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whether or not these poles are present in the CPA.
These aspects are presently under investigation.
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The anhmmonic contributions of order q' to the free energy of a crystal hkve been evaluated for a
central-force nearest-neighbor model in the Ludwig approximation. The accuracy of the Ludwig
approximation in evaluating the Brillouin-zone sums occurring in the expressions for the anharmonic
contributions to the free energy has been investigated in some detail. It is found that the Ludwig
approximation gives exact results for some simple sums. While most of the remaining sums are
underestimated by about 18%, the sums occurring in the expression for the second-order quartic
anharmonic contribution to the free energy are overestimated by about 20%. The coe%cient of the T'

term in the specific heat of lead at high temperatures is also estimated for a Morse potential and is
found to be of the same order of magnitude as the experimental value obtained by Leadbetter.

I. INTRODUCTION

A knowledge oi the anharmonic contributions to
the free energy is essential for an understanding of
the high-temperature behavior of the specific heat
of solids. Recent experiments show that the lin-
ear and the quadratic terms in temperature are

present in the expression for the specific heat at
high temperatures. Leadbetter~ has made a de-
tailed analysis of his experimental results for the
specific heat of lead and has shown that the anhar-
monic contribution may be written as

C „"/3Ãka = A T+ 2BT
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H=Hp+Z pi H„, p,
n 1

(2)

where H0 is the harmonic part. The lowest-order
anharmonic contributions to the free energy are
found to be of order g2. The evaluation of the g2

contribution has been described by Maradudin et
al.3 Recently, Shukla and Cow leys have derived
expressions for all the g4 contributions to the free
energy. These contributions are responsible for
the T term in the specific heat. However, there
are considerable computational difficulties in the
evaluation of the g4 contributions to the free energy
since the theoretical expressions for these involve
Bri1louin- zone sums over three to six wave vectors
and the same number of polarization indices .
Though the advent of high- speed computers has
made it possible to do these sums numerically, it
is of interest to evaluate the sums analytically.

where N is the number of atoms in the crystal and

k~ is Boltzmann' s constant. The coefficients A
and 8 are related to the derivatives of the crystal
potential. Leadbetter has given experimental esti-
mates for these coefficients for lead and has shown
that the theoretica. l estimate of A made earlier by
Maradudin et al.3 agrees quite well with the ob-
served value. The coefficient B was first esti-
mated by the present authors in a somewhat ap-
proximate manner and was found to be of the same
order of magnitude as the measured value.

In order to evaluate the anhar mo ni c cont r ibu-
tions, the traditional approach is to use the per-
turbation theory. This leads to an anharmonic con-
tribution to the free energy which is an infinite
series in the perturbing potential. The perturba-
tion is itself an infinite series expansion of the
potential energy of the cry sta l. If we use an order-
ing scheme suggested by Van Hove5 and introduce
an ordering parameter g, the Hamiltonian of the
crystal can be written as

As we shall see in Sec. III, the exact analytic solu-
tion is possible only in certain simple cases . How-
ever, the more complicated sums occurring in the
expressions for the free energy can be evaluated by
making an approximation which w as first suggested
by Ludw ig . In this approximation the frequencies
in the first Brillouin zone are taken to be equal to
an average frequency.

It is the purpose of this paper to assess the ac-
curacy of Ludwig approximation in the evaluation
of the q4 contributions to the free energy and to
estimate the coefficient of the T term in the spe-
cific heat. It is hoped that the values of the anhar-
monic sums obtained here will be useful as a check
on the computational results .
II, EXPRESSIONS FOR THE ANHARMONIC CONTRIBUTIONS

OF 0(q ) TO THE FREE ENERGY

The expres s ions for the various anharmonic con-
tributions may be derived using different versions
of the perturbation theory. This has previously
been done by several authors. Alternatively,
it is possible to derive an exact expression for the
free energy of anharmonic crystal where the an-
harmonic terms of all orders are retained in terms
of the Four ier transform of the one -phonon Green' s
function Therefore, if different anharmonic con-
tributions to the self -energy of phonons are known,
the expressions for the free energy can be derived.
This has previously been demonstrated by Pathak
and Varshni for the second-order quartic contri-
bution which is of order g . The other contribu-

tionss

to this order can be derived using the above
prescription. We shall not do this in this paper.
However, for the sake of consistency we give be-
low the expressions for the various anharmonic
contributions of order g4 to the free energy in the
high-temperature limit as obtained by Shukla and

Cow ley using the diagrammatic technique of the
perturbation theory:

(s() (ka T)' ~- 4(I~ —» 2~ —2~ 3~ —3)
48N 1 a a (+1(da(ds)

(4a) (sa) (4a) (kaT) g $(1, —1, 2, 3)Q(-2, —3, 4, —4)F =- F~ + F~ 2 + q2+ q3)16N ( ~ )

(3a)

(kaT)a g $(1, 2, 3, 4)b (q(+qa+ qa+qs)
( )48N 1 a a 4 ((dg(da(da(04)

(as, (ag) (as) (kaT)a ~ Q(» 3, 4)P(- 1, 5, 6)Q(2, —3, -4)Q(- 2, —5, —6)
/ x2F F~ +F
/4r 1M 2(03(d4(d 5' Bi)

x a(q~+ qa+ qs)4(- q(+ qs+ qs)hPqa —qa —q4)6(qa+ qs+ qs)

(ka T)s g P(1, 2, 3)P(- 1, 4, 5)Q(- 2, —5, 6)$(- 3, —4, —6)
24N 1 a ~ ~ ~ s ((Osaka(ua(0&(0s(ds)
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"+(qa+ qa+ qa)~( q1+ q4+ qs)+(qa+ qs qe)b'(qs+ q4+ qs), (3c}

(k T) g Q(1, 2, 3)Q(-l, —2, —3, 4, —4)b(qa+qa+qa)
12% 1,2, 2, 4 ((d 1(dsod 2(04)

(3d)

y (82,41) y (82241) + y(822 41)
5

(koT) ~ $(1, 3, 4)$(-2, —3, —4)g(-1, 2, 5, —5)
SN 12 ~ ~ ~ 5 I,C01C02MSQ) 4605)

+ k&T) g & ' ' )& ' ' & ' & ' )b(q+q -q)&(q+q+q)b. (q+q+q+q)
1,a, .-, s (~»2~2~4~2)' (3e)

where Q(1, 2, , n) is the Fourier transform of
the fourth-order derivative of the crystal potential
and i stands for the double suffix (q, j,). E"1'
means the contribution coming from the direct
term (H, )&, and F"1~ 2" denotes the contribution
coming from the cross term (H, )1(H„)'. E'2 ~ 41',

for example, is the contribution to the free ener-
gy arising from the cubic anharmonicity in second
order and the quartic anharmonicity in first order.

III. EVALUATION OF THE BRILLOUIN-ZONE SUMS
IN LUDWIG APPROXIMATION

The expressions for the free energy given by
Eqs. (3) contain sums over three to six wave vec-
tors and the same number of polarization indices.
The summations have to be carried out over the
first Brillouin zone. This clearly involves consid-
erable computer time. However, if we use the
Ludwig approximation, the Brillouin-zone sums
can be done analytically. In the Ludwig approxi-
mation each factor I/& (q j) appearing i.n these
sums is replaced by I/(o12 }and taken outside the
summation sign. (o1 ) is defined by

at the nearest-neighbor distance ro. Recently,
Leech and Reissland'1 have estimated the magni-
tude of the error caused by this approximation to
be about 30%. However, a considerable simplifi-
cation results from this approximation and we
shall make it in the present calculations. For the
model we have assumed, it can be easily shown
that

(o1') = 4Q "/M . (6)

x (1 —e- +'41 'o) ~ ~ ~'(1, —e +"n ' 'o),
(7)

where r~o= —,
' ~l is the translation vector in the face-

centered-cubic lattice and ao is the lattice param-
eter. e(q j) is the polarization vector for the nor-
mal mode (q j). If the a(q) function appearing in
Eqs. (3) is expressed as

In the leading-term approximation $(1, 2, ~ ~, n)
i.s given by

p(1 2 n) (2~n/21, n)-1 yn

x Z [ro ~ e(1)] ~ ~ ~ [ro ~ e(n)]

(~'&=-
SN ~ g(q~) Q e2n14 ' n

ON, (6)

S"Q Xy ~ ~ ~ 2
e~oy ~ ~ Se r"

where Q" is the nth derivative of the potenti. al P
with respect to the scalar distance y, evaluated

(5)

The physical idea behind the Ludwig approxima-
tion is essentially the same as in Einstein model
of a solid. To evaluate-each of the contributions
given by Eqs. (3), we now consider a central-
force model of a face-centered-cubic lattice with
nearest-neighbor interactions in the leading-term
approximation. In this approximation

a considerable simplification results in the evalua-
tion of the sums as will be seen later. The sums
over j in Eqs. (3) are readily carried out with the
aid of the fact that

2 [ro' e(qj)][ro ~ e(qj)]=ro' ro . (9)

The sums in Eqs. (3) can now be done analytical-
ly with the help of Eqs. (6)-(9). To illustrate this
we discuss below the evaluation of some compli-
cated anharmonic sums. From Eq. (3d) and Eqs.
(6)-(9), we obtain

E' ' ' = y Z Z [ro ~ e(1)] ~ ~ ~ [ro ~ e(3)][ro ~ e(l)] ~ ~ ~ [ro e(3)][ro ~ e(4)]2
1,2, 8, 4 lan, ff

x(1 —e '"'1'o) ~ ~ ~ (1 —e-'"na no) (1 —e '"'1' 'o) ~ (I —e "na' 'o) (I —e 2 "4' 'o)
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e l«4 'o) '««I"a+4s '0) (10)

(e, T)'
48x256 ~'~,'(y")'

and I 0 = II /v 2 is the elluilibrium separation be-
tvreen nearest neighbors. The advantage of ex-
pressing the 6 function in the form given by Eq.
(8) is that Eq. (10) can be factorized. If we do the
sum first over j and then over Il in EII. (10) with

I

the aid of the relations (8) and (9), we obtain

F"'"'= 2''(-,'IIO)' Z m'[ 1 —+III)]((I m)
1,$~n

&&f~ir)-a(n-1)-a(n+m)+b(n-7+m)]}3 .
(12)

In a similar fashion the expressions for /{34) andS'"'") can be written as

+ 6(Ill+ lla+p —k)+ 6(111+112+I +p) —6(QI+ 112+I)+4(Ill+ 112+ 1 —k)- +(QI+ 112+I +p —k) —6(Ill+ 112—In)

+ 6(Ill+ Q2 m+p) + 6(Ill+ Qm m k) 6(Ill+ Ila III —k+p) + 6(QI+ 113+f 17I) 6(III + na+ I m+p)

—~(nl+n, + f. —m-k)+~(nl+n, + f -m- n+p)][~(nl) —~(nl+I) -~(nl -k)

+ a(nl+ T -k)] [S{na)—a(n~ —m) —b (na+p)+ a(n~ —m+p)]~, (18a}

ter 4

E,'34'=-
Is N(&~T)3 „, Z 6 ~ m) (1 ~ k) (1 ~ p)(m ~ k) (rn ~ p) (k p) [b.(ni) -b, (nl+7}

IF) lp IBt II [ITI~ nly nm

—4(nl —m) + 4(nl + I —m)] [b (n2) —4(n2+ T) —4 (nz —k) + 4(nII + f —k)] [4(nII) —6(ns+ 1)—4(nII —p)

+ b {~+I —p)] [a(nl —nl) —a(nl —n~ —m) —a(nl —ns+p)+ a{nl —ns+ p —m)] [a{nl —na) —a(nl —na —m)

—a(nl —n, +k)+ (n, —n, +k —m)] [&(n, —n ) —a(n, —ns —k) —&(n, —n, +p)+a(n, —n, +p —k)], (18b)

~«3 Iv
ZI3'4 ' = N(n r)s „, Z {I p) (m ~ p) (1 ~ m) {[&(n) —a(n -1)

-~(n+ m)+ ~(n+m-I)] +4~(p -m- I)+8~(m+p)~(m- I)}, (14a)

iv

E~ ' = »» 5 N(IIEET) Q (1 ~ m) (1 ~ p) (m ~ p) [&(nl) —&(nl+ m) —&(nl —1)—&(nl+ m —1)]
(4) (4 ) 1 ~ m~PIKIp+

x[~(n,)- ~(n, + p) —~(n, —1)+~(n, + p —1)] [a(n, —n, )- &(n, —n, +p) —&(n, —n, —m)+ &(n, —n, + p —m)] . (14b)

The sums over n, n, , nl, and ns in Elis. (12)-
(14) extend over all the atoms in the lattice, and

the sums over all the other integers extend over
nearest-neighbors only. %hen the summands in
the above expressions are expanded and the sums
over the various integers carried out, most of.the
terms vanish due to (i) the properties of Q functions
and (ii) the cubic symmetry of the lattice. For ex-
ample, each term obtained after expanding the
summand in Eq. (12) vanishes for Illl &v 8. The
remaining contributions, E "and I" ', can be
evaluated in a similar way. The results obtained

Iy
E'l61& 1 ~(y T)3

y (42) —y{42) y(42)
e + b

2O48 '2O48 )' (y")'
~&34) I&34) I&34)

2049 480 ~~ T l ((I'I"')
(4)' (4)' (p")'

ftt

~(32,41) ~(32,41) y (32,41) '

a + b

~&(4)' (4) ' ) (e")'

(15c)

(15e)
In Sec. IV we shall use the above results to esti-
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mate the coefficient of T term in the specific heat
of lead.

1V. T CONTRIBUTION TO THE SPECIFIC HEAT AT HIGH
TEMPERATURES

In order to have a numerical estimate of the T
term in the specific heat at high temperatures we
choose here a Morse potential to represent the in-
teraction between atoms. This can be written as

-Rutr ro) 2
--air -ro&)

where a and D are parameters which have been
determined by Girifalco and Seizer' for a, number
of crystals. Substituting Q" from Eg. (16) in Egs.
(15), we obtain for the total anharmonic contribu-
tion of order q' to the free energy 1n the r.udwig
appx'ox1111a't1011 (LA):

Z= SX(I,T—)'/D',

Various contributions

y (41)

~(42)
a

y (42)

y (34)
a

y (34)

~(31,51)

~(32, 41)
a

y (32,41)
b

LA

0.6562

—0.2109

0.1211

—0.7177

—0.1137

—0.1583

—0.0371

—0.2632

0.6564

0.2457

Computed values % deviation

0, 6562

-0.2524

0.1211

—0.5742

—0.0996

-0.1936

-0.0466

-0.3155

0.6626

0.3087 —20

Weizer, ' we obtain from Egs, (18)-(20)

&=3.5x10 ''K Lg

TABLE I. Anharmonic contributions to the free energy
for a Morse potential.

where
8=0.266 . = 1.8 x 10 'K, computed. (21)

However, if we use the values of the sums in Eqs.
(3) as obtained by Shukla and Cowley, ~ we have

To compare the Ludwig-approximation results
with the computed results we have listed the indi-
vidual contributions to free energy of a crystal to
order g in Table I. The first column in the table
depicts the various anharmonic contributions. The
second column gives the results obtained from the
Ludwig approximation. The numbers in the third
column are based on the computed values ' of the
anharmonic sums. The fourth column gives the
percentage deviation of the Ludwig-approximation
result from the computational result. The q con-
tributions, & ' and I" ', that were obtained by
Maradudin et a/. ' have also been listed in Table I
for the sake of completeness. The g and g con-
tributions are expressed in the units of N(keT) /D
and N(k~T)'/D, respectively.

It is evident from the table that the Ludwig ap-
proximation gives exact results for I" ' '

a,nd E'6 ',
and it underestimates the magnitudes of most of the
remaining anharmonic contributions by about 18%.
However, the Ludwig approximation overestimates
the magnitudes of E,'~' and &, ' by about 20%.
Though the Ludwig approximation underestimates
the magnitudes of most of the anharmonic sums the
magnitude of the total anharmonic contribution of
order g is overestimated.

From Eqs. (1) and (17), the coefficient of the Ta
term in the specific heat at high temperatures can
now easily be seen to be

2B= 28ke/D

For lead if we use the value of the parameter 8
= 3.76&&10 "erg as calculated by Girifalco and

The experimental value of 8 obtained by Leadbet-
ter is 6x10 'K . Considering the uncertainty
involved in the experimental value and the approxi-
mate nature of the model used in the calculations,
the agreement between the measured and the esti-
mated values may be said to be satisfactory.

It is of interest to compare the relative magni-
tudes of the 1' and T terms in the specific heat of
lead in the high-temperature region. From Eq.
(1) and the values of the 1)' contributions, E 4" and
E ', given in Table I, the coefficient of the T
term in the specific heat is

A= —1.1x10'K' LA

= —1.0x10 4'K ' computed. (22)

Using the values of B and A from Eqs. (21) and
(22), we obtain the following for the ratio of the
two anharmonic contributions to the specific heat:

2BT/A = —6.4&&10 T LA

= —3.6x10 T computed. (23)

Since for lead the Debye temperature is about 95
'K and the melting point is about 600'K, we choose
here T = 500'K. At this temperature the ratio in
Eq. (23) comes out to be —0.38 in Ludwig approxi-
mation. However, if the computed values of the
anharmonic sums are used, the ratio is -0.18. In
any case we find that the T contribution to the spe-
cific heat is quite significant at high temperatures,
in agreement with the conclusions of Leadbetter.

V. CONCLUSION

In this paper Ve have used the I udwig approxi-
mation to evaluate the sums in the expressions for
the anharmonic contributions of order g to the
free energy of a face-centered-cubic lattice with
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nearest-neighbor central-force interactions in the
high-temperature limit. The Ludwig approxima-
tion has offered a considerable simplification and
we have been able to do the sums analytically. As
we saw in Sec. IV, the Ludwig approximation gives
exact values of some of the anharmonic sums and
it underestimates the magnitudes of most of the
other sums by about 18%. However, the magnitude
of the second-order quartic anharmonic contribu-

tion is overestimated by about 20%. Though the
Ludwig approximation gives a good estimate of the
of the g contribution, it overestimates the g con-
tribution by a factor of 1.9. The main advan-
tage of this approximation lies in the fact that
we can do the summations analytically. The
Ludwig approximation, therefore, could serve as
a check on the computed values of the anharmon-
ic sums ~
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The electronic band structure of the high-temperature phase of uranium has been determined by
means of the symmetized relativistic augmented-plane-wave method. Six different crystal potentials (three
atomic starting configurations, 5f4 7s-', 5f'6d' 7s', and 5f'6d'7s', each taken together with a. = 2/3
and o, = 1 approximations for exchange) were employed in the warped-muffin-tin approximation. The
relativistic effects are found to be very important and result in 5f bands which overlap and hybridize

strongly with the very broad "7s-p" and broad 6d bands (which in the absence of the 5f states are

found to be those typical of a high-atomic-number transition metal). The nonrelativistic energy bands

are found to be incorrect in many ways. A calculated density of states shows considerable structure

reflecting the s-d-f hybridization and a relatively high density of states (1.45 states per atom eV) at

the Fermi energy. The Fermi surface is found to be complicated and to consist of two hole and one
electron surfaces.

I. INTRODUCTION

Qf all the actinide metals, uranium is perhaps
the most famous because of its early unique role
in the field of atomic energy. As with the other
actinides, its unusual electronic properties—
ranging from magnetism (especially in the case of
its dilute alloys and intermetallics) to supercon-
ductivity (when subjected to pressure at low tem-
perature) —are not well known and even less well
understood. ' One major difficulty, both for the

experimentalist and the theorist, is the large num-
ber of crystallographic transformations which the
metal undergoes as a function of temperature and
pressure; in addition to the three well-known
phases —the orthorhombic phase, called ao (T
&940 K), the tetragonal p phase (940 & T & 1048 K),
and the body-centered-cubic y phase (T&1048 K)
which exists up to the melting point at 1405 K-
there are several other transformations all in a
small range of temperature around 43 K. The
high-temperature y phase, the simplest modifica-


