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the calculated difference. These facts also lead
us to the conclusion that the anisotropy of the sur-
face is smaller than predicted.

The mass-enhancement factor for the three
masses measured on the I"5 surface (Table II)
varies from 1.2G to 1.33. As the other sheets
also have enhancement factors of this order or
less, we have to assume that the missing parts
of the F5 sheet must have a higher enhancement
to account for the value 1.SV obtained by electronic
specific-heat experiments. ~0' '
¹feadded in Proof. More recent band calcu-

lations for Ir [J. Phys. F 2, 1033 (1972)] show

that the Fermi-surface dimensions are very sensi-
tive to the choice of the exchange parameter e,
particularly where the d character of the bands is
pronounced. These calculations also demonstrate
that full Slater exchange give far better agreement
with experimental results than a lower value of a;

2
~ g, ) A=3 ~
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Recent theories of Singwi et al. for the dielectric response beyond the random-phase approximation
are examined in the density-functional formalism. Their approximation and another from the
perturbation expansion in the electron-electron interaction are used to calculate the correction to the
local-density approximation of the exchange energy in atoms. The latter gives better results.

I. INTRODUCTION

Singwi and co-workers have, in a series of pa-
pers, ' 3 given approximations for the dielectric
function of the electron gas beyond the random-
phase approximation. Their results for the pair
distribution are rather superior in that they only

become slightly negative at small distances for x,
& 5. The latest version by Vashishta and Singwis
also satisfies the compressibility sum rule in the
sense that the value of the compressibility coming
from the long-wavelength limit of the dielectric
function agrees with the second derivative of the
total energy. The most striking success of the
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theory is its extension to the calculation of the pos-
itron annihilation rate, which agrees well with exper-
iments for metals covering a wide range of densities.

In view of the successes of this theory, it is
worthwhile to inquire closely into the nature of the
approximations made. The essence of the theory
is an approximate treatment of the dynamics of the
particles to give an expression of the exchange and
correlation part of the dielectric function in terms
of the pair distribution and its density derivatives.
Using the theory with the relation of the pair dis-
tribution to the imaginary part of the inverse di-
electric function via the fluctuation-dissipation the-
orem, one has a sufficient number of equations to
determine these quantities. The derivation given
by Singwi et al. ' is valid for the classical system.
The status of the approximations in extending the
results to a quantum-mechanical system might not
seem clear at first sight. However, Schneider'
has obtained an expression for the exchange and
correlation correction close to Vashishta and Sing-
wi's version by extrapolating an expression for the
compressibility of the electron gas, and which is
therefore valid for the quantum system. The ques-
tion remains whether there is an exact relation be-
tween the exchange and correlation pari of the di-
electric function and the pair-distribution function
(besides the fluctuation-dissipation relation) and
what approximations yield the results of Schneider
and of Vashishta and, Singwi from such a relation if
it exists. This we wish to answer in the first part
of this paper, by means of the density-functional
formalism. 6'7

Kohn and the author have given a local-density
approximation for the exchange and correlation
potential in an inhomogeneous system which has
been widely tested, and have also given a correc-
tion to the local-density approximation which has
not been numerically tested. The reason is per-
haps that the correction involves the knowledge of
the dielectric response of the homogeneous elec-
tron gas beyond the random-phase approximation.
In the. second part of this work, we calculate the
correction to the local-density approximation of the
exchange energy in atoms. This quantity is chosen
because of the relative ease of the computation
and, more importantly, because of the knowledge
of the exact answer, namely, the Hartree-Pock
solution. For the exchange part of the dielectric
response needed, we use not only the type of ap
proximation due to Schneider and to Vashishta and

Singwi, but also an approximation based on the pertur-
bation expansion in the electron-electron interaction.

II. EXCHANGE AND CORRELATION PART OF
DIELECTRIC RESPONSE

In this section, we review some facts about the
dielectric function to pinpoint what we mean by the

p(q, ~) =x(q, ~)y(q, ~). (2. 2)

y(q, &a) is also known as the irreducible or proper
polarization part. Since the total potential is the
sum of the external potential and the electric po-
tential due to the induced-charge density, we have

~(q, (o) = l —u(q) }t(q, (o) ,

where u(q) is the Coulomb interaction between
electrons,

(2. 3)

u(q) =4m/q' . (2.4)

In the time-dependent Hartree approximation
[commonly known as the random-phase approxima-
tion (RPA)],

X (qp ~) = go(qp ~) p (2. 5)

where }(o(q, &o) is the density response in the nonin-
teracting electron gas. This neglects the exchange
and correlation effects in the dielectric response,
which we include in the form

p(q ~) =go(q &o) ~y(q, &o)+v„(q, a&)j,

with

v„,(q, (u) =&„(q, (o) p(q, u)) .
Then, by Eq. (2. 2),

X(q ~) =Xo(q ~)/ll-&. .(q ~)XO(q ~)l .

(2. 6)

(2. &)

(2.8)

%e may simply regard the introduction of v„, and

E„,as a convenient way of defining the difference
between the exact susceptibility and the RPA.
However, v„, may be interpreted as the local field
acting on the induced-charge density owing to elec-
tron exchange and correlation. '8 Although the form
for the susceptibility, (2.8), may seem somewhat
unnatural from the viewpoint of the conventionaldi-
agrammatic expansion, it arises in a natural way
both from the approach of Singwi et al. and from
our approach by means of the density-functional
formalism, as we shall see presently.

By the nature of the density-functional formal-
ism, we shall onlybe able to consider the static re-
sponse, i.e. , K„,(q, 0), and henceforth omit the &o

= 0 designation for all static responses. Singwi
et al. have used for the frequency-dependent di-
electric function the static approximation

exchange and correlation part.
%hen the electron gas is subject to a weak per-

turbing potential v(q, or) with wave vector q and fre-
quency &u, the dielectric function e(q, &o) is defined
as the ratio of the external potential to the total po-
tential p(q, &u) as seen by a test charge, i.e. ,

y(q, (o) = v(q, oo)/e(q, (o) . (2. l)
We define the electric susceptibility g(q, ~) as the
ratio of the induced-charge density p(q, &o) to the
total potential, i.e. ,
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Z[n] = T,[n]+E„[n], (2. 11)

where T,[n] is the kinetic energy of a noninteract-
ing system, it can be proved that the density dis-
tribution can be determined exactly from a one-
particle Schrodinger equation with a self-consistent
potential

v(r)+ f dr'u(r —r')n(r')+v„[r; n],
where

v„[r;n] = 6E„[n]/6n(r) .

(2. i2)

(2. is)

Let us now relate the dielectric response to the
density functionals. For the linear response,
treat v(r) as weak; this produces the density

K„(q, (o) =K„,(q) . (2. 9)

A static external potential v(r) of any magnitude
applied to the interacting electron gas will produce
a density distribution n(r) for the ground state.
Hohenberg and Kohns have shown that the ground-
state energy can be written in the form

E = J dr v (r) n(r) + —,
' f dr J dr ' n(r)

xu(r —r ) n(r') +E[n], (2.10)

where F[n] denotes a quantity completely deter-
mined by the knowledge of the density distribution.
Kohn and the author~ noted that by writing

introduced in Eq. (2.6) is the exchange and corre-
lation potential in the sense of Eqs. (2. 12) and
(2. is). '

In summary, we have given a somewhat long-
winded demonstration that the exchange and corre-
lation correction to the RPA for the dielectric
function in the form of Eq. (2.8) is, in the static
case, simply given by(,)

6'Z„[n]
6n(r) 6n(r ) yp)

(2. 19)

III. DIELECTRIC FUNCTION IN TERMS OF
PAIR-DISTRIBUTION FUNCTION

In Ref. 7, we attempted to construct the func-
tional E„[n]with the assumed knowledge of the lin-
ear response K„,(r)of the homogeneous electron
gas. Here we reverse the procedure and use relation
(2.19) to find the dielectric response of the homo-
geneous gas, assuming a knowledge of the energy
functional for a general inhomogeneous electron
system.

From the definition (2. 10), the energy term E[n]
is given by

I' s'
F[n]= dr —-,n, (r, r }~2m 8r Br '

)~&

n(r) =n, + 6n(r), (2.14)
+3 dr dr'ur —r' Car r' . 3 1

with 6n(r) being small fluctuations about the mean
no. Expand the terms in the total energy in powers
of 6n(r), yielding~

T,[n]= T,(n, )+-', f dr f dr'6n(r)

and

xKq(r —r'; n, ) 6n(r )+ ~ ~ ~ (2. 16)

Z„[n]= Z (no) +—', f dr f dr' 6n(r)

xK„(r r'; no) 6n(r'—)+ ~ ~ ~ . (2. 16)

Ko(q) = —I/Xo(q), (2. i7)

where we denote the Fourier transform simply by
changing the variable from r to q, and K„(~)de-
fined in Eq. (2. 16) is just the Fourier transform of
the K„(q) in Eq. (2.8).

Alternatively, by the variational theorem6 of the
energy, in Eq. (2. 10), with respect to the density,
one obtains to order linear in the perturbation

v(q) +u(q) 6n(q) +{Ko(q)+K„(q)] 6n(q) = 0 (2. 18)

from which, again, Eqs. (2. 17) and (2.8) follow.
It shows that for the static case, the potential v„,

By comparing the second-order term in energy ex-
pressed in terms of the perturbation v(r) with ener
gy in terms of the induced density, one can readily
see that '

The first term is the kinetic energy and the second
is the potential energy minus the electrostatic con-
tribution given by the first two terms on the right-
hand side of Eq. (2.8). Here, n~(r, r') is the one-
particle density matrix and Cz(r, r') is the two-par-
ticle correlation function, related to the two-par-
ticle density matrix by

C~(r, r') =nz(r, r'; r, r') —n(r) n(r ) . (3.2)

We define the pair-distribution function in the in-
homogeneous gas by

n2(r, r; r, r ) =n(r}g[r, r; n]n(r ) . (3.3)

Since it has been shown that the external potential
v(r) is a functional of the density n(r), all proper-
ties, including the pair-distribution function, are
functionals of n(r). In Eq. (3.3), the density de-
pendence is emphasized.

The second term on the right-hand side of Eq.
(3.1) gives what may be termed the "potential-en-
ergy part" of the exchange and correlation energy
E„,[n], and with the help of Eq. (3.3) can be written
as

U„,[n] = p f dr f dr'n(r) u(r —r')

xQ[r, r';n] —1)n(r') . (3.4)

The "kinetic-energy part" of the exchange and cor-
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j =g+h . (S.V)

By Eq. (R. 19), we obtain the exchange and correla-
tion correction to the dielectric function

K„(r r'}=u—(r —r')0[r —r';n) —1]

5jLX, rz,'m
5n r'

+,n'fdr, dr, ~:
:~L~ "~-~ u(r, -r,), (8.8)

where the quantities on the right-hand side are
evaluated for the homogeneous system, i.e. , n(r)
= consti

Although this formula is exact, it is only useful
if we can construct the pair-distribution function

j[r, r';n]. At present, we have no satisfactory the-
ory for that. However, a few crude approximations
will give us formulas very close to those of Singwi

1 3
and co-workers o

From Eq. (3.8), if we neglect the kinetic corre-
lation as well as the density dependence of the pair-
distribution function, we obtain the approximation

Z'„(~) =u{r)Q(r) —1], (3.9)

which is close to the result in Ref. 1,

vZ„{r)~fg(r) 1}vu(r) . — (3.10)

The reason for the difference of a gradient will be
explained later. Looking at the approximation this

way, it is clear why the compressibility sum rule
is not satisfied~

The version in Ref. 2 gives the approximation of
the same form as Eq. (8.10) except that the Cou-

lomb interaction u(r) is screened by the dielectric
function. This is unjustifiable from Eq. (3.8) and

also physically unreasonable, since the screening
has already been accounted for in large measure

by the exchange and correlation hole provided by
the pair-distribution function.

The xesults of Schneider5 and of Vashishta and.

Singwie are of the form

relation energy &«[n] is the difference between the
first term on the right-hand side of Eq. (3.1) and

the kinetic energy of the noninteracting system T,
[n]. Let us write it in the form

T„[n]=2f dr f dr'n{r}u(r- r') h[r, r';n]n(r'},
(3.5)

and h [f', x;n] may loosely be termed the "kinetic
pair distribution. "

Hence, the exchange and correlation energy can
be written in the same for~,

Z„[n]=-,' fdr fdr'n(r) u(r —r')

x(j[r, r';n]-1}n(r'), (8.6}

where, from Eqs. (8.4) and {S.5),

vz (F) (&+an —)fg(r n)-&)vu(r) (8 11)

Schneider neglected the kinetic correlation and ob-
tained the value a = 2. Vashishta and Singwi used
the parameter a to simulate the effect of kinetic
correlation and found an optimum value of -', for the
whole range of metallic densities.

An approximation comparable to the last version
can be obtained from Eq. (3.3) by using the pair-
distribution functions at constant density before
density differentiation, i.e. ,

5j[r, ryan] Bg{r—r; n)

~ ff(Anff

3 j[rl r2 n].
hn(r) an(r ) „(,-).„ I 5(1'g —r}6(ra —r ),en

(3.13)
where j(r;n} denotes the pair dis-tribution function
for the homogeneous electron gas at density n.
Then,

Z,.gr- {ur) ~1+Sn , +~', ,—~fj{r;n)-1].
3.14)

The cause of the differences of a position gradient
and density derivatives between the two formulas
(3. 11) and {3.14) is easily understood by comparing
Schneider's derivation with ours. He took the en-

ergy expression fox the homogeneous electron gas,
differentiated twice with respect to the density, and
fixed the q = 0 form of E„,by appealing to the com-
pressibility sum rule. However, on the first den-
sity derivative, he used the virial theorem with the
potential energy in the form of' —r ~ Vu(r}. Had he
used the equivalent form of u(r), he would have ob-
tained a formula without the gradient operator.
The remaining difference in the density derivative
is due to the use of the virial theorem for the ho-.

mogeneous gas, which is equivalent to replacing
1+ne/en by —,'.

Equation (3.14) is still not a relation between E„
and the static pair-distribution function g(r) unless
we can construct h{r). Vashishta and Singwf's~

yarametrization is one way. Alternatively, within
the spirit of the Singwi-type approximation, we as-
sume that the virial theorem which relates the ki-
netic and potential part of the exchange and correla-
tion energy of the free-electron gas can be extended
to h and g and calculate h as a density integral of g.

By construction, it is clear that Eq. (8. 14) satis-
fies the compressibility sum rule If we ne. glect
correlation but keep exchange, the small r (or,
equivalently, large q }values of K'„(r) for both ap-
proximations (S.11)and (3.14) are the same, since
g(y) tends to —,

' for small r at any density in the Har-
tree-rock aypxoximation. However, in the next
section, we shaQ see some differences in the two

ayyroximations. It is of some intexest to repeat



the calculations carried out by Vashishta and Sing-
wi with Eq. (3.14}to compare with their results for
the properties of the electron gas.

In the local-density approximation, 7 the exchange
Rnd cox'x'elRtion enex'gy is

Z„[n]=J den(r) a {n(R), (4. 1)

where &~(n) is the exchange and correlation energy
per electron in the homogeneous electron gas with
density n. This approximation has been widely
used in atoms and solids. The most vndely used
correction to this approximation is simply to mul-
tiply ~,, (s) by an adjustable parameter, known as
the Xe method. However, one may regard, Eq.
(4. 1) as the leading term in the gradient expansion.
Herman et al. '0 were the first to show that the dif-
ference between the Hartree-Pock energy in atoms
and the local-density approximation can be fully
accounted for by the next-order-gradient term with
an adjustable coefficient which varies very little
fx'om atom to atom. The coefficient of the gradient
term, for the exchange only, can be calculated from
first pr1Dclples ' Rnd ls only Rbout one-turd to
one-fifth as big as the adjusted value of Herman
et aE. ' Qrtenburger Rnd Herman~~ argued that the
discrepancy represented the effects of the higher-
order-gradient terms. The second-order-gradient
term to the correlation energy in atoms is found by
Ma and Brueckner~s to be much too large.

In view of the experiences with the gradient term
corrections above, as meQ as the gradient term
corrections to the Thomas- Fermi approximation,
it appears that term-by-term calculations of the
gradient series will not necessarily give succes~
sively improved answers. Kohn and the authorv
have suggested a correction to the local-density
approximation, given by

as„[N]=--,'J drj dr'K (r-r' n(-'r -'+)r}

x(n(r) —~(r')P . (4.2)

This is the sum of a subseries of the gradient ex-
pansion6 involving all terms of type V~' ~n V~n.
K (r, n} is just the exchange and correlation part
of the dielectric response defined in Egs. (2. 19),
(2. 16), or (2.8). Neglected in this correction are
terms involving more than tmo factors of density
derivatives. Their summation mould involve non-
linear-response functions of the homogeneous elec-
tX'On gRS,

In this section, we report the calculahons of the
correction to the local-density approximation of
only the exchange energy in atoms, using Eq.
(4.2), for the reasons given in the Introduction.
Three approximations fox the exchange part of the

dielectric response, E,(r;n), are used: (a) the
Schneider-Vashishta-Singmi approximation given
by Eg. (3.11), with a =-', and the pair-distribution
function appropriate to the electron gas in the Har-
tree-Fock approximation, (b) the related approxi-
mation (3.14) derived in this paper, with j(r; n}
again given by g(r;n) in the Hartree-Fock approx-
imation, and (c}an approximation of the expansion
of the Hartree-Fock susceptibility y in powers of
g3

X Xo+ Xz+ (4.3)
giving

z (q) = x (q)/[yo(q)j', (4.4)g

if me approximate the higher-order terms in the
series (4.3) by the geometric progression starting
with the first two terms. The quantity y~(j) has
been computed by Geldart and Taylor, ~4 ind their
values are used here.

Note that RQ three approximations satisfy the
compressibility sum rule, i.e. , in the Hartree-
Fock apyroximaQony

SC (q=O) =- ve'/n', . (4. 5)

Only approximation (c) gives the correct ql term. ~~

For large q, (a) and (b) give

z„(q)-—-', u(q), (4.6)

but (c) gives the correct Hartree-Pock value of

If (q)- —-', u(q) . (4. V)

Unlike the second-order gradient term, '0 E,(q)
used in Eg. (4. 2) tends to zero for large gradients.
The density for K„(r—r'; n} is chosen for the
spherical atoms at the mean radius —,

' (r+ y') rather
than the midyoint.

The results for various inert-gas atoms are
shown in TaMe I. It is convenient to use analytical
formulas for the density which have been fitted to
the Hartree-Pock solution~5 rather than the nu-
merical solution in the local-density approxima-
5on. ~e Because of the variational theoxem, e the
difference for the energy calculations is not im-
yortant, as is borne out by the rows in Table I
marked E,(TS), using Eg. (4. 1) and the analytical

&„(Ts)

~x
b

He

-1.VOV
—l.768
—0.275

0.195
-0.004
-0.212

-21.873
22~032
—2.115

1.584
—0.177
—3..284

-55.551
-55.632
—4.607

3.350
—0.439
—1.672

—177.498
-10.423

7.974
—1.216
—5.993

TABLE I. Excharge energies in atoms. The quantities
in each row are explained in the text. Energy in units of
Ry.



expression for the density. aE„ is the difference
between the Hartree-Fock energy and the local-
density approximation using exchange without cor
relation, taken from Ref. 16. The last three rows
are the corrections to the local-density approxi-
mation AE„, using Eq. (4.2) and the approxima-
tions for E„described above.

The Schneider-Vashishta-Singwi (SVS) response
gives the wrong sign for ~„. This is because'
their E„(q) is quite close to the Hubbard form, '
which is always negative and monotonically in-
creasing to zero as q increases, thus always giv-
ing a positive value to AE„as is evident from Eq.
(4. 2). Equation (4.4), the perturbation approxi-
mation, on the other hand, decreases first as q
increases from zero. See Fig. 1, where this is
plotted and contrasted with the Hubbard approxi. -
mation

(4. S)

C)

hC

C7

hC

2.0

I,5

I.O

with the term 2k~~ chosen to fit the compressibility
sum rule. This negative curvature in version (c)
is picked out by the density factor in E|I. (4. 2)
and appears to be essential here for giving the
correct sign to nE, . Version (b), though it gives
the correct sign for LE„, yields values which are
much too small. Thus, Eq. (3. 14) appears to
give slightly better q dependence than SVS, but not
much better.

The results in Table I show that version (c) gives
the best approximation for A„(q), the exchange part
of the response beyond RPA. We conjecture that
the remaining 40-50% error in AE„ is likely,
mainly due to the approximation in Eq. (4. 2) where
products of more than two density derivatives are
mostly neglected. The Singwi-type approximation
is sufficiently good for large q to explain the elec-
tron-electron and electron-positron correlations
at short distances and is made to obey the com-
pressibility sum rule (i. e. , correct at q=0), but

not necessarily good at small or finite q values.
For properties such as ~„which are sensitive to
q~ and higher-order terms in the response, it is
important to take into account the functional depen-
dence of the pair-distribution function on the den-

sity distribution in the slightly inhomogeneous sys-
tem; i.e. , approximations (3. 12) and (3. 13) are

0.5

q]k

PIG. 1. Exchange part of the response from the per-
turbation theory (solid line), Eq. (4.4), and from the
Hubbard form (dashed line), Eq. (4.8).

probably inadequate. However, we should empha-
size that only the exchange part has been tested.
It remains to be seen whether the Singwi-type ap-
proximation for the combined exchange and corre-
lation term K„(q) gives a better q dependence.
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Comparison of the Isotope Effect for Diffusion of Sodium and Silver in Lithium
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Separate measurements were made at 150'C of the simultaneous diffusion of sodium isotopes (2'Na and' Na) and silver isotopes (' Ag and " Ag) in lithium. The strength of the isotope effect fhE for sodium
is 0.19+0.01 and for silver 0.26 + 0.01. These values do not correlate well with recent calculations of hE
determined for impurity diffusion on the basis of the dynamical theory of diffusion. Measurement of the
diffusion of silver in lithium is 45% greater than earlier data, and a possible explanation for this discrepancy
Is given.

I. INTRODUCTION

Many measurements of the isotope effect'in dif-
fusion have been made in the past ten years be-
cause of the information they provide on the basic
mechanism of diffusion in crystals. The interpre-
tation of these measurements has not always been
unambiguous, and clarification has been sought us-
ing two distinct theories. However, both the reac-
tion-rate theory~ 3 and the dynamical theory~6 re-
sult in an equation fox the isotope effect of the
same general form. The equation is given by

a -
m, ~~~~-i=f~ —~ —i'.

Dp ~ m~

where D, m, B&, and mz refer to the diffusion
coefficient and mass of a and P isotope, respec-
tively. f is the correlation factor and ddt is
interpreted in reaction-rate theory as that fraction
of the total translational kinetic energy associated
with the decomposition of the saddle-point config-
uration possessed by the migrating atom.

For self-diffusion in cubic metals, f is a geo-
metric factor dependent only on the crystal struc-
ture and the atomic-lump process. Measurements
of D, /D~yieldtheproductfbE; thus, if dais close to
unity, the experimental results yieM an unambiguous
value of f, which serves to identify the diffusion
mechanism. Measurements of the isotope effect
in metals with a close-packed structure~ ~5 have
shown that diffusion occurs primarily by means of
vacancies. Measurements of the isotope effect in
body-centered-cubic (bcc) metals~4 ~8 have yielded
such low values of the isotope effect that it was
impossible to identify, unambiguously, the mecha-
nism of diffusion. However, experimental evidence
does indicate, from measurements of the macro-
scopic change of length and the x-ray latt1ce pa.-'

rameter as a function temperature, that in lith-

ium and also in sodium above room tempera-
ture, vacancies are the predominant defect. The
measurements of the enhancement of sodium self-
diffusion by additions of potassium~1 also suggest
a vacancy mechanism of diffusion.

The low values of the isotope effect were found
in self-diffusion experiments in which f is a geo-
metric factor, and so a theoretical ~justification
was sought for a low value of ~. Calculations of
4K based on both reaction-rate theory 3'33 and dy-
namicai theoryl gave values ot ddt within 2 Pg ot
unity. This similarity was unexpected because in
the calculation of hK the differ~aces in the the-
ories should show most clearly. 3~ In seeking to
detex mine the relative merits of each theory,
Achar 4 has developed, from the dynamical theory,
the effect of resonance and local modes on ~.
The theory is based on the fact that an impurity
with mass much greater than that of the lattice
atoms will give rise to resonance modes, whereas
impurities of mass similar to the lattice atoms
mill give rise to localized modes. The effect of
these modes on ddC has shown that ~ has a marked
dependence on the mass tactor M'/M, where M' is
the impurity mass and M is the mass of a host
atom. The extent to which ~will change is, of
course, governed experimentally by the relative
magnitudes of M' and M. Achar has calculated
values of ddC for three host lattices: lithium, sodi-
um, and aluminum.

The effect ot impurity mass on the value ot ~
has also been determined from the dynamical the-
ory in a recent paper by Feit. ~l In Feit's ap-
proach, the resonance modes are not treated ex-
plicity, and the variation of dK is determined rei-
ative to ~,. reit used experimental values of
LQCo and suggested that the greatest differences in
ddt/rhK~ would be seen where A%0 is low, as in so-
dium.


