gradient operator with re-
spect to density and the series terminated at hope-
fully some low order. And Geldart et al. have
shown that for the case of small V'„~(x) (linear
response) best results are obtained if only the first
term in the gradient expansion is retained. We
assume that this is still true for large V„,(x),
where nonlinear effects are important. Thus we
choose

~Ex'(n) s
[ ( ) ]en

(32)

I

2
x(a.u.)

FIG. 3. See caption to Fig. 2. In this case y0=-1.00

Ry.

SS integral equation for a general attractive poten-
tial —ePP'P(x), with no bound states, will repro-
duce very reliable nonlinear Hartree charge den-
sities at small x.

B. Nonlinear Hohenberl-Kohn4hlm Approximation

It is of considerable interest to see whether the
SS approach manages to handle exchange and cor-
relation as well as the Hartree case. We include
this in the self-consistent calculation of 5n, (x) via
the HKS approach. We emphasize that no recalcu-
lation of 5n, (x) is necessary; we simply have to

8x10~

X-X X-X + g+g

where

—f(~ x —x'~ )]H(Sl,(x'))x'dx', (33)

tip+ ptl spE (n)

0

f(x) is given by Eq. (28), and the prime indicates

(34)

where e„,(n) is the exchange and correlation energy
of the uniform electron gas. The resulting V,„,(x)
is illustrated in Fig. 1 for two combinations of eo
and a, and for r, =3. The effect of further terms
in the gradient expansion can of course be inves-
tigated without great difficulty, if the need arises,
simply by adding these terms into Eq. (32); 5n, (x)
will be unaltered.

The insertion of Eq. (32) into (22) yields, after
some algebra, an additional term to the right of
Eq. (29):

6n„(x) = (v/x) f [(x+x')f'(x+x')

0.007— v,= 0.35

0.006

0.005

0.04

~ 0.004

~ 0.003S
C5

0.002

0,001

00 2
x (a.u)

0.03

~ 0.02

z'
4J
Ct

0.01

FIG. 4. Densities calculated with the inclusion of
exchange and correlation using the appropriate V~&(g),
with y0=-0. 35 Ry. Solid curve, full self-consistent
density using the first term of the HKS gradient expansion
to represent exchange and correlation; dotted curve,
linear-response density using Geldart- Taylor screening;
dashed curve, density calculated using Eqs. (29) and (33)
and Geldart-Taylor screening.

2
x(a,u.)

I

3

FIG, 5, See caption to Fig. 4. In this case y0=-1, 00
Ry.
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derivative with respect to the argument of the func-
tion. 5n„arises solely from the fact that V,„,(x)
has been redefined. Using the Nozieres-Pines~
expression for the correlation energy, we get

sZ,.(s) —2(3v's)'I' 0.03I,

which when inserted into Eq. (34) yields

a(5n)=- — [(n, +5m) -n, ]&13 4(3
2g Ro

0~031 5n
(35)

3 so

Now by evaluating Eq. (29) with the additional term
(33) and H(5n) defined by (35) we obtain a density
which can be compared to 5n, (x). We again em-
phasize that in this case 5n, (x) is the self-consis-
tent density induced by V„,(x) and defined by Eqs.
(22) and (32). It should also be stressed that ex-
change and correlation have been treated in.an gp-
Pxoximate way by retaining only the first term of
the HKS gradient expansion. Therefore, by com-
paring the density calculated from Eqs. (29) and

(33) with 5n, (x), we are really comparing one ap-
proximate method with another.

The correct type of dielectric function to be used
to evaluate Eqs. (29) and (33) can be established,
as in the Hartree case, by examining the limit of
small V,„t(x), where it is clear that all exchange
and correlation effects should be included in the
dielectric function. In Pigs. 4 and 5 me display
the results obtained using the Geldart- Taylor
version of the dielectric function, which contains
exchange and correlation. These calculations
were performed at w, = 3 and we have used the same
two potentials e(x) as before, but of course V',„,(x)
is different, as can be seen from Fig. 1.

Similar results were obtained for other electron
gas densities and other forms of v(x). It is most
interesting to note that Figs. 4 and 5 show a very
close resemblance to Figs. 2 and 3. Just as in the
Hartree case' the linear-response result is com-
pletely unsatisfactory, whereas the nonlinear den-
sity gives very good agreement with 5n, (x) for
small x, this agreement getting progressively
worse as x increases, culminating in very poor

long-range oscillations. The particularly interest-
ing feature is that the differences between the
curves in Figs. 4 and 5 appear to be just about the
same as in Figs. 2 and 3. This shows then that
the inclusion of exchange and correlation in the
general 88 integral equation (27) produces a density
differing from the approximate HKS density to the
same degree that the Hartree 88 density differs
from the exact Hartree density. It seems likely,
therefore, that (i) the retention of only the first
term in the HKS gradient expansion gives a good
representation of exchange and correlation in the
presence of a strong potential and (ii) the general
88 integral equation for the density 5n(x) includes
exchange and correlation effects satisfactorily.

The main purpose of this paper has been to as-
sess the accuracy of the SS integral equation for
the density in the presence of a general, attractive
impurity potential with no bound states. This is
given by Eq. (27). We emphasize, though, that
the same methods used here can be applied to test
any similar approximate scheme in. the limit of in-
finite mass. We have shown that for the particular
potentials illustrated in Fig. I the 88 integral
equation gives very reliable results for small g,
whereas use of linear response is most unsatis-
factory. Unfortunately, for larger distances,
particularly in the long-range oscillation region,
the 88 equation is not an improvement over linear
response. This conclusion appears to be indepen-
dent of whether or not exchange and correlation
effects are included. Since the potentials in Fig.
1 are ionic in character and since we obtained
similar results using other forms of 5(x) and at
other densities, we expect the same sort of ac-
curacy for any reasonable impurity potential.

Finally, the 88 integral equation does not depend
upon, in any way, a finite power series in q or,
equivalently, a terminated gradient expansion.
Hence, the good agreement between the two proce-
dures (l.e. ~ the 88 and the HKS) suggests that cor-
relation and exchange are well represented in the
HKS formalism by retaining the first term in the
gradient expansion.
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