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than the shape parameters (E~ and I') on which the
above comparisons are based. The amplitude-
shape connection I' = vD(E~)V~ is not well obeyed by
the above parameters. Using the low- concentra-
tion value of V' and an estimated value of D(E,)
=0.23 eV ', the relation predicts 7=0.45 eV, al-

most a factor of 2 too large. We expect that in-
cluding l =0 and l = 1 phase-shift contributions in
Eq. (I) probably will reduce Va, improving the
agreement.

Further work is currently under way on magnetic
a,lloys
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This paper is a contribution to the theory of Wannier functions. The main emphasis is on practical

methods for the ab initio construction of Wannier functions for simple and composite bands from

appropriate variational principles. The cases of a simple s band, a hybridized s-d band, and the valence

and conduction bands of the diamond structure are treated in detail. The calculations of Bloch waves,

energy bands, and densities of states from Wannier functions is described. Questions of uniqueness and

nonuniqueness and problems due to attachment to other bands are also discussed.

I. INTRODUCTION

Since their first introduction in 1937, ' the notion
of Wannier functions has played a very extensive
and important role in the conceptual development
of the electron theory of solids. However, while

the existence of this convenient set of localized
and orthonormal functions has often been invoked

in theoretical discussions and while their general
properties have been exhibited in considerable de-
tail, they have, to the author's knowledge,
found no significant use in quantitative calculations.
While Wannier functions have lain quantitatively
neglected, there has been, in the last fifteen years,
a tremendous surge of calculations of their trans-
forms, the Bloch waves, and the associated energy
bands. " No doubt an important reason for this

state of affairs has been the preoccupation, during
this period, of solid-state physicists with the

physical properties of relatively wide-band, pure
solids such as nontransition metals and group-IV
elements. These could be best analyzed in terms
of extended Bloch waves which are similar, in
general character, to free-electron states.

In recent years we have felt in our own work on

superconductivity of narrow-band superconductors,
on properties of disordered systems and on prop-
erties of solid surfaces, a strong need for a
framework which highlights the atomic character
of the electrons. In a series of papers of which
this is the first, it is our aim to develop practical
methods for the calculation of Wannier functions
for simple and composite bands in perfectly peri-
odic crystals, and of their generalizations for non-
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periodic systems such as crystals with point de-
fects, crystal surfaces, and disordered systems.
The present paper deals with periodic crystals,
and is divided into two parts: Sections II-V pertain
to simple bands. Sections VI-X pertain to com-
posite bands.

The starting point for the present work is the
variational principle satisfied by Wannier func-
tions, which was first described by Koster and
Parzen. ' As preliminary trial functions one may
take highly localized, nonorthogonal functions f,
following Anderson's' notion of ultralocalized func-
tions. They do not need to approximate the com-
plicated oscillatory tails of the actual Wannier
functions a. The tails are automatically generated
in the next step, which orthogonalizes the f 's by
methods developed by Des Cloizeaux' and Lowdin. "
The orthogonalization also avoids the need for im-
posing subsidiary conditions, as was already
pointed out by Koster.

We illustrate the entire procedure by three char-
acteristic and physically important examples: (1)
an isolated, simple (noncomposite) band; (2) a
hybridized s-d band; (3) the valence and conduction
bands of crystals of the diamond structure.

Once the Wannier function or functions are
found, Bloch waves, energy eigenvalues' and mo-
ments of the density of states are easily obtained.
Thus, a small number of Wannier functions-one
in cases (1) and (3) and three in case (2)—which
are solutions of a simple one-electron variational
problem, incorporate conveniently the relevant
information about a simple or composite band. It
seems to us that, in some cases, starting with the
Wannier functions and then, if needed, deriving
Bloch functions and energies, may be a practical
alternative computational approach to the electronic
structure of solids. We plan to conduct some
numerical computations in the near future.

PART 1:SIMPLE BANDS

II. BASIC RELATIONS

We consider a Bravais lattice with atoms located
at the lattice points

yf(r+ n) = e'"' y;(r),
satisfy the Schrodinger equation

Hn= Error

(2. 4)

(2. 6)

where Eg are the band energies, and obey the fol-
lowing orthonormality relations over the volume Q
of the crystal:

(yg, y~. )=- f„ tpm(r)yI. (r)dr = 5~p . (2. 6)

(a(r- n), a(r —n'))= 6„„..
The equations (2. 7) may be inverted to yield

(2. 6)

yg(r)=N ' 2Z a(r —n)e' (2.9)
n

As already remarked, the Bloch waves y~(r)
are so far determined only to within a multiplica-
tive phase factor of the form e' ~"'. This inde-
terminacy introduces a large ambiguity into the
functional form of the Wannier function a(r}. We
do not wish to burden this presentation with a dis-
cussion of this problem in all generality. We
therefore assume that yI(0) o0 for all k and then
choose 8(k) such that

pI(0)=real and positive. (2. 10)

This makes y„(r) a periodic and analytic function
of k and results in an exponential decay of the
Wannier function a(r) '' In ad.dition, a(0) clear-
ly has the maximum possible value and so a(r) is
well localized. Since, with the choice (2. 10),

q g(r) = [(pg(r)j*= mg(- r), (2. 11)

For the moment we shall leave undetermined the
phases of the functions y„.

A set of Wannier functions for the band in ques-
tion is now defined by the equations

a(r —n)=N '~~ Z pg(r —n)=N Z cpg(~)e "",
(2.7)

where N is the number of unit cells and BZ denotes
summation of k in the fundamental Brillouin zone.
The periodicity (2. 4) and orthonormality (2. 6) of
the Bloch waves lead immediately to the following
orthonormality of the Wannier function:

n = syTg + sp Tp+ 63T3

which are also centers of inversion.
The one-electron Hamiltonian is

(2. 1)

a(r ) = a*(r) = a( —r }. (2. 12)

it follows that a(r) is real and symmetric under
inversion,

e=- V'+ V(r),
where

V(r + n) = V(r ) .

(2. 2)

(2. 3)

The eigenfunctions of H are the Bloch waves
I(r). We consider those belonging to a particu-

lar isolated simple band which we denote simply by
yp(r) These fu. nctions have the periodicity proper-
ty

Furthermore, it is shown in the Appendix that the
Wannier function thus constructed is (to within a
factor + 1) the only Wannier function for this band
which has the properties (2. 12) and decays expo-
nentially.

III. VARIATIONAL PRINCIPLE

We consider here, as in the preceding section,
a simple band in a Bravais lattice with a center of
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b(e) =N-'(e, Z a,e
i

(e, e),
)~1

(3.3)

where 4 is an arbitrary antisymmetric function.
If the band in question is the lowest and not over-
lapped by other bands, then $0 is the minimum

value of $(4), and the minimizing function 4 is a
multiple of 40. However, physical applications
deal almost never with the lowest band of a solid.

To construct an approximation to a(r) we begin
with an initial trial function f(r) which has the
same reality and point-group-symmetry properties
as a(r) and decreases at least exponentially for
large r. In general, however, the functions f(r —n)
are not orthogonal to each other. In the customary
manner of variational calculations, f(r) is made
dependent on an adequate number of parameters,

f(r)=f(r; ri, r&, " ), (3.4)

and must be chosen so that for some values of the
parameters, say yP', f(r) is a much closer ap-
proximation to a(r) than to the Wannier function of

any other band. In principle, we could now imme-
diately evaluate $(4), Eq. (3.3), using

4' = det
~ f(r, —n)

~

(s. 5)

as the trial function, and determine the y, (near
yfo') from the variational principle. However,
because the functions f(r —n) are, in general, not

orthogonal, this would lead to well-known diver-
gence problems. '

Orthonormalization

To circumvent these problems we construct trial
functions which, like the Wannier functions them-

selves, are orthonormal. The usual Schmidt suc-
cessive orthogonalization procedure is not suitable
since it destroys the identity of the functional forms
of f(r —n). Instead, we use the following simple
orthonormalization method which is suitable for a
periodic system.

inversion at the origin. Although the problem of
constructing the Wannier function is, of course, a
one-electron problem, we find it convenient to
consider the state 40 of N spinless fermions oc-
cupying the N Bloch states of the band in question.
This state is given by the following equivalent
Slater determinants:

~0= (N t) '"«tl ~f(r~) I
= (N t) '"«tlat(r~- n) I,

(3.1)
since the function yf(r) and a(r —n) are related by
a unitary transformation, Eqs. (2. 7) and (2. 9).
The corresponding energy per atom,

N

SO=N 4» K&40 =N Ez = a r IIa r
) BZ

(3.2)
is a stationary value of the expression

First, we form the orthonormal trial Bloch
waves

p'„(r)-=N ' [G(k)] Q f(r —n)e'f' (s.8)

a'(r) =Bc(n)f(r —n),

where

fear,

~n

c(n)=N ~ Gua(k)BZ

(3.9)

[Z. (f( ), f( — '))cosk ')'
(s. lp}

When the corresponding N-electron trial function

4''—= (N I )
~ det~a'(r —n; y~, y2, . . . )~ (3. 11)

[which is a multiple of the 4 of Eq. (3. 5)] is sub-
stituted into the energy expression (3.3), one ob-
tains simply

8= (a'(r), Ha'(r)) (3. 12)

as the stationary quantity; or, going back to the
initial trial function f(r),

h =Z (f(r), &f(r —n)) 2 c*(n')c(n+n'),
n n

(3. 13)

where c(n) is given in terms of f by Eq. (3.1p).
The series in (3.13) converges exponentially. The
parameters y, in f(r) are now varied near y', 0' until.

8 attains its extremum. The corresponding func-
tion a' represents an approximation to the unique

a, from which various properties of the energy
band can be simply obtained (see Sec. IV).

In the Appendix we show that the stationary ex-

where

G(k) =Z (f(r) f(r n)—) e'"'
n

=Z (f(r), f(r —n))cosk n . (3.7)
n

Clearly, G(k) is an analytic function of k. Further,
if f(r) is reasonably close to the Wannier function
a(r), then G(k) =1 for all k and hence, unequal to
zero. Therefore, [G(k)] '~3 and y; are also ana-
lytic functions of k.

Next, we reconstitute a set of localized functions
following the prescription (2. 7),

a'(r —n)= N'I Z—yf;(r n). - (s. 8)
BZ

It can be immediately checked that these functions,
like the a(r —n), are real; have the proper point
symmetry; are orthonormal; and-because of the
analyticity of qg as function of k ' '9-decrease
exponentially with ) r ) . They constitute our trial
Wannier functions.

Substitution of (3.6) into (3. 8) gives the following
expression for a'(r) in terms of the initial functions
f(r):
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In this section we describe how approximations
to the propex'ties of the energy band al 8 obtain/
from an approximate a'(r). First, we invert Eq.
(3.9) giving

ice =X '~'Qa'(r-n)e'I'.

Clearly, the error of tIt)~ is of the same oxder as.
the error of a',

t}a'(r) =a'(r-)- e(r).

(4. 1)

(4.3)

Next, we calculate the band energies using the
stationary expression

Ef=(4;, &mf)l(ml, eC).

Substitution of (4. 1) gives'~

Et &If ~n
Ii

(4. 3)

where

Et= (a'(r), Za'(r- n)).
Because of the stationary property of (4. 3),

HEI- (5c'}, (4.6)

so that, as usual, the accuracy of Egis much
greater than that of a'. Further, we note that be-
cause of the exponential decay of e', the coeffi-
cients Es in the series (4.4) decrease exponentially
with n.

Finally, consider the density of states yer atom
of the band in question, n(E). The moments,

~, = jE'n{E)dE, (4. 'I)

provide a useful characterization of n(E). If a
sufficient number is known, n(E) may be recon-
structed from the M, . Now M, may be exyressed
as follows in terms of a(r):

~,=~-'P(E;)'=N 'g (y"„, H'y;)=N 'TrÃ'
SZ SK

=N 'Q(a(r-n), H'a(r-n))=(a{r), &'a(r)},
n

(4. S)
where Tr means trace over the space spanned by
the yg. Alternatively, denoting the Fourier coeffi-
cient of E(k}by

pression (3. 12) has many extrema, most of them
sot the %annler functions of the syst8m. .H0%'

ever, the only extremum near the exact u(r} in
question that is accessible via exyonentially locg-
ized trial functions a'(r) is u{r) itself. :

Although the Wannier function a(r) of our band
is uniquely defined (see the Appendix), the func-
tion f(r) giving rise to it via Eqs. (3.9) and (3.10)
is not unique. The resulting flexibihty can be yut
to computational advantage. This is discussed
further in Sec. V.

IV. ENERGY-BAND PROPERTIES

Ej =(a(r), Ha(r-n)), (4. 9)

are can substitute the corresponding expression
(4. 4) for EI in (4. 3). This gives

M~ = Z Eg,E~ ~ Eg, .
ay+ pa+ ~ ~'+g~no

Clearly, if.one calculates M,' with an approximate
a~, its error will be of order (5a')I'.

V-, ADQITIONAL REMARXS

(4. 10)

is given by Eq. (8. 18) and, in view of Eq. (3.10),
is not a ratio of two quadritic forms. Thus, the
extremimation must be doge numerically by simul-
taneous variation of the parameters y&, This is a
mell-known problem in numerical analysis and,
provided one has a reasogably good starting func-
tion for f(r) (such as an atomic function), presents
no serious difficulty.

If, when dealing mth a higher band, one yx'efers
to work vvith a minimu~ principl rather than the
merely stationary quantity (5.2), one has two
choices. Supyose the band in question is the sec-
ond, . :w = 2, and the %annier functions for. the first,
s~{r- n), are already known. (They may, for all
practi. cal purposes, be atomic functions. ) Then

One may wondex whether it may net be very
comylj. cated to find ag adequate yrimary trial func-
tion f(r), since s(r) has a rather complex oscil-
latory. form, Here. , the. observation of Anderson 3

is relevant, namely, t~t there exist "ultralocal-
ized" nonorthogonal functions f(r), in terms of
wtnch the exact Bloch waves yg(r) may be expanded
in the firm (8. 6) and (3. I). In our procedure
these f{r)wiB give the exact Wannier functions,
including the correct osciliations, by Eqs. (3.9)
and (3.10). Thus, for our initial functions f(r),
simple short-range. functions of tbe yroyer sym-
metry should be suf ficient.

There is, however, one complication comyared,
:for example, to the yroblem of finding the ground
state of a particle in an isolated potential well
Fz(r). For this latter problem a very convenient
method is the Rayleigh-Ritz method. There one
expands the trial function g (r ) as a linear combi-
nation of suitably chosen functions:

0'( )r=&w~k~(r) (5. 1)

Then both (P', Hg') and (g', g') are quadratic
forms of the y&, and requiring the expectation value
of the energy to be stationary, leads to linear
equations for the j&, these, in turn, yield a con-
venj. ent secular equation for the energy. In the
present case, if f(r) is similarly expanded, the
Stationary quantity,

g ~-). {+ E«q'} (5. 2)(4, 4)
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one may first orthogonalize the preliminary trial
function fs(r) for the second band to all a, (r n—) in
the manner of the orthogonalized-plane-wave
(OPW) method,

fm(r) =fm(r) —Pd(n)a, (r —n),
where

d(n)=(a, (r-n), f,(r)).

(5. 3)

(5. 4)

Now the stationary expression (5.2) becomes a
minimum. Alternatively, if a& is not known, one
may treat the two lowest bands together as a com-
posite band, as discussed in the following sections.
The total energy for both bands is then a minimum.

PART 2: COMPOSITE BANDS

VI. GENERAL CONSIDERATIONS

a„(r-n), m= 1, 2, ... , m (5. 2)

related to the y, (,(r) by a unitary transformation.
This problem arises in two kinds of circum-

stances. Either the levels are so interconnected
that no single branch E „is both an analytic and
periodic function of k. In that case no Wannier
function of the form

a (r-n)-=N ' Q p f(r)e' '"'

constructed from one branch alone will be exponen-
tially localized. This case is examplified by fully
hybridized s-d bands in transition metals. Qr,
even though the levels E g may be wholly discon-
nected from each other as well as from other
bands, more desirable Wannier functions, with
better localization or higher symmetry, can some-
times be constructed by treating all branches E
together. This case is exemplified by systems in
which slight lattice distortions have produced small
energy gaps but where much better localized Wan-
nier functions can be constructed by lumping the
split bands together. This latter case has been
treated by Onffroy (unpublished). Related ques-
tions are also discussed in Sec. VIII.

The construction of the Wannier functions
a„(r —n) for composite bands in terms of the Bloch
waves has been described in detail by Des Cloi-
zeaux. Here we wish to show how to calculate

In Secs. II-V we have discussed the Wannier
functions corresponding to an isolated simple band,
e. g. , E(k). We now consider a set of crystal
eigenfunctions, y„g(r), satisfying the Schrodinger
equation

H p g(r) = Ey g(r), m = l, 2, .. . , m

whose eigenvalues E g are disconnected from all
other bands. The E g may all be connected to
each other, or they may be partly or wholly dis-
connected from each other. We wish to construct
a useful set of localized Wannier functions,

them directly, i. e. , without using the Bloch waves,
by means of a variational method.

The most general case requires elaborate group-
theoretic consideration, for which we refer the
reader to Des Cloizeaux's papers. Here we shall
illustrate the procedure by two characteristic
examples, namely, hybridized s-d bands in a cubic
material discussed in Sec. VII and the valence and
conduction bands in diamond-type structures, dis-
cussed in Sec. VIII.

y "„(r)=Z N ~ pa .(r-n)e'f' lP .„(k), (V. 2)
m' n

" j
where

+ &„*„"(k)U".(k)=5„~ .
mee

(7.3)

Now we consider the eigenstate of a system of
AN spinless electrons occupying the mN levels
E g of the s-d band. In view of the fact that the

p„g and a (r —n) are connected by a unitary trans-
formation, the wave function for this state can be
written in either of the following two forms:

e= [(mN))] ~3detly„k(r, )l

= [(mNt)] ~
det la„(r, —n)l, (v. 4)

where each site n is occupied by electrons in each
of the six Wannier states. The corresponding total
energy per atom,

8(e( N' (e, 2 =H, e)/(ee), ,

is stationary with respect to arbitrary variations

TABLE I. The six Wannier functions of a hybridized s-d
band.

Irreducible
representation

r,

I'25

Corresponding
atomic state

Symmetry
type

1
x —y, z —2(x +y )2 2 2 1 2 2

xy~yzy zx

Degeneracy

VII. HYBRIDIZED s-d BANDS IN A bcc LATTICE

In this section we consider hybridized s-d bands
in a bcc lattice, assumed to be disconnected from
all other bands. Such a band is characterized by
six Wannier functions a (r —n) centered on each
atomic site n, with the symmetry and degeneracy
properties shown in Table I.

In addition to their symmetry characteristics
these functions have the following properties: They
are real, exponentially localized, and orthonormal,

(a (r -n), a„.(r —n'))5 „.5gg. ;

and the Bloch waves c'an be obtained from them by
means of a unitary transformation of the form'
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of the functions a (r). If the trial functions a„'(r)
satisfy the orthonormality conditions ('r. 1), then

(V. 5) can be written as

S(e)= Q (a„'(r), Ha„'(r)) . (v. 6)

We now turn to the construction of localized,
orthonormal trial functions of the correct sym-
metry types. We begin with a set of normalized,
localized but nonorthogonal functions, depending
on variational parameters y„

f„(r)=f„(r; y„y„.. .), m = 1, . . . , 6 (V. 7)

which belong, respectively, to the irreducible
representations I'„ I',z, and I'~, (see Table I).
There are thus only three independent functional
forms. For example, functions behaving under
rotation like atomic s and d functions can be used.
For greater precision, higher cubic harmonics
must be added. It is convenient and easy to or-
thogonalize each f„(r) to all localized core states
P&(r n); thi—s will convert the expression (7. 5)
from an extremum to a minimum.

It remains to mutually orthonormalize the func-
tions f (r ) while maintaining their symmetry prop-
erties. This can be done in a manner adapted
from the work of Des Cloiseaux. We begin by
constructing a first intermediate set of quasi-
Bloch functions, having the translational symmetry
of the lattice,

)f,g(r)-=N '~~+ f„(r-n)e&f n' (v. 6)

a„'(r) =N '~'Q g;(r). (v. i2)

These are clearly exponentially localized and or-
thonormal. Since the process of orthogonalization

These are not yet orthonormal. For each k we
introduce the Hermitian inner-product matrix,

G(k)„.„=-(g .I(r), g„f(r))

=5 (f„,(r), f„(r—n))e'"", (7.9)

and the derived matrix G 'I (k)„. , defined by

G (k)~r~r ~ rG(k)~rrrrrG (k)~rr~= 5~r~. (V. 10)

(G @ can be easily constructed by first bringing G
to diagonal form. ) Then the following second set
of intermediate quasi-Bloch functions,

g„,;(r)=-Z rf„.f(r) G ' '(k)„.
m'

3 P e'f ~( g f, (r )G (k)„
m', a &m' )

(7. 11)
is orthonormal, as may be verified by direct sub-
stitution. As in Sec. III, since G(k) and G ~ (k)
are analytic functions of k, so is P g, For our
trial Wannier functions we now take

has in no way violated the cubic symmetry of the
crystal, the a' transform under operations of the
cubic point group just like the f (r). This may also
be directly verified. Resubstituting in (V. 12) from
(V. 11),

a' (r) = Z f„.(r —n) c„. (n), (v. is)
m vn

where

c„,„(n)= N-'Z e"'G-'"(k)„,. (7. 14)

u=-(m, n), f (r)-=f (r-n),
G ~

= (f,f )-=5 ~ +S ~

where the overlap integral $ ~ is

s...= (f...f.)(1-5...) .
Then

-i/3G~t~=5ot~ —2S~t~+ 8 S~t~trS~ttN+ ~ ~ ~

(v. 1'r)

(v. ie)

(v. 19)

(v. 20)

Qf G 1/3

Of
t

1=f —— + f (fe, f )2 etAN

+ t fit ~ t ~t ~ Ntt t ar + ~

3
et o "Ao,e'

(7. 21)
With this the energy expression ('r. 6) can be

directly evaluated in terms of the quantities

(f ., Hf ) and (f~r, f~) (V. 22)

and minimized with respect to the parameters y,
occurring inf.

Energy-Band Properties

Since the Bloch waves are unitary transforms of
the Wannier functions and are eigenfunctions of
the translation operator, they must have the form
('r. 2),

y ~(r) =Z
~

N ~lag a„.(r —n) e'"'t ~U(k)„,„,
('r. 23)

where the U(k)„'.„are unitary 6x6 matrices. Sub-
stituting this form into the Schrodinger equation
(6. 1) and using the orthonormality of the a„(r —n)
gives

The stationary energy expression (7.6) becomes

8= Z (f„.(r), Hf„-(r-n))C„.„"(n), (7. 15)
mtmtti

where

C„.„"(n) -=Z c„*"„(n')c„" (n+ n ') . (7. 16)
m, n'

Often the original functions f„(r—n) are not far
from orthogonal. In that case the orthogonalization
can be accomplished by an alternative method,
using a rapidly convergent infinite series. ' We
write
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Z g(k)~e~e. U(k)„t.„-—EU(k) .„,mt'

where

h(k) .„i.-=Q {a i(r), Ha "(r—n))e» '. (V. 25)

(v. 24)

st'(k)„. -=5 (f„.(r), f "(r-n))e' '. (V. 30)

Since generally the f„will be shorter ranged than
the a, ' the sums over n in (V. 29) and (V. 30)
should converge more rapidly than in (7. 25).

The moments of the density of states per atom
can be discussed as in Sec. IV, leading to the fol-
lowing result:

E's(E)dE=H 'TrH'

=N 'Z (a„(r-n), H'a„(r —n))
mm

=Q (a„(r), 'Ha„(r)) . (v. 31)

Equation (7. 24) determines the eigenvalues E= E f
as solutions of the 6&&6 eigenvalue problem'

«t
I ~(k). .- —«..- I

=0. (v. 26)

The corresponding coefficients U(k) .„are then
obtained by means of (V. 24) and yield the Bloch
waves y„f(r) via (V. 23).

Because of the linear connection (7. 13) between
the a„and the nonorthogonal functions f, Eq.
(7, 23) may be replaced by

y„f(r)=N '~ Z f .(r-n)e» 'p .„(k), (7.27)
msn

leading to the alternative form of the secular equa-
tion

«t lb '(k). .- -st'(k). .- I= o, (v. 26)
where

h'(k) ~ i. -=Q (f .(r), Hf "(r—n))e»~' (V. 29)

VHI. HYBRIDIZED s-p BANDS IN THE DIAMOND
STRUCTURE

We consider here the bands in a diamond struc-
ture of cube edge a arising out of s and p atomic
orbitals. Corr esponding Wannier functions have
been previously discussed by Hall3 and Des Cloi-
Eeaux and used by Slater and Koster' as a basis
for their interpolation scheme. Here we discuss
briefly the method of constructing the Wannier
function with the aid of the variational principle.

Solids with the diamond structure have two atoms
(I and II, Fig. 1) and eight s and p electrons per
unit cell. The translation subgroup is fcc. Cor-
responding to the eight atomic s and p spatial or-
bitals per unit cell, there are eight branches of a
band or bands which, allowing for spin, can ac-
commodate 16 electrons per unit cell. Hence,
only half of these states will be occupied in the
ground state. In C (diamond), Si, and Ge the eight
branches split into two disconnected bands, the
lower, valence, or bounding band and the upper,
conduction or antibonding band. Only the lower is
occupied. " jn grey Sn, the valence and conduction
bands are connected. ' We shall, from here on,
discuss the situation pertaining to C, Si, and Ge.

In constructing the Wannier functions we have
the following choices: We can either construct a
set of eight atom-centered Wannier functions in
each unit cell in terms of which the Bloch waves of
all eight branches can be expressed; or we can
construct two sets of four bond-centered Wannier
functions, one set giving rise to the Bloch waves
of the valence band while the other generates the
Bloch waves of the conduction band.

A. Atom-Centered Wannier Functions

Take the nucleus of the first atom in the unit cell
as the origin of coordinates, and let the second

Or- noting that

(a„(r), H a (r))= Z (a„(r), Ha„,(r-n, )),

x(a„(r—n, ), Ha (r)), (V. 32)

etc. , we find, as a generalization of (4. 10),

M, = Z QE(n, )„„,E(n,)„,„~~ E(n,)„, ,
+i~+'"+if =0

(v. 33)

where
(0,0,

E(n)„. "-=(a„.(r), Ha„"(r —n)); (V. 34)

these are just the Fourier-expansion coefficients
of the matrix elements S(k)„. ~, Eq. (7.25), ap-
pearing in the secular equation (V. 26) for the ener-
gy eigenvalues E g.

FIG. 1. Atoms in the diamond structure. The transla-
tion lattice is fcc and there are two atoms, I and II, per
unit cell. The point Bq at Sa (1, 1,1) is the center of the
bond joining atoms I and II.
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atom, of the unit cell have coordinates (—,'a, —,'a,
—,'a). (See Fig. 1. )

The four Wannier functions centered on the first
atom have the symmetry properties shown in Table
II, which refers to the tetrahedral group T„. The
remaining four functions centered on atom II are
obtained by inversion in the midyoint 8j between
I and II,

TABLE II. The atom-centered %'annier functions of a
hybridized s-p band.

Irreducible Corresponding Symmetry
representation atomic state type Degeneracy

a„,(z, y, z)=a„(—,'a-z, —,'a-y, —,'a-z), (8. 1)

etc.
To obtain these functions variationally we pro-

ceed in analogy with Sec. VII. We start with nor-
malized trial functions,

f„„(r), @=i, II, m=s, z, y, z (8.2)

with the correct point-group symmetries, but-in
general-not obeying the orthogonality conditions
imposed on the Wannier functions, Next we form
the first intermediate set of quasi-Bloch functions,

)(„„;(r)=N 'Izg f„„(r-n)e"'Z, (s. 8)

where n runs over the fcc lattice vectors and N is
the number of unit ceQs. We then form the inner-
product matrix,

@k)s sa'. em=(Xu ~ f, Xenix), (8.4)

and then the second set of intermediate quasi-Bloch
functions

lP+ (k) = N Q X+s s (k) G (k)+e ~ + (8. 5)

which is orthonormal. The corresponding trial
Wannier functions, having all the required proper-
ties, are

a'„„(r)=N '~z Z g„ f(r). (8.8)
SZ

Alternatively, particularly when the f„„(r—n) are
nearly orthogonal to one another, one can follow a
procedure analogous to that described in Sec. VII,
Eqs. (7. 17)-(7.21), in order to obtain orthonormal
trial Wannier functions a'„.

The stationary expression for the energy per
unit cell of SN spinless electrons filling all eight
branches of the s-P band structure is

S(4)= Z (a'„„(r), Ha'„(r))
P zfft

=2 Z (af„(r), Ha/„(r)), (8.7)

a~ = z(a, + a„+a„+a,), az —z(a, + a, —a„-a,),

and the parameters which occur in the f„„and
hence also in a~ can now be determined from the
stationary property of S.

We remark that the energy can also be expressed
in terms of a single hybridized tetrahedral orbital.
As is well known, ' the four tetrahedral functions

a~ =-,'(a, —a„+a„-a,), a4-- —,'(a, —a„-a„+a,)
(8.8)

(where the common subscript I has been sup-
pressed), the orthogonal combinations of the four
s- and P-like functions cr„a„, a„, a,. Since they
are also equivalent to each other, we may write

8(@)= 8(a,'(r), Ha,'(r)).
Energy-Band Properties

(s.8)

All eigenfunctions and eigenvalues of the eight-
branch s, p-band structure can be derived from
the two functions a,(r), a„(r) or even from the sin-
gle tetrahedral function a](r) from which evidently
a,(r) and a„(r) can be separately obtained. The
procedure is quite analogous to that of Sec. VII.
Here we only give the axa secular equation for the
energy eigenvalues:

detec t(k)„.~. „~-Es„.~e „~~=0 (s. 10)

where

8(k)„.„.,„„=L(a„.„.(r), Ha„„(r-n))e" '.
(8. 11)

Moments of the density of states for the entire
eight-branch structure can also be obtained as in
Sec. VII.

~g =—(1, 1, 1) . (8. 12)

(See Fig. 1. ) Then the function a~"'(r) belongs to
the identity representation of the point group C3&

(or Sz) associated with the "bond center" R; simi-
larly, a„'"(r) belongs to the one-dimensional anti-
symmetric representation of the same group. Of

B. Bond-Centered V4nnier Functions

As we have already remarked, in diamond, Si,
and Ge, the eight-branch s-p band structure sylits
into a four-branch valence band and a four-branch
conduction band. Instead of representing the en-
tire eight-branch structure by eight atom-centered
Wannier functions per unit cell, one can also repre-
sent the valence and conduction bands separately
by four bond-centered Wannier functions, a~"'(r)
and a„'"(r) (m =1, .. . , 4), respectively. Let us
denote the midyoints between the atom I at the
origin and its four nearest neighbors by K„(m
=1, . . . , 4). Thus, for example,
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course the four functions a„'"'(r) differ only in ori-
entation and can be transformed into one another by
appropriate C, rotations; the same is true of the
four functions a"(r).

We shall now deal with the symmetric valence-
band Wannier functions a'"); the discussion for the
antisymmetric conduction-band functions a~" is
comyletely analogous.

The Bloch waves of the valence band y~"g, m= 1,
... , 4, are spanned by the Wannier functions

In this case we expect the separate valence- and
conduction-band wave functions, a "' and a ", to
be necessarily rather spread out, having an ex-
ponential decay constant of the order ofs' '

&(v) &(c) ~-&/2 (s. ao)

On the other hand, the atom-centered Wannier
functions a„describing the entire eight-branch
structure can be well localized, with an exponen-
tial decay constant of the order of

a~"'(r —n), m=1, ... , 4 (s. is) g-i/2
2 (s. as)

where the n are the lattice vectors of the fcc trans-
lation lattice. The construction of orthogonal trial
Wannier functions from nonorthogonal starting
functions f'"'(r) follows the same procedure as
before. The stationary expression for the energy
per unit cell of 4N spinless electrons filling the
valence-band states is

8(4)= 4(af"'(r), Ha, "'(r)). (8. 14)

The energy eigenvalues are given by the 4 x4
secular equation

det
~
$(k) .„-Es .„~= 0, (8. 18)

where

h(k)„.„=Z (a~")(r —n), Ha~"'(r - n)) e'"'.
(8. 18)

We wish to make some concluding remarks about
the relationship of the eight atom-centered Wannier
functions per unit cell, a„„(r)or a'„„(r) (p =I, II;
m = 1, ... , 4) and the eight bond-centered Wannier
functions a "' and a ". From qualitative chemical
reasoning one might expect that the bonding function.
a'"' can be written as the symmetrized combination
of two atom-centered tetrahedral functions a'„
which "point" along the same bond line. (See Fig.
1. ) Call this normalized symmetric combination
c ". Similarly, one might expect the antibonding
functions to be given by the antisymmetrized linear
combination a~" of the same "tetrahedral" func-
tions a'„. In fact, the totality of functions,

a~"(r —n), a~"(r —n), (s. Iv)

does form a perfectly satisfactory alternative set
of Wannier functions for the entire eight-branch
structure. However, whereas clearly

(a'"'(r —n), Ha„"'(r n')) =0—(8. 18)

and thus the a'"' and a'" are completely decoupled,
in general

(a„"(r-n), Ha„"(r- n'))40, (s. ie)

This observation is related to 3, practical mat-
ter. Suppose the valence and conduction banCh

are separated by a very small direct-energy gap
h,„while the nearest-lying other bands are well
separated from both bands by a substantial gap +.

IX. NONUNIQUENESS OF WANNIER FUNCTIONS OF
COMPOSITE SANDS

Whereas we saw in the Appendix that for a sim-
ple band in a lattice with inversion center there
existed a unique, real, and exponentially decaying
Wannier function with the symmetry of the lattice,
this is, in general, no longer true for composite
bands. Let a„(r —n) be a set of Wannier functions.
Any other set must arise from these by a unitary
transformation

a„(r—n) =Ra„.(r n')(m'n'~ U~—mn ) . (e. 1)

Since the a 's„ like the a's, must be real, the
matrix U has the form

U gfs (e. a)

where S is a Hermitian and purely imaginary,
hence antisymmetric, matrix,

(m'n']S[mn)=-(mn(S)m'n'). (e. 8)

In addition, U must preserve the symmetry prop-
erties and short-range character of the a' s. For
a simple band with inversion center we have seen
that only U=+1 satisfies all these conditions. For
the present case we shall presently give an explicit
illustration of xonuniqueness which we believe to
be typical. CÃ course, if desired, this nonunique-

Thus, in such a situation the atom-centered func-
tions may be much easier to approximate by simple
trial functions and hence be preferable for a vari-
ational calculation.

To complete the discussion of the relationship
between the atom- center ed tetrahedral functions
a'„and the bond-centered functions a'"' and a'"
we observe that, starting from the latter, one can
very simyly form acceptable atom-centered tetra-
hedral functions, namely,

a'„' = (I/v a )(a„'"'+a„"). (s. aa)

But these are, in general, not the same as the a„'
which are directly constructed for the entire eight-
branch structure. The nonuniqueness of Wannier
functions of composite bands, which is implied by
the last statement, is further discussed in the next
section. '0
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ness can be removed by additional requirements
such as

m
aa r —minimum

fn=1

or the maximization of the sum of orbital self-
repulsion energies. 3' But such conditions are dif-.

ficult to impose in practice and we believe that the
nonuniqueness will, for most purposes, lead to no
significant problems.

Now for the illustration. We considex a hybrid-
ized s-p band in a simple cubic lattice of cube edge
a. I et one set of Wannier functions for this band
be a, and a„, a„, a, with symmetries 1', and 1"»,
respectively. Then, if g is an infinitesimal, to
first order in g the following functions constitute
an alternative set with all the required properties:

a,(r) =a,(r)+a[a„(x-a, y, z)- a„(x+a, y, z)

+ a„(x, y —a, s) —a„(s, y+a, z)

+a,(x, y, s —a)-a, (x, y, a+a)],
a„(r)=a,(r)+a[a,(x- a, y, s)- a, (x+a, y, s)],
with a~ and ag analogous.

A general analysis of the nonuniqueness of com-
posite Wannier functions has not yet been carried
out,

In many, if not most, real band problems the
conditions which we have stipulated do not hold.
For example, in all of the alkali metals the con-
duction s band is attached at points or lines of sym-
metxy to higher bands, 3~ and calculations for the
transition metals 3 show the hybridized s-d bands
of transition metals also to be attached to higher
bands. Such attachment may be viewed as a rem-
nant of free- electron-like behavior, and %annier
functions-which emphasize the relationship of
Bloch waves to atomic functions-are, of course,
not ideally suited to such cases. Try', ng to in-
corporate the next higher band in an enlarged com-
posite band generally does not eliminate the dif-
ficulty, since that band is usually itself connected
higher up, etc.

Nevertheless, in such cases one can still con-
struct "nonideal" %annier functions in the general
manner indicated in the preceding sections. How-

ever, because the Bloch waves, when taken to be
periodic functions of k, are nonanalytic functions of
k either at points on the Brillouin-zone boundary
or at points of contact in the interior or both, the
exact, nonideal Wannier functions are not exponen-
tially localized.

A well-known example is free electrons in a
simple cubic lattice, of lattice constant a, for
which the exact, nonideal %annier function cor-

responding to the lowest band is

a(r =
a'I' sin(vx/a) sin(ny/a) sin(m/a)
v' x 3' g

(10.1)

If one makes a variational calculation, using ex-
ponentially localized f 's and hence exponentially
localized trial Wannier functions a', the Bloch
waves (=plane waves) and energy eigenvalues near
the zone boundary will not be properly reproduced.
However, one can easily verify in this example that
if a(r) is cut off at a large distance x =r~, only
Bloch waves and eigenvalues within hk- v/ro of
the zone boundary are significantly affected.

Clearly, this result is typical of nonideal %an-
nier functions in general. We conclude that in the
case of nondetached bands, use of sufficiently ex-
tended trial Wannier functions, even if they decay
exponentially for very large x, can give arbitrarily
accurate results for general points in the interior
of the zone boundary, but may give incorrect re-
sults at points on and near the zone boundary and
at or near any interior point where there is an at-
tachment to another band. In any given case this
last statement can be made more precise.

Another difficulty, connected with nonexponential
falloff, is that the spurious solutions of the varia-
tional principle, which are composed of Bloch
waves from several bands, cannot now be generally
ruled out. However, if by means discussed in Sec.
V, the stationary principle has been turned into a
minimal principle, only correct Wannier functions
will be constructed.

APPENDIX: UNIQUENESS OF KANNIER FUNCTION n(r )
FOR A SIMPLE BAND

has the required properties. Every other Vfannier
function corresponding to a different choice of
phase has the form

a(r)=N '+ Z yf(r)e"'". (A2)
SZ

Reality and inversion symmetxy of a, combined
with Eqs. (2. 11), require, respectively,

8-~8(R) 8~8(-5 848($8~8(-5

%e consider a simple band in a, Bravais lattice
with center of inversion at x=0 and assume that
yg(0) W 0 for all k. In this case we shall first show
that (to within a factor of + 1) there exists only one
%annier function for this band, as defined by Eq.
(2. 7), which is real and symmetric under inversion
and which decays exponentially.

Let yf(r) be the normalized Bloch waves with
phases chosen so that pe) is real and positive.
As explained in Sec. II, the corresponding %annier
function,

a(r) = N '~2 Q pre(r),
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so that

eie(f) (A4)

8= Z (gg', ag;). (A11)

a'(r)=N '"Z g~t(r),
BZ

where

gf(r+n) =e""gf;(r)

(AV)

(A8)

Because of the orthonormality condition (2. 8),
satisfied by a'(r —n), we must have

&~ =
N

& (gf(r), n(r))e '"',
BE

so that the g j(r) are normalized to unity:
t t

(gf ~
~ gi)= ~7~ E.

(A9)

(Alp)

The stationary expression (3. 12) can now be
written as

Now if e' '"' has the same value for all k, then

a(r) =+a(r) . (A5)

If, however, e'"" changes from+1 to —1 (neces-
sarily discontinuously), then since

a(n)=N p [y.(p)e' &f']e'"'r (A8)
BE

is the Fpurier transform of a discontinuous func-
tion, a(n) does not decay exponentially as required.

Next, we determine the totality of extrema of the
stationary expression (3.12). First, we expand
a'(r) in the series

This will be an extremum if, and only if, all g"„
are eigenfunctions of H, i.e. ,

t
g 0= W~(i &4 (A12)

where the band index ~ may be chosen arbitrarily
for each k. Thus, the most general function, sub-
ject only to the orthonormality condition (2. 8),
which makes (3.12) stationary is

a'(r)=N ' ' Z y~(f&p(r).
BZ

(A13)

Of course, unless all m(k) are equal, this is not a
Wannier function.

However, since we work only with exponentially
localized trial functions a'(r), all m(k) must, in
fact, be equal. For (A'7) can also be written as

g f(r) = (1/N ~ )Qa'(r —n)e'~', (A14)

which shows that because of the exponential con-
vergence of a'(r), g„ is an analytic function of k.
Hence, m(k) in (A12) cannot be a discontinuous
function of k.

Thus, we conclude that the correct and unique
Wannier function a(r) is the only extremum of the
stationary quantity (3.12) in the "vicinity" of a(r),
provided the trial functions a'(r —n) are restricted
by the conditions of reality, point-group symmetry,
orthonormality, and exponential lpcalization.
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