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Dependence of Diamagnetic Susceptibility on Surface Potential
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The dependence of the diamagnetic susceptibility on the surface potential is investigated for a
collection of independent electrons confined within a slab by a harmonic potential barrier perturbed by
a small fourth-order anharmonic term. Taking the magnetic field perpendicular to the slab, the partition

function and susceptibility are found to first order in the perturbing potential using classical statistics.
The susceptibility is examined in the small-size or weak-magnetic-field limit at high temperature. Here
it is found that no surface-structure-dependent corrections to the diamagnetic susceptibility exist which

vary inversely with temperature and therefore the well-known Landau result remains valid for the

assumed surface potential.

I. INTRODUCTION

Following Landau's' initial work which proved
the existence and quantum-mechanical nature of the
diamagnetic susceptibility of a system of indepen-
dent but confined charges, the problem of precisely
how the surface structure or wall potential affects
the susceptibility has received attention from sev-
eral authors. 2 ~ Nobvithstanding the considerable
efforts of these investigators, the results which
bear on the question of just how if at all the wall
potential alters the Landau value for the suscepti-
bility remains inconclusive. This is probably due
in good measure to the unique nature of the inter-
action, the necessity for employing fairly detailed
models, where results are not readily comparable,
and certainly not least to the rather formidable
analytical difficulties encountered.

There is, however, some evidence that the Lan-
dau value for the susceptibility is actually model
independent at sufficiently high temperature and
that no temperature-independent corrections exist
which depend on either the physical dimensions of
the system or the detailed structure of the wall po-
tential. ~ The results presented here support this
point of view.

In treating the problem of steady diamagnetism
of free electrons it is found necessary to provide
for their confinement by means of a potential bar-
rier of some kind. In his original treatment Landau
assumed the electrons to be contained within a box
having infinite potential walls. Landau obtained his
well-known result for the susceptibility by simply
requiring that the classical center of gyration of
each electron remain within the confines of the
box. Implicit here is the assumption that the radius
of gyration is small compared with the dimensions
of the box. For this reason it is not surprising that
Landau's result turns out to be independent of the
box dimensions.

When the radius of gyration is comparable with
the linear dimensions of the volume in which the

electrons are confined, it is reasonable to expect
contributions to the susceptibility which do depend
on the ratio of these characteristic lengths. Simi-
larly one might expect corrections which depend
upon structural details of the potential wall itself,
involving in this instance the ratio of the radius of
gyration to the distance over which the surface po-
tential energy changes by an amount comparable
with the energy-level separation of an electron in
a uniform magnetic field.

Effects of this kind do indeed exist and are evi-
dent in the results of several authors '~' as well
as in those presented here. While the actual ex-
pression obtained for the susceptibility is of some
interest because of the somewhat improved form
of the surface potential employed, the problem of
primary concern is the determination of the limit-
ing form of the diamagnetic susceptibility at high
temperature. Do corrections to the susceptibility
depending on the physical dimensions of the sys-
tem or the surface-potential structure exist which
have an inverse temperature variation as does the
Landau susceptibility? Is the Landau susceptibility,
which is itself independent of system size and sur-
face potential, the principal part of the diamagnetic
susceptibility of any system at sufficiently high
temperature?

W'ith respect to these questions the work of Fried-
man appears significant. ~ In his investigation of
the susceptibility of small systems, he considered
in detail the confinement of electrons by an infinite
potential well. Treating the magnetic field terms
as perturbations, he took explicit account of the
discrete energy levels resulting from the small size
of the system by evaluating the sums themselves
rather than replacing them by integrals as is ordi-
narily done. Using Boltzmann statistics Friedman
convincingly shows that the susceptibility of elec-
trons confined within a small infinite square well
has, at high temperature, the Landau value without
size corrections, the same as found for arbitrarily
large systems. Additional information is provided
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by his approximate treatment of electrons confined
by a harmonic potential. In this case the possibility
exists for effects of.both size and potential struc-
ture to make their appearance. Here again the
Landau susceptibility is found to be the leading term
at elevated temperature. Thus two rather dissim-
ilar systems, the infinite potential well and the
harmonic potential, give rise to the same suscep-
tibility without apparent size or potential structure
effects at high temperature.

A distinction is usually made between effects re-
sulting from the small size of the system and the
structure or form of the wall potential. It is not
at all clear that such a distinction can actually be
made between these effects. If, however, these

. effects can be separated in a meaningful way, the
example of the infinite potential well treated by
Friedman would seem to offer the most advanta-
geous model for investigation. Here the waQ
structure assumes probably its most simple phys-
ical form. In comparing Friedman's results with
those obtained by other authors there appear to be
some areas of disagreement. In particular there
seems to be some reason to question the validity
of Ham's conclusions about surface effects arrived
at through the use of the %KB approximation. Al-
ternatively it is not readily apparent that any error
at all exists in Dingle's finding that the Landau
susceptibility is enhanced by a factor depending on
the ratio of the radius of his cylindrically shaped
system to the electron wavelength at the Fermi en-
ergy. Still, it should be remembered that the sys-
tems dealt with by these authors are not identical
nor are the approximations quite the same; con-
sequently one must exercise caution in attempting
to draw conclusions from such comparisons.

The results for parabolic and infinite square-well
potential confinement of electrons are noteworthy
and lend themselves to interpretation in two possible
ways: first, that no size or surface-potential ef-
fects in the susceptibility exist at high temperature
for any form of charge confinement and that the re-
sults for these two potentials are simply exhibiting
this general behavior; second, that the two ex-
amples chosen are fortuitously possessed of special
properties which can be attributed to the analytical
form of the potentials selected and are responsible
for the absence in the susceptibility of size and

surface effects. Initially the second explanation
seemed most likely and the possibility of demon-
strating it provided the motivation for the present
work.

In the case of the infinite potential well it may be
argued that the system is perhaps equivalent to a
juxtaposition of similar systems where outermost
as well as internal boundaries can be considered
equivalent in their analytical representation to the
assumption of periodic boundary conditions. This

seems quite plausible when we recall that the ar-
bitrary division of an electron orbit by a plane rep-
resenting an infinitely high separation potential can
as well be viewed as parts of two completely sepa-
rate and independent systems having electron orbits
which are perfectly reflected from the interposed
wall. This argument is in fact sufficient to show
that in the classical limit a system of free charges
exhibits no diamagnetism, the reflected charge
current exactly canceling the effect of the net cir-
culation of those electrons not coming in contact
with the walls. However, this argument appears
to break down in situations where the radius of
the classical orbit is larger than the characteristic
dimensions of the system but then the very mean-
ing of magnetic susceptibility would itself seem to
become a concept that is less than well defined.

The case of a harmonic potential has also a spe-
cial character in that the analytical form of the po-
tential, quadratic in the spatial variable, is iden-
tical with that of the well-known diamagnetic terms
originating in the vector potential appearing in the
kinetic-energy term of the Hamiltonian. By the
device of completing the square, the harmonic po-
tential can be combined with the small diamagnetic
term and the resulting equation solved exactly.

In view of these possible special characteristics
of both the square-well and harmonic potentials it
appears useful to investigate the susceptibility of
a system of electrons confined by a potential of
substantially different analytical form from either
of these. Unfortunately when a magnetic field is
included, the Schrodinger equation cannot easily
be solved for other potentials of interest, say,
those expressible as a polynomial in the spatial
variables. For our purpose, however, an exact
solution does not appear necessary; the inclusion
of a small additional perturbing potential which is
at least in part linearly independent of both the
harmonic and square-well potentials should be suf-
ficient to settle the question of the existence of a struc-
ture- dependent correction to the Landau diamagnetic
susceptibility varying inversely with temperature.

In an attempt to answer this question and at the
same time to determine more precisely the de-
pendence of the diamagnetic susceptibility on sur-
face potential and temperature, we investigate here
the magnetic properties of a system of electrons
confined within an infinite slab by a parabolic po-
tential perturbed by a fourth-order anharmonic
term. Without approximation in the magnetic field
the partition function and susceptibility of the sys-
tem are found to first order in the perturbing po-
tential. The expression for the susceptibility is
expanded in inverse powers of the temperature and
compared with the Landau value. Finally the sig-
nificance of the results and possible extensions of
the work are discussed.
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&(r) = v(x)+ v(y)+ v(z),
where

v(x)=0, —~&a&~,

V(y)= Vp Z b02(y

(2. l)

(2. 2)

V(g) = 0 60 ~( g ~ Eo,

Choosing the Landau gauge for the vector potential,
A(r) = (- By, 0, 0), corresponding to a uniform mag-
netic field 8 in the s direction, the wave function

P„(r) of an electron within the finite potential region
satisfies the equation

II. ENERGY EIGENVALUES

Consider a collection of independent electrons of
mass m and charge e moving in the presence of a
uniform magnetic field and confined by a potential
of the form

order solution ((0(0'(y) can be shown to satisfy the
equation
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with energy eigenvalues
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by completing the square in the variable y. This
equation, which involves no approximation in the
magnetic field, is identical in form with that for
the displaced harmonic oscillator and has the so-
lution'

+ Vp Z bp„y
")I)„(r)= E„(I)„(r), (2. 3) ~2, 1/2

E„'"=No 1+ „, n+-,'
in which v stands for the set of quantum numbers
used to describe an electronic state. Now assume
periodic boundary conditions in the x and z direc-
tions over large but finite distances I.„and I... re-
spectively. Taking Ic)„(r) to be of the form

y„(r) = N,„e"~'&"
q „(y) (2.4)

and setting

E.=&ay, +E. y

we find from (2.3) that

E,~ = (e'/2m) (b'„+ b,')

with the normalization N = (I.„L,)
(0„(y) then satisfies the equation
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(2. 5b)

+E'ER br 2 )2t„(2)=E„E„(2), (2.6)
I

where (d = eB/me is the cyclotron frequency.
With a proper choice of the coefficients 52 a

good representation of most potentials of physical
interest can be found but ordinarily the resulting
equation can be solved only with difficulty. How-
ever, an exact solution to Eq. (2. 6) can be obtained
if the potential sum is limited to its initial term
for which m = 1. In order to make possible an an-
alytical treatment of the problem, it is arbitrarily
assumed that the first term provides the principal
contribution to V(y) and that the remaining terms
can be included by means of Hayleigh-Schrodinger
perturbation theory. Setting Vob2= ~mA, the zero-

5 cou„', „,- . (2. S)

Here II„(x) is the Hermite polynomial of order n,

(@/vl/8 2E ) )l/2

n'= (ma/I)(i+ ~'/o')l/'.

As a further simplification we limit consideration
of the remaining terms in V(y) to a single term, the
second or quartic term given by Vob~y4. From
Rayleigh-schrodinger perturbation theory the first-
order energy correction is just

E(l' = Vpb, f y*(r) y4y(r) dr .- (2. lO)

Making use of (2.4) and (2. 8) one finds

E l= VpbpN II (()(y)e
4 (O

0 hb, (p

m((p'+0') ~

( Sb„(p+ I- (,* r) ) dy, (2. )))

since all odd powers of y integrate to zero. Carry-
ing out the integrations with the aid of well-known
matrix relations for the harmonic-oscillator wave
functions, we finally obtain

E('l=Vb, 2, [( +-.) +-.]
3 1 1 2 i

a' 'i m(a'+(00) ) ' " m((p'+O'))

(2. i2)
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which is seen to be a function only of the quantum
number n but depends on the magnetic field through
both co and o,.

III. PARTITION FUNCTION

xQ exp[- Pe((u'+ fl')"'(n+-,')] . (3.2)
n~o

Approximating the sums over k„and k, by integrals
according to the transformation

If terms to first order in the perturbation poten-
tial are retained, the partition function for a sys-
tem obeying classical statistics can be expanded
and written

dk
2m

(3.3)

Z=Z e ""'- P Ze ~'"E„"',

where p= 1/kT. Letting Z=Z'+ Z'" and making
use of the expression for E'+ given by (2. 6) and

(2. 9) we find
40 I' 40(Oy g k
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and recognizing the sum over n as a geometrical
progression, we obtain
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Using the result (2. 12) for E„' ', Z' ', the first-
order correction to the partition function takes
the form

00 40
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To evaluate Z' ' rewrite the sums over n as appropriate derivatives of the exponential with respect to the
temperature parameter P and again make use of (S.3). After some algebra we find

3 Vob4 ( &o ) pKQz"'=- I,, r., ' ', (z+,
(
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In order to represent the partition function by
the partial expansion (S.1) some limitation must
be placed on the size of the product Vo 54. If the
usual condition that the perturbation energy be
small compared with the zero-order energy level
separation is applied, we must have

~2 1/2 3
IQ 1+ 2» Vob4 —

4 n +n+&
$2 Q

5kg ~
o.' ((o'+ 0')

4m+22)3e7
according to (2. 9) and (2. 12) for all possible values
of n and 0~ It is apparent that the required in-
equality (3. f} in which the right-hand side in-
creases with both n and k„no longer holds for suf-

(d kT,

~2 1/2
KA ~1+ I n~kT

(3.Sa}

(3.8b)

on the sizes of k„and n insofar as the condition
(3.7) is concerned. With these restrictions P'~g4

need only be chosen in conformity with the in-
equality

~2 1/2 O'T
I'Q ] + )) 3 y' Q ~2+ Q2 ~2

ficiently large values of either n or 4, regardless
of the choice of Vob4. However, because of the
exponential factor e ~~ ~' appearing in terms of
the partition function expansion, only energies
near or less than k T contribute appreciably to the par-
titionfunction. This places the effective limits
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to obtain a valid perturbation expansion for Z as
represented by Eq. (3.1)~ The inequality (3. 9)
shows that as the temperature is increased Vob4

must be reduced in size as expected since at high-
er temperaures states with large n are favored.

high temperature to the introduction of a purely
structure-dependent correction to the Landau dia-
magnetic susceptibility having its characteristic
inverse first-power temperature variation. Be-
cause the Landau susceptibility is itself indepen-
dent of the magnetic field, it is sufficient to ex-
amine X in the weak-magnetic-field limit where
it can be assumed~2

IV. MAGNETIC SUSCEPTIBILITY v«Q, (4. 3)

1 (sF 'tx=- —
~

—
fB )4~B ) N'tf'T

(4. 1)

where E is the Helmholtz free energy defined by

The complete expression for the magnetic sus-
ceptibility of a system can be found from the for-
mula

a condition which allows expansions in the small
dimensionless ratio ((&/Q.

According to Eqs. (4. 1) and(4. 2) only terms in
the free energy of second order in the magnetic
field contribute to the field-independent part of g
in which we are interested. Accordingly we take

F=)hTlnZ (4. 2)
Z = Z Z(() + Z Z((„"&, (4.4)

in terms of the partition function Z. From the
form of our expression for Z, the sum of (3.4) and

(3.6), it is evident that with no further simplifica-
tion, the resulting X will depend explicitly on the
magnetic field and the structure of the confining
potential through Q and Vob4.

The general expression for the susceptibility is
not, however, of immediate concern to us and is
not given explicitly. As has already been explained
at some length in the introduction the purpose here
is to determine whether or not the inclusion of new

linearly independent terms in the confining poten-
tial, such as the quartic perturbation, leads at

where the subscript indicates the order in the mag-
netic field B. Place this in Eq. (4. 2) and expand
the logarithm, retaining only terms up to second
order in B. Substituting the result into (4. 1) gives

(2) +
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since Z(f) will be found to vanish.
Expand (3.4) and (3.6) making use of (4. 4). We

obtain
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Inserting the results (4.6) into Eq. (4. 5) and setting

X.
= X(0&+X(0&

(0& (1) (4. V)

we find from the first term of (4. 5) that

(0) kT 1 8Z(2&
X (0) g Z(0)

(0&

e'kT ( SQ NQ &

m'c'Q' i( 2kr 2kr ) ' (4. 6}

which is seen to depend on the form of the confin-
ing potential as evidenced by the appearance of O.

We nom wish to examine the form of X(0& in the
high-temperature limit 3

PKQ«1 (4. 9)

e I
12 kT Mg (4. 11)

is the mell-known Landau diamagnetic susceptibil-
ity. Then in the limit of high temperature the
susceptibility of a purely parabolic confining poten-
tial approaches the Landau value and there exist
no structure-dependent corrections to the suscepti-
bility in this approximation having the inverse-
temperature variation of the Landau term itself.

Now consider the two remaining terms of (4. 5},

k T 1 eZ(2) Z(o& 8Z(2)
8 Z', ', 88 Z', ", eB

(4. 12)

Performing the indicated differentiations using
(4. 6) we find

(1) 9 Vob41 1 shQ/2 sch-" -+1
X(0& XI, 2 zg3 ~g I

e 2

x ~~ ~/2csch + 1—~g
2 PM

+ e ~""~~ 1+coth (4. 13)PSQ PSQ
2 2

which also depends on the potential through gob~
and Q. Again assume piiQ«1 and expand the right-
hand side of (4. 13}in powers of PiiQ. Then in the
high- temperature limit

(q) 1 Vobis kT
X'5 m2u'ea

where the energy-level spacing SQ is much less
than kT. On the basis of the assumption (4. 9) ex-
pand the right-hand side of Eq. (4.8}in a power
series in PAQ. Then at high temperature

(0) 1
1(SQ 2 ( hQ

15 I 2uZ 315'& 2nZ'

(4. 10)

This is a series in inverse even integral powers of.
the temperature since X

- 1/T. The two separate
terms of (4. 12) are actually found to begin with
order +Q-1/T but they turn out to be equal in
magnitude and so cancel. The negative sign of
(4. 14) shows that the susceptibility is increased in
magnitude as the temperature is raised.

V. CONCLUSION

On comparing (4. 14}, the correction to the sus-
ceptibility resulting from the addition of the quartic
perturbation potential, with the zero-order part
given by (4. 10), it is seen that in the high-temper-
ature limit the leading term in the diamagnetic sus-
ceptibility is still just the Landau susceptibility
(4. 11},which is entirely independent of the con-
fining potential assumed for the system. The
structure-independent part of the susceptibility,
varying inversely with temperature comes entirely
from X(o&, the surface-structure-dependent cor-
rections to both X(~o& and X(0& begin with terms linear
in pgQ and form an ascending series in inverse
powers of the temperature. They therefore become
vanishingly small at high temperature.

The Landau susceptibility (4. 11) appears to be
the entire contribution to the diamagnetic suscep-
tibility at high temperature; all corrections de-
pending explicitly on the form of the surface poten-
tial most probably involve higher than linear in-
verse powers of temperature and for this reason
have little influence on X in the range of tempera-
ture where (4. 9) is satisi'ied. '4 No structure-de-
pendent term having only a simple inverse temper-
ature variation seems to exist beyond the Landau
term itself.

Results obtained here are of course based upon
perturbation methods and for this reason it cannot
be said with certainty that no structure-dependent
contribution to the susceptibility of the Landau form
exists in the high-temperature limit. Still, for the
purpose of deciding whether or not such effects
exist, there is no readily apparent objection to the
use of ordinary perturbation methods. For how-
ever small such effects might be, under conditions
where the requirements of the perturbation approx-
imation are satisfied, it should still be capable of
settling the question of the effect's existence. The
use of a field-theoretical approach~5 involving par-
tial summation, mhere the perturbation potential
need not necessarily be small, would not further
the accomplishment of this objective since regard-
less of the result the question of the contribution
of those terms (or diagrams) not actually included
would remain unanswered.

In view of these considerations ordinary pertur-
bation techniques appear to be an appropriate and
logical means of elucidating the question of the
surface potential dependence of the high-tempera-
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ture susceptibility. The next step should be the
treatment of a system in which the confining poten-
tial is represented by a polynomial of higher order
in the coordinate variables. By the inclusion of a
sufficient number of terms in the series (2. 2) any
potential single valued at the surface can be well
approximated. In this event a collective restric-
tion must be placed on the magnitude of the numer-
ical coefficients to satisfy the requirements of per-
turbation theory. Unfortunately the accomplish-
ment of this objective is hindered by the circum-
stance that the higher order matrix elements en-
countered lead to the introduction of factors of
progressively higher power in temperature, making
it very difficult to demonstrate explicitly the can-
cellation (if indeed it takes place) of all but those
terms involving only inverse powers of tempera-
ture, such as appear in Eqs. (4. 10) and (4. 14).
By a procedure similar to that used here to treat
the quartic potential, the temperature dependence
of all corrections to the susceptibility resulting

from an assumed confining potential of the form
V~(b, y4+ bsye) was verified after some effort. Al-
though it seems highly probable that all terms in
the potential (2. 2) would lead to a similar tem-
perature variation for y, there appears to be no
practicable way by which this can be conclusively
demonstrated using the present analytical ap-
proach.

It is interesting to point out that an appropriately
scaled potential having the functional form y" ap-
proaches that of a one-dimensional square well as
n becomes large; this is possibly significant in
light of the fact that the three-dimensional square-
well potential is known to lead to a susceptibility
having exactly the Landau form with corrections
involving only inverse powers of temperature.
This circumstance lends some support to the con-
jecture that any potential single valued at the sur-
face, or equivalently one expressible as a power
series in the spatial coordinates, would have ex-
actly the Landau susceptibility at high temperature.
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The phase separation curves of liquid-metal alloys may be obtained by a variational method which involves
no free parameters. The scheme is applied to Li„Na, „and yields results in good qualitative agreement with
experiment.

INTRODUCTION

This is the last in a group of three papers on the
subject of phase transformations in l.iquid and solid
metals and alloys. Previous papers have dealt

with the origin of the Burne-Rothery rules for the
crystal. structur'es of binary alloys, ' and with the
theory of melting of simple metals. The present
paper extends the procedures used in these calcu-
lations to apply to a second-order phase transition,


