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ture susceptibility. The next step should be the
treatment of a system in which the confining poten-
tial is represented by a polynomial of higher order
in the coordinate variables. By the inclusion of a
sufficient number of terms in the series (2. 2) any
potential single valued at the surface can be well
approximated. In this event a collective restric-
tion must be placed on the magnitude of the numer-
ical coefficients to satisfy the requirements of per-
turbation theory. Unfortunately the accomplish-
ment of this objective is hindered by the circum-
stance that the higher order matrix elements en-
countered lead to the introduction of factors of
progressively higher power in temperature, making
it very difficult to demonstrate explicitly the can-
cellation (if indeed it takes place) of all but those
terms involving only inverse powers of tempera-
ture, such as appear in Eqs. (4. 10) and (4. 14).
By a procedure similar to that used here to treat
the quartic potential, the temperature dependence
of all corrections to the susceptibility resulting

from an assumed confining potential of the form
V~(b, y4+ bsye) was verified after some effort. Al-
though it seems highly probable that all terms in
the potential (2. 2) would lead to a similar tem-
perature variation for y, there appears to be no
practicable way by which this can be conclusively
demonstrated using the present analytical ap-
proach.

It is interesting to point out that an appropriately
scaled potential having the functional form y" ap-
proaches that of a one-dimensional square well as
n becomes large; this is possibly significant in
light of the fact that the three-dimensional square-
well potential is known to lead to a susceptibility
having exactly the Landau form with corrections
involving only inverse powers of temperature.
This circumstance lends some support to the con-
jecture that any potential single valued at the sur-
face, or equivalently one expressible as a power
series in the spatial coordinates, would have ex-
actly the Landau susceptibility at high temperature.
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A»co or A«eo, the right-hand side of the inequality (3.9)
reduces to the same quantity V,b4(k T)'/rn'0', except for a
numerical factor of order unity.

'-'The inequality co»A can also be interpreted to imply a

narrow system in the y direction when compared with the
electron's radius of gyration.

"The inequalities co«A and PKQ«1 together imply
@co« k T, the condition that ensures that oscillatory
phenomena relating to the de Haas —van Alphen effect are
small.

"For a system obeying classical statistics, which has been
assumed here, the conclusions correctly apply only in the
high-temperature limit where k T »5 A. However, for real
metals, classical statistics are not sufficient and Fermi-Dirac
statistics must be used, The low-temperature limit

q» kT = I A is then appropriate with the Fermi energy q
essentially replacing k T in the corresponding conditions and
results.
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The phase separation curves of liquid-metal alloys may be obtained by a variational method which involves
no free parameters. The scheme is applied to Li„Na, „and yields results in good qualitative agreement with
experiment.

INTRODUCTION

This is the last in a group of three papers on the
subject of phase transformations in l.iquid and solid
metals and alloys. Previous papers have dealt

with the origin of the Burne-Rothery rules for the
crystal. structur'es of binary alloys, ' and with the
theory of melting of simple metals. The present
paper extends the procedures used in these calcu-
lations to apply to a second-order phase transition,
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The phase-separation curve in a binary liquid
mixture A„B, „may be calculated at zero pressure
from knowledge of Helmholtz free energy per ion,

F, as a function of concentration and temperature.
The calculation requires a well-known graphical
procedure illustrated schematically in Fig. 1. For
a given temperature T & T„ there is a concentration
regime in which the free-energy isotherm is con-
cave downward, so that a straight line may be
drawn tangent to the curve at two points. The solu-
bility limits x„(T) and xs(T) are the abscissas of

the two points of tangency. As T is increased, x„
and &~ move closer together, until at T = T, they
coincide at x,. For T& T„ the isotherms are con-
cave upward at all x, the common tangent con-
struction is impossible, and the mixture is stable
against separation at any concentration.

In a liquid-metal alloy, F(x, T) can be approxi-
mated as

F(x, T)-Etfa +Z," +Ea+E f; Ez„++Ess —TS. (1)

Egf and E'„',"are, respectively, the kinetic and
exchange-correlation energy per ion of the electron
gas, given in rydbergs by

E'„"„'= (2. 21/r,') Z,«,
E+4'= ( —0. 916/r, —0, 115+0. 031 lnr, ) Z„„

(2)

namely, the miscibility gap which is observed in a
number of binary liquid metallic alloys. Such a
study is of particular relevance at the moment be-
cause of the considerable recent experimental in-
terest in fluctuations near the critical point of me-
tallic systems exhibiting a miscibility gap. 3 ' Al-
though the present work deals directly only with the
static properties of such systems (i. e. , the phase-
separation curve itself), it forms a starting point
for an investigation of fluctuation effects from a
mean-field point of view. It is hoped in a future
paper to deal with fluctuation effects in this man-
ner.

The basis of the calculation is a variational prin-
ciple which makes it possible to obtain the alloy-
free energy, and hence the phase-separation curve,
without any free parameters whatsoever. Such a
procedure has previously been shown to give good
results for the melting curve of Na. When applied
to liquid Li„Na, „, the approach yields a curve in

qualitative agreement with experiment. The pres-
ent work is believed to represent the first calcula-
tion of the phase-separation curve in a mixture of
liquid metals. 7

We turn now to a detailed discussion of the calcu-
lation. Section II describes the variational method

for finding the free energy of any binary liquid me-
tallic alloy. The application to Li„wa&, is pre-
sented in Sec. III.

II. FREE ENERGY

F F~in

Pure A Pure B

FIG. 1. Schematic of free-energy isotherms in a
liquid-metal alloy A+& exhibiting a miscibility gap.
F-E~~~ is the deviation of the free energy per ion, F,
from a linear interpolation of the free energies of the
constituents. The dashed line is drawn tangent to the
isotherm at two concentrations, which represent the
solubility limits of the alloy at the corresponding tem-
perature.

E =—Q —(xZa (S„„(k)—1)+ 2[x(1 —x)1'
2~gp k'

x Z„Zss~ (k) + (1 —x) Z s [Sss (k}- 11), (4)

S», S», and S» being the partial ionic structure
factors appropriate to the alloy. The band-struc-
ture energy per ion, E~, can also be expressed in
terms of the structure factors provided that the
pseudopotentials V," and V, are weak. The result,
valid to second order in the pseudopotentials, is

V~ala S»(k)+ 2[x(1 —x)1'~a
kfP

xv", v,'s (k)+(I —x)l vol'ss (k)& —' —ll, (5)
~a )'

where e, is the dielectric function of the electron
gas. The last term in (1) represents the contribu-
tion of the entropy S to the free energy.

Expression (1) can readily be evaluated if the
structure factors and entropy of the liquid alloy are

where x, is the electron radius, defined in terms
of the ionic density N and effective valence Z, ff
=xZ„+(1—x)Zs ~by $ sr, =(NZ, «) '. Ea (the so-
called Hartree energy) is equal to the sum of the
long-wavelength components of the electron-elec-
tron, ion-ion, and electron-ion interactions (each
of which is separately divergent):

Ea = [xZga~+ (1 —x) ZsaslNZert,

where ~„and ~~ are constants related to the long-
wavelength behavior of the electron-ion pseudopo-
tential. Egfn p AT is the ionic kinetic energy per
ion. E„, the Madelung energy per ion, is
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chosen to correspond to a mixture of hard spheres
of different diameters D„and D~. Both structure
factorss and entropy~ are available analytically for
such a system in the Percus-Yevick' approxima-
tion.

D„and D~ may be unambiguously determined
with the help of the variational principle mentioned
earlier. The basis of the scheme is an inequality
derived from thermodynamic perturbation theory,
which for the present appl, ication may be written"

F &F,+&V), .
Here Fo is the free energy of the reference mix-
ture of hard spheres, and (V)0 represents the ion-
ion interaction energy, calculated using the true
pair potentials and hard-sphere structure factors.
In (1), the role of (V)0 is played by E„+E~, which
behaves like a sum of pairwise interactions be-
tween the ions, while the remaining terms corre-
spond to Fo. Note that the pairwise ion-ion inter-
action energy is zero in the hard-sphere reference
system. Thus expression (1), calculated with
hard-sphere structure factors and entropy, is in
reality an uPPer bound to the free energy for any
choice of D& and D~. The variational prescription
for calculating F(x, T) is therefore (a) for each x
and T, minimize expression (1) with respect to D„
and Ds [thereby obtaining effective concentration-
and temperature-dependent hard- sphere diameters
D„(x, T) and Ds (x, T)], and (b) let the resulting min-

imum upper bound approximate F.
The accuracy of this approach presumably de-

pends on the degree to which the liquid mixture re-
sembles the reference mixture of hard spheres.
For a system in which the liquid structu're factors
deviate greatly from those of a hard-sphere sys-
tem, we may expect that the variational upper
bound will be much greater than the true free ener-
gy

III. APPLICATION TO Li„Na, „
A mixture of liquid Li and Na represents a par-

ticularly appropriate system for application of the
present variational scheme. The experimental
structure factors of both pure liquids are reasonably
well fitted'~ by those of hard spheres in the Per-
cus-Yevick approximation; it is therefore plausi-
ble that those of the mixture will be well repre-
ted by the structure factors of a mixture of hard
spheres of different diameters. Moreover, of all
metallic systems exhibiting miscibility gaps, the
weak-pseudopotential approximation best applies
to Li„Na, „. The hard-sphere model is less suc-
cessful in describing the structure factors of poly-
valent metals. '~ Moreover, there is some doubt
that second-order perturbation theory is sufficient
for their alloys.

Application of the variational approach to liquid

Li„Na, „ is straightforward. In the present work,
the pseudopotentials have been chosen to be of the
local and energy-independent Ashcroft form'3:

(7)

r,"' has been taken to be 1.67 a. u. , which fits Fer-
mi-surface and transport data. Such measure-
ments do not uniquely determine r, ', which has
therefore been chosen in such a way that the cor-
responding variationally determined hard- spher e
packing fraction g =+ mD~&N equals 0. 45 at melting,
which best fits the observed liquid structure fac-
tors. o,„, and n„, have been chosen so that F(x, T)
satisfies the zero-pressure conditions dF/dr, = 0
at the observed equilibrium volumes of liquid Li
and Na at melting. For the dielectric function c~,
the Hubbard" form, suitably adjusted to satisfy the
compressibility sum rule, has been used. "

The calculated phase-separation curve for
Li„Na, „ is compared with experiment in Fig. 2.
The experimental points represent the work of Sal-
mon and Ahmann, with the exception of the cri-
tical point, measured by Schiirmann and Parks. ~

The absence of a theoretical point at T, is a re-
sult of numerical difficulties —the free-energy
curve is so flat at such temperatures that it be-
comes very difficult to determine whether a com-
mon tangent construction is possible. Neverthe-
less, the theoretical curve reproduces the observed
asymmetry, and in particul. ar approximately
matchesthemeasured x, of about70-at. % Li. T, is,
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FIG. 2. Phase-separation curve in liquid Li„Na& „.
The experimental curve is based on Salmon and Ahmann,
Ref. 16, and Schurmann and Parks, Ref. 3. The theo-
retical melting point of Na is from Stroud and Ashcroft,
Ref. 2.



4408 D. STROUD

however, overestimated by about a third. This
discrepancy can be blamed on the extreme sensi-
tivity of the theoretical curve to small errors in
the free-energy calculation-an error of only about
0. 4 mRy/ion (less than 0. 1% of the free energy of
the mixture) could lead to the observed deviation.
We note, however, that the overestimate of T, may
also be an inevitabl. e consequence of using a mean-
field theory, in which i x„—xs f~ (T, —T)'+ near
T„rather than the flatter experimental behavior

x i~(T T)0.$-0.35

Despite sensitivity of the calculation, the good
qualitative results illustrated in Fig. 2 cannot be
considered merely fortuitous. The melting curve
of Na, obtained in Ref. 2 by a method in which the
liquid state is treated exactly as in the present cal-
culation, also agrees well with experiment; the
computed zero-pressure melting point, shown in

Fig. 2, deviates from observation by only 5%.
Furthermore, the method seems capable of pre-
dicting the behavior of liquid mixtures other than
Li„Nag „. For liquid Na .,K0,, at 400 'K, it yields
a free energy of mixing dE= ~(Es,+E„)—EN, 05 0.5
= l. 5 mRy/ion. Since a positive hE is a necessary
condition for the alloy to form, this result is con-
sistent with the fact that at T= 400 'K, liquid

Na„K~ „ is stable at any concentration.
The various contributions to 4F in liquid

Li .SNa, ~ are listed in Table I for T=850'K. A
term with a positive contribution to 4F favors the
mixing of the two metals. Note that a major con-
tribution comes from the terms E„",,", E"„",, and

Eo, which do not depend on the liquid structure.
Among these terms, Eo in particular is hard to
calculate with great accuracy. Until one can be
confident of such accuracy, the phase-separation
curve is unlikely to be calculable with ~quantitative

TABLE I. Contributions to the free energy of mixing
nF=r(ELi+ENJ ELio ~I ) at T= 850'K. Row by row,
the contributions are clue to the electronic kinetic energy
Ez&~~, the electronic exchange-correlation energy E'„,~,
the Hartree energy Eo, the entropy term —TS, the Made-
lung energy E~, and the band-structure energy Ezs. The
ionic kinetic energy makes no contribution.

Free-energy term
E81BC

Sin

EB1BC
XC

-TS

Total

Contribution to dd"

(mRy/ion)

+8.3

-5.5

+1.3

12 ~ 7

+4.8

precision, no matter how sophisticated the treat-
ment of statistical correlations in the liquid. Ta-
ble I also shows that, in contrast to the situation
which prevails in structural phase transitions in
solid alloys, the electron-ion energy E» does not

play a dominant role in the phase-separation
curve; its contribution is only one of several ma-
jor terms in 4F.

ACKNOWLEDGMENTS

The author is grateful to Professor N. W. Ash-
croft for stimulating his interest in this subject
and for a number of fruitful discussions. He also
acknowledges the use of IBM 360 computing facili-
ties at Ohio State University and Cornell Univer-
sity.

~Work supported in part by the Atomic Energy Commission
under Contract No. AT(11-1)-3161,Technical Report No.
COO-3161-6, and by the National Science Foundation.

~Present address.
'D. Stroud and N. W. Ashcroft, J. Phys. F 1, 113 (1971).
D. Stroud and N. W. Ashcroft, Phys. Rev. B S, 371 (1972).

'H. K. Schurmann and R. D. Parks, Phys. Rev. Lett. 27, 1970
(1971).

P. D. Adams, Phys. Rev. Lett. 25, 1012 (1970).
~H. K. Schurmann and R. D. Parks, Phys. Rev. Lett. 26, 367

(1971).
G. D'Abramo, F. P. Ricci, and F. Menzinger, Phys. Rev. Lett.

28, 22 (1972).
An abstract of the present work is given by D. Stroud, Bull.

Am. Phys. Soc. 17, 103 (1972). Very recently, estimates of the free

energy of mixing have been made by S. Tamaki, Phys. Lett. A
40, 17 (1972).

N. W. Ashcroft and D. C. Langreth, Phys. Rev. 156, 685
(1967).

9J. L. Lebowitz and J. S. Rowlinson, J. Chem. Phys. 41, 133
(1964).

' J. K. Percus and 6. J. Yevick, Phys. Rev. 110, 1 (1958).
"An elegant proof of this inequality is given by T. Lukes and

R. Jones, J. Phys. A 1, 29 (1968).
' N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).
"N. W. Ashcroft, Phys. Lett. A 23, 48 (1966).
' J. Hubbard, Proc. R. Soc. Lond. 243, 336 (1957).
"The form is given explicitly in Ref. 2.
' O. N. Salmon and D. H. Ahmann, J. Phys. Chem. 60, 13

(1956).


