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A tight-binding approach to the electronic structure of disordered systems is developed for a simple
one-orbital model of a liquid metal. An equation is derived for a one-electron continuum Green’s
function from which the electronic density of states can be obtained. Utilizing an analogy between this
Green’s function and the T matrix of multiple-scattering theory, results are obtained corresponding to
the quasicrystalline approximation (QCA) of Lax and the self-consistent approximation (SCA) of
Schwartz and Ehrenreich. Moments of the spectral function are also analyzed. Calculations were made
using random and hard-sphere pair distribution functions. The QCA in this model is quite inadequate,
and the SCA, while a considerable improvement, proves to involve a questionable approximation to the

three-body distribution function.

I. INTRODUCTION

In a recent Letter® (I) a method was introduced
for the study of electronic states in disordered
systems based on tight-binding or linear-combina-
tion-of-atomic-orbitals (LCAO) representations.
In this paper a more detailed account is given of
the method, and the results are extended and
further analyzed. As in I we shall restrict our-
selves to the case of a single atomic S orbital per
site, and approximations which depend upon the
spherically symmetric radial distribution function
of atoms about a given one. Thus we deal with a
simple model of a liquid metal. It is hoped in
later work to extend the results to include more
orbitals, for a more realistic liquid-metal calcu-
lation, and to consider in greater detail the ar-
rangement of atoms about a given one, so as to be
able to deal with the tetrahedral coordination in
amorphous semiconductors or the bridging in
Si0,.

One motivation for using an LCAO approach is
that it has had some success recently in the band
theoryz of semiconductors and even simple metals,
and especially transition metals.® There has also
been recent work on defects in semiconductors, *
and in SiO,, ° based on semiempirical LCAO ap-
proximations. The main features of these calcula-
tions which make them more realistic than the
early tight-binding theory are the inclusion of all
overlaps, i.e., many neighbors, and the consid-
eration of the nonorthogonality of the basis. We
shall incorporate both of these features in the
present calculation.

A second motivation is the success of tight-
binding models in the study of substitutional alloys.
In particular the coherent-potential approxima-
tion (CPA) of Soven, ® takes a simple form in these
systems.™® Relevant to the liquid-metal problem
is a “lattice-liquid” model in which the atoms
occupy a fraction of the sites of a lattice. This
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system has been investigated by Kirkpatrick.®
Again, Weaire and Thorpe'® have used a simple
tight-binding model to gain insight into the elec-
tronic states, and in particular the energy gap, of
tetrahedrally coordinated systems such as
amorphous semiconductors.

In the theory of liquid metals, there have been
several approaches to improving upon the nearly-
free-electron results of Ziman.!! One of these
involves evaluating the electron self-energy by
treating the pseudopotential as a perturbation'®13
and derives from the Green’s-function formula-
tion of Edwards.'? Another involves using mul-
tiple-scattering techniques!*~!® based primarily
on the quasicrystalline approximation (QCA) of
Lax.'* We shall be concerned here mainly with
the latter methods. The QCA has been shown'® to
correspond in the alloy case to the average-T-
matrix approximation'” (ATA) which does not have
the self-consistent propagator renormalization of
the CPA, and which was believed to give spurious
gaps® in the energy spectrum. Consequently ef-
forts have been made'®!®1® to obtain, for the liquid
metal, results analagous to the CPA. While for
the random-liquid case!®® there is general agree-
ment, for more realistic pair distribution func-
tions there are differences. The best result ap-
pears to be the self-consistent approximation (SCA)
of Schwartz and Ehrenreich, '® which reduces to the
CPA for the alloy case. However, in general the
equations are very difficult to solve, so that it has
not been possible to analyze the differences, or
the improvements over the QCA, in detail. The
tight-binding model, being simpler, can hopefully
give insights into the relative merits of the various
approximations.

Actually, recent work of Schwartz et al.? has
shown that the spurious energy gaps associated
with the average-T-matrix approximation are thé
consequence of a further approximation made by
Beeby, ® and also used by Velicky et al.” This ver-
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sion of the ATA we shall term ATA’, and we shall
discuss the relationship of these approximations
to the present work in Sec. VI.

A tight-binding formulation was made by Beeby
and Edwards® based on a T-matrix expansion, and
they obtained a result similar to our analog of the
QCA.! Takeno® has obtained the QCA analog by
methods closer to those we use, but which seem to
involve ambiguities in the configurational averaging
which we have eliminated. Cyrot-Lackman? has

- examined the moments of the density of states for
an LCAO model. The last two authors have as-
sumed orthogonal orbitals.

In this article we develop the general formalism
in Sec. I resulting in an equation for the con-
tinuum Green’s function! which can be configura-

. tionally averaged in a well-defined way, and from
which the density of states can be determined. In
Sec. Il we demonstrate the analogy between this
Green’s function and the 7 matrix of multiple-
scattering theory and obtain a result corresponding
to the quasicrystalline approximation, which we
shall term the QCA’. In Sec. IV we exploit the
above analogy to derive the SCA’, which corre--
sponds to the self-consistent approximation of
Schwartz and Ehrenreich, and we reduce the result
to an integral equation with a self-consistently
determined kernel. Section V gives some results
involving moments of the spectral function, and
Sec. VI gives the specialization of-the theory to the
cases of the lattice and the lattice liquid with some
comments on the average-7-matrix approximation.
Numerical results are presented in Sec. VII for the
random liquid and in Sec. VIII for a hard-sphere
liquid. Finally we discuss the implication of our
results in Sec. IX,

II. BASIC EQUATION FOR THE GREEN’S FUNCTION;
DENSITY OF STATES

The model we use has been outlined in I, but we
shall develop it again in a more leisurely and
thorough manner. We consider a collection of
atoms in some distribution and assume that the
wave function is expanded in terms of atomic or-
bitals ¢ ,(F) = ¢ (F - R,) located on the various
atomic sites. Actually, we shall find it most con-
venient to deal with the one-electron Green’s func-
tion G,(F, T') for the system. In terms of the
Green’s function we can obtain the density of states
by standard means.”'* We assume an LCAO ex-
pansion for G,

9}(;, -f’) =Z> ¢;('I")9u¢}‘('f') . (2. 1)
14

Following the notation of Schwartz and Ehrenreich!®

we shall use script letters for quantities such as

G depending on an individual distribution of atoms—

i.e., member of the ensemble—and italic letters
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?
for the statistical averages. Thus
(G:(F, ¥ =G,(F 1) . (2.2)
The Green’s function satisfies the equation
(w-30G,(F,T)=5(F -1 , (2.3)

where 3C is the one-electron Hamiltonian for the
system. If we multiply Eq.. (2.3) by ¢F(T) on the
left and ¢,,(¥') on the right and integrate using Eq.
(2.1), we have

2 J 61O -506,D dFG,, [ 6} ENpnE)dF’

=[ 6T DB dEF . (2.9
Introducing overlap and transfer matrices
8,;=S®,-R)= [ ¢TDo,F)df , (2.5)
3= | oHENCe,(Ddt , (2.6)
we have
27 (W84 =3C1)G 1,8 m=Sim - 2.7

L3}

For any distribution of atoms, $;; can be shown to
be positive definite and to have an inverse.?* We
therefore have for G,; the equation

Z,> (84, =3C43)Gyy=045 - (2.8)
This is the basic equation of the present work.®
It suffers, however, from the following signal dis-
advantage. The quantity G;; cannot be statistically
averaged in a meaningful way because the basis
depends upon the distribution of atoms. We can
statistically average G,(T, ¥’), but it is more con-
venient at this point to introduce the quantity

g(F, ) =Zj 8(F-R,)G,6(F -R) , (2.9)
1

which is the continuum Green’s function. § is es-
sentially G;; in which atom 7 is restricted to be
located at point T and atom j at point ¥, G, can be
readily obtained from G:

G,F, )= [ SR, RNo(F-Rop(F' -RNdRaR".

(2.10)

We can now contemplate calculating the statistical
average of G(¥, ¥'), which will be denoted by
G(T,T’) and is a continuous function of T and ¥/,
except near T=T' where it behaves like a 5 func~
tion. We first must obtain an equation for G(%, ¥')
based on Eq. (2.8). '

At this point let us make two simplifying as-
sumptions for Eq. (2.8). In general, the matrix
element 3C;; will depend on the distribution of other
atoms about atoms 7 and j since it depends on po-
tentials due to the various atoms. Let us assume
however that for i#3, 3C;; is a function only of the
distance between atoms ¢ and j, i.e.,

GCL,:H(ﬁ“) . (2. 11)
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This is either a two-center approximation or,
more generally, we use an averaged distribution of
other atoms about ¢ and j to compute 3C;;. Similar-
ly for i=j, let us assume H;;=H,, a constant in-
dependent of the distribution of neighbors.

Another assumption we might wish to make is to
neglect 8, for i#j. (Note that §;,=1 by defini-
tion.) The justification for this would be the fact
that the atoms do not come closer to each other
than a certain minimum distance. But as men-
tioned in the Introduction, experience has shown
that the overlaps are important, so we shall not
make this approximation, except as a special case.
However we can lump the overlap term in with
34, as follows for i#j:

3ei,=H'(R;) =30, - w Sy, (2.12)

and therefore develop the equation as though we
had assumed orthogonal orbitals.
‘Equation (2. 8) then becomes

(w'—Ho)g”'—le‘ H'(ﬁ”)g”=5u . (2. 13)

Let us multiply by 5(& - R,)6(F' - ;) and sum over
i and j, using Eq. (2.9). Then

(w - Hy) §(F, T ~ ‘?, 8(F-R)H'(R,))8,0(F -R)
1#i
=p@s(F -1 , (2.14)
where we have introduced the density function

p(?)=§) 6(?-ﬁ‘)=2‘) P . (2.15)

If in the second term we introduce [5(F''- R,) dt'’
=1 and then replace H'(R;;) by H'(¥ - T'"), we have

Y [ o(F - R)H'F - F"6G" - By
Iif!l
« Gy S — R ) "

If we add and subtract the ¢=7 term and use Eqs.
(2.9) and (2.16), the equation for g(¥, ') becomes

[ - Ho+ H'O)] G, #) - p@) [ B'G-F")

xg@F, F)dF"=5F -T)p® . (2.16)

\ This equation is the main result of this section.
We note that the dependence on the positions of the
atoms occurs solely through the density p(F),
while the interaction H'(¥ -~ T') is a continuum quan-
tity. In the following sections we shall apply
multiple-scattering theory to this equation. Let
us first close this section by obtaining an expres-
sion for the density of states in terms of § (¥, ¥').

The density of states, which we shall calculate
per atom, is obtained from the one-electron
Green’s function as follows" 12

N(w)=-(1/aN)Im [ {g,(¥, P))dT
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== (1/7N)Im [ G,(F, D d¥ , (2.17)

the latter form being from Eq. (2.2). If we use
Eq. (2.1) for g,;, we have

1 ,
Nw)=-—= 1m<Z“) s,,g,,> . (2.18)

Alternatively, we can use Eq. (2.10) to obtain

Nw)==(1/7sN)Im [ S®-R"GE®, R dR4R’ ,
(2.19)

where G(R, R’") =(g(R, R") is the statistical aver-
age of our continuum Green’s function. If we as-
sume spatial homogeneity for our ensemble, then
G(¥, T")=G(T - T') depends only upon the distance
between T and ¥'. (The same holds for G,.) Then
Eq. (2.19) becomes

N(w)=-1/m)Im [ SHCHdF , (2.20)
where 7 is the density. If we introduce the
Fourier transform of G(T)

G;= [ e®F G(F) dF (2.21)

and similarly for S, the expression for the density
of states can also be written

N(w)=—-(1/mn)Im [ S;Gpdk/81° . (2.22)

Equation (2. 22) will be the most useful means of
calculating the density of states in various approx-
imations. Notice the explicit occurrence of the
overlap integral S;. This acts as a natural cutoff
for the k integral in Eq. (2.22), and hence it is
most important to keep it in the calculation. If
we do wish to use the approximation §;,=56,;, we
must go back to Eq. (2.18), and the density of
states depends upon G;;. To obtain thié quantity,
we must isolate the part of G(T, ¥') which depends
on 5(f - '), and this is just the large-k limit of
G;. Thus we find

N(w)ls”=5”=- (1/mn) ImGi ;.. . (2.23)

III. MULTIPLE-SCATTERING EXPANSION AND
QUASICRYSTALLINE APPROXIMATION

Equation (2.16) can be rewritten, using an op-
erator notation for G, p, and H':

g=p/w'+p/w"H'S , (3.1)
where

w'=w-Hy+H'(0) . (3.2)
We can also expand the right-hand side of Eq.
(3.1):

=L B £ B gD

w w w
(3.3)

As noticed previously, the quantity in Eqs. (3.1)
and (3. 3) pertaining to the atoms is p/w’, while
H’ is a “medium” quantity.
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These equations are formally analogous to the
expansion of the T matrix for the case of a free
electron in a disordered array of scatters. Using
barred quantities for this latter case, which is the
more usual approach to liquid metals, we can

-write!® for the Green’s function

6=80+G0TGo » (3.4)
?=6+%§0¥
20+ VGU+VGoUG U+ (3.5)

Here G is the free-electron Green’s function and
V=Y; 7, is the scattering potential. We note the
analogy between our G and ¥, with the potential 0
replaced by p/w’=3; p;/w’ and the free-electron
Green’s function § o replaced by the medium inter-
action H'. The correspondence is summarized in
Table I 1t is lwell known®? that Eq. (3.5) can be
reexpanded in terms of the T matrix for a single
scattering center,

5=T;+0,Gols » (3.6)

to give

T=2) t,;+2 TiSob;+20 EiGotSola+ " »
i i#4 i#]
itk
3.7
where no two successive indices in the sum are the
same. In our case the analog of {; is simply
= -—‘l'H— Ly Ei—H(o)r, , (3.8)
w 0 w

so that the expansion becomes

G= Z} T¢+E T H T,+E T.H' TH T
i#4
k

(3.9)
This result was obtained in I in a slightly different
manner. 7; is essentially an atomic Green’s func-
tion or locator, %28

TABLE I. Corresponding quantities in present theory

and multiple-scattering theory.?

Tight-binding theory Multiple-scattering theory

S G 7, T
p/w’ v
Pi/w’ v;
Ti=p;/ (0~ Hy) 7
Pt §,
D z
d; o;
9 t;

31,. Schwartz and H. Ehrenreich, Ref. 16.

Let us now examine the statistical average of the
expansion of Eq. (3.9), which depends on the
averages

n=Z‘) (ps@) , (3. 10)
nzg(?—?’)=2’ {pi@p,;FN , (3.11)
ng(F, T, 1) = Z) (pi@p,(F)p, ") . (3.12)

Here # is the dens1ty, g(* = T') the radial distribu-
tion function, and g(¥, ¥’, ¥'") a three-particle dis-
tribution function. The prime on the summation
indicates that no two indices are equal. Then

G, 7)- 6(r—r) n?
Tw-H, " (w-HP

s ->
* (w"iHo)s 5(6(1;1 - ) g(r -.")+g(r’ -.', -’”))
XH' (T -T"H' " -T)dt" ++-- (3.13)
In making this expansion, we need to treat sep-
arately terms in which two or more indices coin-
cide.

Consider now an approximation for the above
expansion in which we neglect all correlations be-
tween positions of atoms in the sums of Eq. (3.9)
except those between atoms corresponding to
successive indices. Thus in the third term of Eq.
(3.13) we replace the term in large parentheses by
gF-F"g(F""-F'). Then if we write H'(¥)g(¥)
as H'(¥), we have

- -y 2
QCA(*= =r =nti(r—r’) n ) srm
GOCA(R, 1) o-a \o-m, BEFE-7)

H'(F-1Tg(@-T1")

+(wilHo>8 s HE-T"AGE" -T)dt" + -

(3.14)

Considering now the Fourier transform G;, we can
readily sum this to obtain®’

gca___ "M
G Hy-nH, ’ (3 15)
ni=n [ e®Fg@B' P dT . (3.16)

As we shall see in Sec. IV, this result, which
we call QCA’, is the analog of the QCA of Lax. 14
We notice that #H; is an obvious generalization of
the Bloch sum, which in fact enables us to deal
with interactions as long range as we like. The
lack of any broadening, however, makes this ap-
proximation somewhat unrealistic, so we now
turn to the task of improving upon it.

IV. SELF-CONSISTENT APPROXIMATION

There have been several attempts'®®! to obtain

results for the liquid-metal case analogous to the
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coherent-potential approximation for the substitu-
tional alloy. In the tight-binding substitutional-
alloy model the self-energy (assumed site diag-
onal) is readily projected into a contribution from
each lattice site so that the perturbation (V - %)
consists of a contribution from each scatterer, and
a self-consistent single-site approximation—the
CPA—can be obtained. In the liquid-metal case
such a clearcut division cannot be made. Assign-
ing 1/N of the self-energy to each scatterer as in
the work of Faulkner'® and Gyorfty'® appears to be
unsatisfactory. Schwartz and Ehrenreich, 18 rather
than try to localize the perturbation, related the
self-energy to a contribution from each scatterer,
and manipulated the Green’s-function equation so
as to obtain a self-consistent set after a decoupling
approximation was made. The result reduces to
the CPA for the substitutional alloy. We shall fol-
low their method transposed to apply to our case.

We first present another derivation of the QCA’.
Let us write the Green’s function as

9=Z‘> Si (4.1)
G, ) =Z,> 5(F-R)G, 8¢ -R,) .
Then from Eq. (2.16) or (3.1) we have
[w—H(,+H'(0)]9,=p,+p,H'ZI) g, . (4.2)
We can cancel the j=7 term to obtain
(4.3)

(0-’-1‘10)9i=P¢+PiH’E’e S; .
#1

Let us now introduce conditional averages!*1®
of quantities depending on the position of the
atoms. Defining a distribution function
f(®, ..., Ry) for the ensemble such that
[ f®Ry,...,Ry)dR, +-dRy=1, we define

<A>=fA(ﬁ]_,-..,._R..N)f(ﬁl,--.,-R..N)dﬁl"'dﬁ]v )
(4.4)

(), = JAR, ..., R)f®R,, ..., Ry)dR, : - - dR,/dR,
- | fRy,...,Ry)dR,--dR/dR,

= [AR,...,B)f®,..., By
xdR, - -dRy/dR; , (4.5)
A, =Rlg® )] AR, ..., B rE, ..., By
x dR, -+ +dRy/dR,dR, . (4.6)

Here, for example, (4); is the average of A with
the position of the 7th atom held fixed, and Q is the
volume of the system.

We then average Eq. (4.3) over the positions of
all atoms other than ¢ to obtain

(w ‘Ho)(94>4=l)¢+1§ %7‘ pH' [g®;Xg)ydR, .
(4.7

AMORPHOUS SYSTEMS:. .. 4325

Our analog of the quasicrystalline approximation
is obtained by neglecting the ¢ dependence of

(Sip deen,y
(8p4;5(8y; @QCA"). (4.8)

In the coordinate representation form of Eq. (4.7)
[see Eq. (2.16)] we have H'(F - F'") g(R;,) multiplied
by 5 functions which fix R, at T and R, at ¥"’. We
can therefore write this as H'(f - ¥'’).. If we now
average over 'R', and sum over ¢, noting that the
j=1i term in Eq. (4.7) gives no contribution, we
have

(w = Hy)GO®A = +nH'GCA , (4.9)

This is the same result as we obtained in Sec. III.

Let us now derive the SCA’. In Schwartz and
Ehrenreich’s treatment they make use of the
exact Green’s function. In our case the analogous
quantity is the “interaction operator, ”

I=H+HGH . (4.10)

They also calculate a self-energy. In our case the
analogous quantity is obtained by looking at Eq.
(3. 1)’

G=(p/w)1+HG). (4.11)

We have dropped the primes on H’ and w’ in both
(4.10) and (4. 11) and shall restore them at the

end of the section. p/w is a sum of atomic Green’s
functions p,;/w, which are locators, ®® but defined

in a slightly different way from those in Eq. (3.8).
Let us now define a quantity D such that the exact
averaged Green’s function satisfies

G=D(1+HG) . (4.12)

We shall call D the medium locator®® or simply
the locator, and it is the analog of the self-energy
in the work of Schwartz. In fact the present treat-
ment bears some resemblance to the locator ap-
proach of Shiba® to the alloy problem. D can be
written in several ways using Eq. (4.10):

D=GHI'=H'-I" . (4.13)

In what follows we shall develop an approxima-
tion like Eq. (4.8), but for the locator rather than
the Green’s function. The locator D can be decom-
posed into contributions from individual atoms by
writing

d;=(G;)HI* (4.14)
in terms of which
=%Z‘) S d;dR;=n jd,dR, . (4.15)

Here we have replaced the summation by N times

a typical term. We shall make this same replace-
ment several times below. We now transform the
right-hand side of Eq. (4.14) by writing Eq.. (4.2)
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averaged with atom ¢ held fixed, in the form
(S,), = (Pi/w)(l +H(S )1) .

Let us denote (8);, the Green’s function with atom
¢ fixed, by G;. We then have

d;=(p;/w)1+HG)HI" .

(4.16)

(4.17)

In terms of G; we can define I; and D;, the in-
teraction operator and locator with atom ¢ fixed:

11=H+HG‘H ) (4.18)
D;=GHI;*=H'-T1;* . (4.19)

Now G; can be written in analogy with Eq. (4.7):

Gi=(8)i+n [ g®; X8, dR, , (4.20)
so that we have for D;
D, =GHI;
=(8,):HI; +n [ g(R;;)XS,) HI AR, .
(4.21)

The first term can be rewritten by using a relation
obtained from Eqs. (4.16) and (4. 18),

<94>;=(pg/w)I¢H'1 s (4. 22)
so that Eq. (4.21) becomes

D;=pj/w+n [ gR)didR, ,

di=(S,) AL . (4.23)

We now make the approximation of the SCA’
which is to ignore the fact that atom ¢ is fixed in
d} so that

dizd, . (4.24)
Then subtracting Eq. (4.15) from (4. 23), we have

D;-D=p;/w+n [ h(R,;)d,dR, , (4. 25)

where n(¥)=g(¥) - 1.

Equations (4.17) and (4. 25), together with the
relations (4.18) and (4.19) between G; and D,
form a closed set which is the SCA’ result. We
can simplify these equations by defining a quantity
qi

q;=I""H(G;-G)HI"" (4.26)
in terms of which I; can be written
Ii=I+Iq,] . (4.27)

We can now rewrite Eq. (4.17) in terms of ¢; using
Eq. (4.27),

d,=(pi/w)1+1q) . (4.28)

We can also relate D; to g; by using Eqs. (4.19),

(4.27), and (4.13),
(Di—D)(l +Iq¢)=q¢ . (4. 29)

The set of equations for the SCA’ at this stage
consists of Eqs. (4.28), (4.29), (4.25), (4.15),

and the definitions (4.10) and (4.12). Substituting
Eq. (4.25) into Eq.. (4.29) and using Eq. (4.28),
we can rewrite and collect the SCA’ equations as
follows:

d;=(p;/w)1+1q,;) , (4. 30)
q:=d;-d;(1+1q) , (4.31)
di=-n [ n(R,;)d,dR; , (4. 32)
D=n [ d;dR; , (4.33)
G=(D1'-H)" (4. 34)
I=H+HGH . (4. 35)

Equations (4. 30)-(4. 33) can also be obtained by
taking over Egs. (2.36), (2.53), (2.5a), and (2.5b)
in the paper by Schwartz and Ehrenreich, ' and
making the changes indicated in Table I.

Let us now reduce the SCA’ equation to a simpler
and more useful form, making use of the -func-
tion nature of p;. Let us first note that R, is the
only unique point in the system, and therefore we
can assume that, using a coordinate representa-
tion,

¢;(F, ™) =qF-R,, 7' -R) (4. 36)

and similarly for d, and d;. If we also note that
G(F,T')=G(¥ - 1) and similarly for H, D, and I,
due to translational invariance, we can write Eq.
(4.30) as

4,5, 7)= 2R
w

x(ﬁ(?-?’)+§1(?")q(?”, F’—?)d?”) L @)

From Eq. (4.33) we have
DF-F)=/w)[6F-T")+ [ IF gt , ¥ - T)ar"] .
(4.38)

From Eqs. (4.38), (4.37), and (4.32), we can then
write

dF -7 =[6(F)/n]DF-7") , (4. 39)
dF ) =-n@DE -7 . (4. 40)

Then Eq. (4.31) becomes
g ) =[6(D/n+ @ IDFE T+ [ hFDF -T,)

X I(F, = F)q(Fy, F') dFydF, . (4.41)

This with Eq. (4.38) and the definitions (4. 34) and
(4. 35) form the self-consistent set, which we shall
further simplify. We Fourier transform Eq.

(4.41) and write
gk, k") =F&,K"D; . (4.42)

The integral equation for F is then
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nF(&, k") =1+nhk -k’
w0 [ R =K\ HyiGyu FE', K)dk'"/87° . (4.43)

We have here used Eq. (4.13) to replace DI by
HG. The Fourier transform for D is from Eq.
(4. 38),

_n.n o g 9K
Dy= -+ J.IE,F(k,k)WD; . (4.44)

Solving for Dj', substituting into Eq. (4.34), and
eliminating I with Eq. (4.35), we have

G£1=Q)/n -— f (H;l‘i’HélG;l)F(E’, E)dEI/Sﬂ‘S —H‘i .

(4. 45)
Let us write this in the form
nG;" =w -nHy -z - HO) , (4. 46)

where X3 is a self-energy correction to the QCA
result:
Zz=n [ (Hy+ B3 Gp)F ', k) dk'/81°
+nHy ~nf; ~HO) . (4.47)

To simplify this let us multiply Eq. (4.43) by H;
and integrate over k:

[ ni;F &, k") dik/8n° = H(0) + [ nHzh(k - k") dk/81°
+n f HEh(E - E")H‘iuGEuF(E”, E’) dE"/aﬂ's .

(4.48)
From the definition of f; we have
[ B - K" (dk/81%) =y, - B, ; (4.49)

using this relation and adding Eq. (4.48) to (4.47),
we have finally

ZE =n f ﬁ‘ilHElG‘EIF(E,, E) dE’/87I'3 . (4- 50)

Let us now collect the results and restore the
primes omitted in Eq. (4.11). The self-consistent
set of equations becomes®

Gi=nlw - Hy-nif -z3)" , (4.51)
s=n [ By H Gp F&', ) di’/80° (4.52)
nF(K, k") =1+nh(k - k")
wn [ @& -K")H0 Gp R, K" dk"/87° .  (4.53)

This is the final result of this section. We see
that the SCA’ results in an integral equation with
a self-consistently determined kernel. Because
of isotropy this equation can be put in a one-
dimensional form and solved numerically, as we
shall show in Sec. VII.

V. MOMENTS

In I we found that an improvement over QCA’
can be found by calculating the second moment of
the spectral function — (1/7) ImG. It also will be
of interest here to compare the second moment

obtained from the SCA’ with exact results. We
shall initially assume orthogonal orbitals, though
in Secs. VII and VIII we shall find that results so
obtained are useful for the case of H(T)x< S(T).

The Green’s function can be expanded in the
form?

(n)
Gﬁ=1’lZ% ﬁﬁr . (5.1)
n=

where w‘{" is the nth moment of the spectral func-
tion about Hy:

wi”’:n'lf [- /7)) ImG;llw - Hy)"dw . (5.2)

Thus the moment expansion is the same as our ex-
pansion of Eq. (3.9). We have

w§°’=1 s (5.3)
wi”=nﬁ; , . (5.4)

- -y
o =F1 j (€= #1062, 7, )
x HE-F"HE" - F) df"] , (5.5)
> > -> >y
w(;s) =FT[n3s‘ (G(rn ra) g(-f’ -fl’ -f’) + G(r]n- r )

.o oy OF=F) . .
xg(F, T, /) + —n—-)g(r, Ty, )

-7 ¥ -7 T-7 > > > >
* 8- rz)b(rn; B)g(-T) +g(T, Ty, Ty r'))
xH(E = T))H(F, - T)H(T, - ') dT, Jfg]. (5.6)

If we wish to calculate the moments of the density
of states for orthogonal orbitals, we obtain these
by letting k- o, or taking the coefficient of the
5(F -7') term:

w®=1, (5.7)
w®=0, (5.8)
w'?=n [ g@)HEF)dT, (5.9)
w0 =n? fg(o, T, TV HEHT - T)HF') dTdT’ .
(5.10)

We notice that for an attractive interaction the
third moment is negative, indicating an unsym-
metrical density of states.?

The quasicrystalline approximation gives
w%"’ = (nf;)", and so only the zéroth and first mo-
ments are given correctly. To improve upon this,
in I we used the superposition approximation,

g('f’ 'l’,ll, 'f’) =g(‘f - "I’)g('fll - -f')g(.f - ?I) ,

(5.11)
to obtain the result for the second moment
2) _ (1)\2 2
ws® = (wg™) +7% (5.12)
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‘yé =n f iIE’HP di{.'/S'n's +n? f h(E - E')ﬁs: di{.'/81r3 .
(5.13)
If we now calculate the first few moments in the
SCA’, we find that the zeroth and first moments

are given exactly, and the second moment is given
by Eq. (5.12) with

-;/f:nf[l +nh(k - k") )z Hy dK'/85° . (5.14)

This differs slightly from the superposition-ap-
proximation result, and the difference has impor-
tant consequences for the hard-sphere liquid, as
we shall see.
An examination of Eq. (5.5) shows that the SCA’
result obtains when we use the approximation
g& T, ) =[1+aF-7")]

x[1+hF-F)+h(F" -F)]. (5.15)

This same factorization occurs in the T-matrix
expansion studied by Schwartz and Ehrenreich. 18
It is interesting to note that for the lattice case
(with, e.g., h—-5;,) this is exact, and is simply
a scheme for enumerating the site exclusions. It
would be interesting to extend this to higher terms
to see if our result could be derived by a method
such as that used by Blackman, Esterling, and Beck,®
If we consider briefly the case of nonorthogonal
orbitals, we can show that the zeroth moment of
the density of states is exactly 1. For the relation
between the moments and the coefficients of an ex-
pansion in (here) 1/w also applies to ¥, 8, G;;.
According to Eq. (2.8) we have for large w

Z 3;,9,¢"'1/w+0(1/wa) .
j

But from Eq. (2. 18) the spectral function corre-
sponding to this is just the density of states per

(5.16)

atom. We thus have the sum rule

0= [Nwdw=1 . (5.17)
If we define a new Green’s function

8u=2 SuSs (5.18)
we can write

0G1;=04+KimSi Sty (5.19)

and in principle we can calculate moments of §
from this. However these involve the inverse of
844, which is not known exactly, so that we must
content ourselves with approximations for the non-
orthogonal case.

The sum rule in Eq. (5.17) is in fact not obeyed
in the QCA’, when the orbitals are not orthogonal.
Thus, letting w become large in Eq. (3.15), we
have I}~ -wS;, and from Eq. (2.22) we have

dk S;  dk
@'® =1lim :’Tjszcim=j—k——r .

W=

ROTH d

For orthogonal orbitals $;=0 and the result is just
S(0)=1. Otherwise, the integral. is, in general,
different from 1 and in particular for the random
lattice S;=S;>0, so that w'® is less than 1.

For the SCA’, however, we can show that in the
special case of the random liquid the sum rule is
satisfied. To prove this we take %(») =0 in Eqgs.
(4.51)-(4.53) [seeEqs. (7.2) and (7.3) ] and
let w become large. We have H:~ - wS; and it is
consistent to assume that Z~cw. Then

Gi~nw™/(1-—c+nSp) , (5.21)
nS§  dk
- %k
c sl—c+nS;8_1r’_ . (5.22)
The integral can be rewritten to give
l-c di;
f(“m)sw .23

The S; integral is again S(0)=1, so that Eq., (5.22)
becomes

1—c=(1—c)j'

>

Sy dk

—k
T=crns; 8% ° (5.24)

Unless ¢ =1, the integral on the right-hand side
must equal 1, and from Egs. (5.20) and (5. 21) this
is just »'®. ¢=1 would give an infinite result for
»'®, and so must be excluded.

VI. THE LATTICE AND LATTICE-LIQUID CASE

The quasicrystalline approximation is exact in
the case of a lattice, and this result carries over
into the tight-binding model, as can be readily
seen by using the pair distribution function for a lattice

e®=2 T sG-8) , (6.1)
n R

where B goes over lattice points. We have then

nHy=2 H(ﬁ)e’id—i:q , (6.2)
70
nSy=2 SR)e®Rog; | (6.3)

R#0

Here €; is the Bloch energy measured from Hy,
and s3 is a normalization correction. The Green’s
function is

G n

= oUrs)-Ho—e (6.4)

Gy is now periodic in k.

It is interesting to reduce the expression for the
density of states to an integral over one Brillouin
zone (BZ). We have

1 nSg dk
Nlw) =~ ;Imj w(@+sy)-Hy— € 81

I N | TR NS di
T nI‘mSBZ w(l+s3)—Hy— € 81 °
(6.5)
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where the K are the reciprocal-lattice vectors.
But using

3 ekt
R

S|

2 68(F-R), (6.6)
R

we can write

T nSpz=n X S(F) e M g3
K K
=2 S@e®Eo14g; 6.7)
R

so that in Eq. (6.5), we have effectively a one-BZ
Green’s function

o= 1
kT w—(Hy+eg)/(1+sp)
which gives the correct normalization for the den-
sity of states. -

Let us now examine the QCA’ for the lattice
liquid, in which the atoms occupy a fraction x of
the lattice points. For this case we have

(6.8)

g@®=2 5(F-&) (6.9)
n %0
and
Gy = N (6.10)
7 w(l+xsg) - Hy—xeg
The one-BZ Green’s function is
Go=—r it SE . (6.11)

. w(l+xsp)-Hy-x€;
For orthogonal orbitals, s3=0, and G; gives a
band the same shape as the x=1 case, but reduced

in width. The lattice liquid corresponds to the
split-band limit of the substitutional alloy, and the
QCA' corresponds to what has been termed the
average- T-matrix approximation, %7 but which
actually® is a more restricted result. This de-
serves some more discussion.

The T-matrix expansion, Eq. (3.7), has been
applied to the tight-binding model of the substitu-
tional alloy, ®7 for which the ¢ correspond to lattice
sites. The ATA is obtained by averaging £; over
the scatterers, i.e., the atoms A or B, which can
occupy site 7. This has been discussed in detail
by Schwartz et al.2® Suppose, however, we make
the analogous approximation t¢ Eq. (3.9), where
again ¢ refers to the site, and where t; goes into
the locator for site 7,

Li=1/(w-¢) , (6.12)

where €;=€, or €z, the diagonal energy for A and
B atoms. If we average the locator, we have

X 1-x
(L>_w-€4+w—€a s (6.13)
and we readily obtain for the alloy
1
Gg=7ror—— (6.14)
DT

This is exactly the approximation called ATA by
Velicky et al.,” but which we shall call ATA’. It
is perhaps more rightfully called an average locator
approximation. Also, it is in the spirit of ap-
proximations used in the Hubbard®® model for cor-
relation in narrow energy bands by Hubbard?® in
his first paper and by Roth. %

If we specialize to the split-band limit €g—= *,
and identify e, with H,, this expression is the same
as the orthogonal orbitals limit of Eq. (6.11), ex-
cept for normalization. Thus the QCA’ of our
tight-binding liquid metal reduces in the lattice-
liquid case to the ATA’.

Let us now specialize the SCA’ to the lattice-
liquid case. Here it is not sufficient simply to use
the lattice pair distribution function, but the in-
tegrals in Eqs. (4.32) and (4. 33) must be replaced
by sums. The simplest way to proceed is to re-
gard the T space as the lattice, replacing integrals
by sums, » by x, and g(F) by 1-5,;. We can
either work from Eqs. (4.30)-(4.35) or (4.51)-
(4.53). Choosing the latter, we have for Hy=0
and orthogonal orbitals

Gi=x/(w-x€-32) , (6.15)
T=xf, €G;(dk/81)F (6.16)
xF=1-x-x% fBz €nGy(dk'"/81)F ,  (6.17)

where, since h—-1, F is independent of k and k’,
and I is independent of k.
Let us now redefine the self-energy:

w-Z'=-Z)/x , (6.18)
so that the Green’s function is written as
G=1/(w-2"-¢) , (6.19)

which is the form used by Velicky, Kirkpatrick,
and Ehrenreich.” It is then easily shown that

[y, €Crdi/8r°=(w -2G,-1 , (6. 20)
fnz eé Gpdk/87%=(w - 2"%Gy - (0 -3%") ,
(6.21)
where
Go= fBz Gydk/8r* . (6.22)

Substituting Egs. (6.20) and (6. 21) into (6.16) and
(6.17) and eliminating F, we find

== (1-%)/G, (6.23)

which is the CPA result for the split-band limit.”
This result is consistent with the fact that the
CPA can be derived starting from an atomic or
locator point of view, as has been shown by Shiba2?®
and Ducastelle, !
We can generalize this in an obvious way to in-
clude nonorthogonality. It can be shown that for
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the nonorthogonal CPA the sum rule for the density
of states, Eq. (5.17) is obeyed. The proof is

very similar to the SCA’ random-liquid case which
was given in Sec. V. The nonorthogonal ATA’, on
the other hand, does not obey the sum rule.

VII. RESULTS FOR RANDOM LIQUID

For the special case of a random liquid we have
g(f)=1 or h(r)=0, and our results simplify con-
siderably. Since H;=H;, we have for the QCA’

G =n/(w - Hy -nH;’) . (7.1)

For the SCA, the solution of the integral equation
(4.53) is now trivial, and the other equations re-
duce to

=n/(w - Hy-nH; -Z) , (7.2)
z = [ BfG dk/87° , (7.3)

with = now independent of k. Finally, for the
second moment, Eq. (5.13) reduces to

vi=n [ Hidk/81° , (7.4)

which is also independent of k. This is exact, and
the SCA' gives the same result.

As reported in I, we have carried out calcula-
tions using a Gaussian interaction, and we will
here present these results in greater detail. We
have also found an exactly soluble special case
which is described in Appendix A.

Proceeding with the Gaussian case, then, we
take

HO) =He™ . (7.5)
In Fig. 1 we have plotted
nH = HnO/m)¥ 219 (7.6)

and also the rms width y, »nHg is effectively the
electron energy for orthogonal orbitals in the QCA’.
If we include y, we can regard it as the imaginary
part of the electron self-energy. The parameters
we use are A =2, n=0.859, and H,=-1, with

For the SCA’ we must solve Eqs (7.2) and (7. 3)
self-consistently. We evaluated the integral by the
method outlined in Appendix B for nearly singular
integrals and then iterated the self-energy. Con-
vergence was considerably improved by using
Newton’ s method. The results are shown in Fig.
2, for the real and imaginary parts of the self-en-
ergy Z.

Turning now to the density of states for orthog-
onal orbitals, which is actually somewhat arti-
ficial for the random liquid because the atoms by
assumption do not keep apart, we use Eq. (2.23).
We notice that for the QCA' the result is simply
N(w)=6(w). That is, in the QCA’ we have zero
bandwidth. We can see from Eq. (2.23) that this

ROTH 1
10 T T T T T T T
+_ __________________

T 7
0

=

- NHy

x

=
-L0F .
o | Il | | | | |
05— 2 3 4 § 6 7 8

k

FIG. 1. Energy nHg and rms width yg for random liquid
with Gaussian interaction, with A=2, =0.859, H,=0,
and Hi=-1.

result persists for other liquidlike pair distribu-
tion functions for which nf; -0 as k—«. This is
in marked contrast with the lattice liquid for which
the ATA' gives a band narrowed by x. For the:
lattice 11qu1d nHk is periodic in k so that even
for large k we must average over a Brillouin
zone.

The next approximation we consider is the
broadened QCA’ in which the spectral function
- (1/7) ImG; is approximated by a Gaussian with
rms deviation yg:

1 o2
- ImG; = W‘g—— e wnER 2%k (7.7)
For orthogonal orbitals, the resulting density of
states is just a Gaussian centered on w=0.

For the SCA’, the result is more interesting.
The density of states for orthogonal orbitals is
given by

1 1 -3
N(w)—— —(w_z;)1+zr72‘ .

T w=2Z
This is plotted in Fig. 3. Note the asymmetry
which is as predicted by the third moment in Eq.
(5.10).

If now we consider nonorthogonal orbitals, in
general the results are more difficult to obtain.
However for the special case in which H(T) is
proportional to the overlap S(¥), the results can be
simply related to orthogonal orbitals results. We
assume H(7)=H}S(¥), or H'(¥)=ST)(H; - wz),
where wy corresponds to the “right” w. Going
back to Eq. (2.16), we can write it in the form

w
(4L 50) 500 - 55 0n) = g -

(7.8)

7.9)
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FIG. 2. Self-energy Z=Z’+4{Z’’ for random liquid of
Fig. 1, inthe SCA’.

Thus if the $°(w) is the orthogonal orbitals Green’s
function for the dimensionless interaction S(r),

(w+1-pS)Sw)=p , (7.10)
we have
wg = H
8) = o (D) (@.11)

Averaging over the ensemble, we use w = (wp = Hp)/
(H; - wg), and write H,=H, - H,, so that we have
implicitly

L OF, T, 0) ,

G, T’ wg)— (7.12)

o
wR_H°+H2T+—w— . (7.13)
Since Egs. (7.11)~(7.13) are exact, they enable
us to calculate the Green’s function in any of the
approximations from the orthogonal orbitals
Green’s function with H(¥) replaced by S(¥). Equa-
tion (7. 12) has a dependence on Hy which can be
eliminated by measuring wy from H, (but notice
that H, depends on H,).

Niw

05— -1

K=l

FIG. 3. Density of states for random liquid of Fig. 1 for
orthogonal orbitals in the SCA’,
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N (@)

FIG. 4. Density of states for random liquid of Fig. 1
for H«S with Hy=~1, in the QCA’, broadened QCA’, and
SCA’.

From Eq. (7.12) we see that as w—~ ~1 from
above, wp~ (for H;<0). We can show that the
energy band ends before this limit is reached,
since in Eq. (7.10) p and S are both positive def-
inite operators so that all the eigenvalues of
pS -1 are greater than — 1. Therefore we need
not concern ourselves with the unphysical region
w<-1,

For the Gaussian interaction used in this section -
G° is the same as the G we have calculated, ex-
cept that we must take H, =+1 in Eqs. (7.5) and
(7.6). We calculate the density of states from Eq.
(2. 22), and the results for the three approxima-
tions are given in Fig. 4 for the previous param-
eters and Hy=-1. We see that for this case the
QCA' does give a finite bandwidth but, as noted
in I, gives a singularity at the top of the band.
This is removed by the inclusion of broadening.

We can also see that the area under the QCA’

o
—

~
T
|

S(k) = 14nh(k)

5 10 15 20

FIG. 5. Structure factor for hard-sphere liquid from

Ref. 32, with packing fraction 0.45.
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curve is not 1. This is consistent with our finding
in Sec. V. For the SCA’ random-lattice case we
have proved in that section that the area is equal
to 1. The broadened QCA’ (BQCA’) seems to have

an area intermediate between the two other curves.

VIII. RESULTS FOR HARD-SPHERE LIQUID

We now consider the more realistic case of a
hard-sphere liquid. We take for the pair distribu-
tion function the exact solution of the Percus—
Yevick equation which has been shown by Ashcroft
and Leckner® to give good results for the struc-
ture factor of liquid alkalis. The structure factor

S&®) =1 +nrX) (8.1)

was calculated from Ashcroft and Leckner’s paper
using a hard-sphere packing fraction of 0.45, and
is plotted in Fig. 5.

We use the Gaussian interaction Eqs. (7.5) and
(7.6) of Sec. VII. In Fig. 6 is shown i/, which
can be written

nily=nHy+n [ 1°(, K")Hy dk'/87° (8.2)
where
WOk, k") = [ k- k") dSyge /47 (8.3)

is the I =0 component of a spherical-harmonic
expansion of k(2 —%'), and is plotted in Fig. 7.
We also show in Fig. 6 that the rms width y; in the
superposition approximation, Eq. (5.13). The pa-
rameters are A =2, H,=-1, and the packing frac-
tion of 0.45 corresponds to »=0.859, in units for
which the hard-sphere diameter is 1.

Turning now to the SCA’, we must solve the in-
tegral equation for F and iterate to obtain Z.

05 T T T T T T
//"__“4
0
N
=
=
-051- nhiy .
- | | 1 | ] | |
Wg— =2 3 4 5 6 T ¢

FIG. 6. Energy nH, and rms width v; for hard-sphere
liquid with Gaussian interaction, with A=2, »=0.859,
H0=0, and H1="1.
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FIG. 7. 1=0 component 1%k, %) of k(k—k’) which is part
of the kernel in Eq. (8.5).

From Eq. (4.52) we need only the average
F°®, k") of F, so that we can write Eqs. (4.52)
and (4.53) in the form

_ - nﬁ-:HnnF(k', k) dk»’
menhs | BRIMTED €4

nFk, k") =1 +nh’(k, k")

0 "N s nFO " &’
jh(k,k DHpemF(R",R) d&” g 5

W = nHges = Zgor 87°

The integrals were approximated by the method of
Appendix B, and the resulting equation for F was
solved by matrix inversion, Equations (8.4) and
(8.5) then give Z;=3§[Z;]. We used the iteration
scheme

zpt=Azi 23]+ - Az [237] , (8.6)

where convergence was helped when needed by ad-
justing A.

The initial attempts at implementing this scheme
were not successful. The iteration did not con-
verge well and seemed to be giving a spectral
function which changed sign. In order to investi-
gate the situation we calculated the second moment
of the spectral function, as given by the ‘ScA’

[Eq. (5.14)], which as we saw in Sec. V differs
from the superposition approximation result. In
Fig. 8 we plot yg for the two cases, and we see
that the SCA’ result for £ dips below the axis,
which indeed implies a spectral function which
changes sign.

The problem here is that most of the interaction
function e""‘z appears inside the excluded volume
of the hard spheres. While g(F, ¥'’, ¥') in the
superposition approximation vanishes in the ex-
cluded volume, in the approximation of Eq. (5.15)
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FIG. 8. Difference 'yﬁ between second moment of spec~
tral function and square of first, for several approxima-
tions,

it does not, and this appears to be the cause of
the difficulty.

To test this hypothesis we have calculated -yé
for a Gaussian interaction cut off at the hard-
sphere diameter, and Fig. 8 shows that 'yé remains
positive in this case. The problem with using the
cut-off Gaussian is that the sharp cutoff in real
space introduces oscillations in 2 space, so that
H; no longer acts as a good convergence factor in
the integrals. We have also considered a “lopped-
off” Gaussian, in which H(»)=H(1) for »<1. In
Fig. 9, #2H(») is shown for the three cases. The
lopped-off Gaussian has only a break in the deriva-
tive at the hard-sphere diameter, and hence H;
was found to fall off reasonably well with k.
Figure 8 shows that -yg for this case is positive and
rather similar to the superposition approximation
result. Therefore we have used this interaction
in the calculation. #nH; is shown for the three
cases in Fig. 10.

02 ,

GAUSSIAN

r2H(r)

LOPPED
OFF

CUT OFF_

0

| 2

FIG. 9. 7*H(») for Gaussian, cut-off Gaussian, and
lopped-off Gaussian interactions.
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FIG. 10. nHj for the three cases of Fig. 9.

In solving the system of equations we found that
for w <0, two to five iterations, mainly with
A=1, were sufficient to give successive Zy’s with
rms deviations of 0.001. For negative w the con-
vergence became worse, particularly near the
upper band edge. Even with A=0.5, we needed
20 iterations. The upper band edge could, how-
ever, be located by approaching it from above.

The integral was cut off at 2, =8 and an interval

Ak of 0.4 was used. Test calculations with
kn=11.2, AR=0.4, and k,=8.4, Ak=0.3 were
performed at w=0,6. The density of states agreed
to within 2% with the regular calculation. The
results for Z3 in the test calculations followed the
regular results reasonably closely. The regular
calculation took about 45 min (0.2 min per iteration)
on a GE 660 computer,

In Figs. 11 and 12 we have plotted the real and
imaginary parts of Z; for various values of w. The
most striking feature is the large influence of the
first peak in the structure factor on Z3. Near the
band edge ImZ; is roughly proportional to S(k)
which is reminiscent of Ziman’s'! result for the
scattering rate for nearly free electrons.

In Fig. 13 we show the infinite-k limit of Z,
which is given by Eq. (8.4) with nF—-1. In Fig. 14
we show the orthogonal orbitals density of states,
obtained from Eq. (7.8). We have changed the
scale in this figure by taking H, = —e®=-17.39, so
that H(1)=1. This is for a comparison which we
will make below with results for the face-centered-
cubic lattice. The density of states is rather
strange looking, with a very large peak in it. This
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FIG. 11. Real part of self-energy Zg vs k for values of
w as shown, for hard-sphere liquid of Fig. 6.

is connected with the dip in ImZ in Fig. 13, which
in turn appears to be due to oscillations in the
integrand of Eq. (8.4). We do not know whether
this has any significance.

As in the random-liquid case the QCA’ and BQCA
results for the orthogonal orbitals density of states
are a 6 function and a Gaussian, respectively,
the latter with rms width 0. 265H,.

We now present results for the density of states
with H< S which are obtained from Eqs. (7.11)
and (2. 22) using in the latter equation a Gaussian
(not lopped off) for S. The QCA’ and BQCA’ cases
are given in Fig. 15 and the SCA' result in Fig. 16.
For both of these plots we take H,=-e? We notice
that the results are quite similar for the bottom
of the band, except for the band tail in the, BQCA'
case. The upper part of the band looks quite dif-
ferent, however, in the three approximation. The
SCA’ gives an appreciably wider band than QCA’,

"and as previously noted, the singularities are
not there.

If we examine H(F) in the context of the fcc lat-
tice which would result from close packing the
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FIG. 12. Imaginary part of self-energy =i vs k forvalues
of w as shown, for hard-sphere liquid of Fig. 6.

hard spheres of the model liquid, we find that for
the parameters we have chosen, the second-neigh-
bor contribution to ¥, H(R) is only 6% of the near-
est-neighbor part. It is therefore of interest to
compare our results with those for the fcc lattice
liquid with a fraction x =0. 45 of the sites occupied.
Unfortunately, the CPA has not been calculated
for this lattice, but it is relatively simple to ob-
tain results for the ATA’, which are given in Fig.
17 for both the orthogonal orbitals and Hx S

cases with H(1)=-1 and S(1)=e™2=0.135. These
were calculated from Eq. (6.11) using the density
of states calculated by Jelitto.®® The width of the
band is in rough accord with the tight-binding

04— T T T

Z(k—=)

iy | | 1

-1.0 -05 0 05
w

13. Infinite~% limit of self-energy X forhard-sphere
liquid of Fig. 6.
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FIG. 14. Density of states for hard-sphere liquid of
Fig. 6 but with Hj=— e, for orthogonal orbitals in the
SCA’.

liquid-metal result for both cases (but, of course,
for orthogonal orbitals the QCA’ gives a & func-
tion), and the lower part of the band is similar,
while there are more variations in the upper part
of the band.

IX. DISCUSSION

We have formulated a theory for electronic
states in disordered systems based on LCAO rep-
resentations, and have applied it to a simple model
of a liquid metal. We have, on the one hand, bor-
rowed from conventional multiple-scattering theory
and, on the other hand, used our model to test
several approximations used in that theory.

The quasicrystalline approximation has turned
out to be disappointing in that it gives a dispersion
law with no damping. If we assume orthogonal
orbitals and use Eq. (2.23), the unphysical result
of zero bandwidth obtains, despite the bandlike
dispersion relation. The result for nonorthogonal
orbitals is somewhat more reasonable, but con-
tains singularities and is not correctly normalized.

Hence it is clear that for a good account of elec-
tronic structure some improvement over the QCA’
is essential for our model. In carrying this con-
clusion over to the conventional multiple-scatter-
ing theory, we note that, while the QCA’ reduces to

0.4

03t QCA i

BACA—" <

0.1

FIG. 15. Density of states for hard-sphere liquid of
Fig. 6 but with Hy=—¢?, for H=S in the QCA’ and broad-
ened QCA’..
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FIG. 16. Same as Fig. 15 in the SCA’.

the ATA’ in the alloy case, the QCA reduces to the
ATA. The ATA, without the prime, has been
shown? to be a much better approximation for the
alloy problem than the ATA’. Our conclusions
regarding the QCA’ may therefore not necessarily
carry over to the QCA.

Schwartz and Ehrenreich’s self-consistent ap-
proximation also has had its disappointments for
us. This is because the approximation to the
three-body distribution function, Eq. (5.15), does
not treat the excluded volume properly. We have
actually made a severe test of it, but have only ob-
tained results by modifying the interaction within
the excluded volume. Whether this problem car-
ries over to the conventional multiple-scattering
theory is not known., However, it certainly raises
difficulties for extending our theory to more real-
istic systems. It would be desirable to find an
approximation which treats the three-body distri-
bution function more accurately.

A simpler approach which is worth further ex-
ploration is the method of moments which gave
fair agreement with the SCA for the lower part of
the band, except for the Gaussian tail. While a
tail of localized states should be present, we have
tried the Gaussian approximation to the spéctral
function in the simple cubic lattice liquid, and
found that the method gives too long a tail—extend-
ing in fact beyond the known limits™® of the band.

0.4f

03

N(w)

0.2

0.1

FIG. 17. Density of states for fcc lattice liquid for
both orthogonal orbitals and HxS, for x=0.45, H1)=-1,
and S(1)=0.135.
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We should therefore examine other analytic forms
for the spectral function.

We have found that including nonorthogonality
has had an important effect upon the results. Ac-
tually, the differences between Figs. 14 and 16
for the hard-sphere SCA are greater than we
might have expected. We should have thought that
the large peak due to G;; should have been more
prominent in the S« H case. It would be worth-
while to investigate more closely the relationship
between Eqgs. (2.22) and (2. 23) for approximate
Green’s function.

After dealing with the above difficulties we hope
to apply the theory to more realistic models and
to tetrahedrally coordinated systems.
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APPENDIX A: SOLUBLE CASE FOR RANDOM-LIQUID SCA'
We consider the following interaction:

sinkqr — ky¥ coskyr
(ko’i’)s ’

which has the Fourier transform

H(’)’) =H13 (A].)

Hy=Hy,, k<kg
=0, k>k (A2)

where v, is the volume 67%/kj. Then Eq. (7.3)
can be integrated exactly to give

5= nH%'UJ
) —Ho—'nHl'l)o—E *

(A3)

This can be readily solved for Z. If we let y=nv,,
take Hy=0, and choose units in which H;=-1, we
have

=Hw+y+[lwzy?-H]'% . (A4)

For w +y>2y*/2, T is real and we choose the root
sothat T~ 0 as w—~+%. For lw+yl<2y'?% =
has a negative imaginary part, and this corre-
sponds to the allowed band. The density of states
from Eq. (2.23) is

1 [4y-(w+y)?]/?
w-2  2m(l-w) :

This is asymmetrical and of roughly the form as
Fig. 2. The band limits are

(A5)

N(w)=- 1 Im
m

w.,=-y£2'/? (a6)
and we note that
1-w,=(1-pY3%>0 , (A7)

so that except for the case y =1, there are no
singularities in the density of states. Fory=1,

I~

we have

1 (3+w\/?
Nw)= o-(32) " (a8)

Turning now to the S« H case, with S given by
Eq. (Al) where H,—+1, the density of states is
given by Egs. (2.22), (7.12), and (7, 13) with
H,=-1and H,=0:

13
0 2
Nlwg)=(1 +w)s vo(— z ImG°> @—%@ , (A9)
o s 27
wp=-w/(l+w) . (A10)
G° is obtained by letting H, =+1 in Eq. (A3) for Z,
20=3{w -y [w-92-4]% . (A11)
Then for &<k,
G =n/lw-y-2) , (A12)
from which we find
Lrw 211/2
Nlwg) = 21y [4y — (@ —y)2]H/2 (A13)
In terms of wy this becomes
11—y 1
N = —— —
(wR) 21ry (1+0)R)

4y (3_y)>aj| 1/2
X |77 - - -L—T 1
[(1 D) (“’“ -y . (A1)
The band now goes between the limits

1/2

—) 2
w;=L3(1—3i—)5*75y—— ) (A15)

The band is again asymmetrical, but skewed in the
opposite direction from Eq. (A5). For the special
case y =1, we have

1 1
Nlwg)= 21 Tron? (3+4wg)'/? . (A16)

Here the upper limit is infinite, but the expres-
sion is integrable. It can, in fact, be verified that
the density of states is normalized to 1 for HxS
as well as for orthogonal orbitals.

APPENDIX B: NUMERICAL EVALUATION OF NEARLY
SINGULAR INTEGRALS

In numerically solving the integral equation (8. 5)
as well as evaluating various integrals in the the-
ory, we found it necessary to improve upon the
Simpson’s-rule calculation of an integral of the
form

1= | S LEs o ®1)

w-nlz-Z¢ 81 '

where Z; has a negative imaginary part whose
magnitude we do not initially know. If ImZ; is suf-
ficiently large, the pole in Eq. (Al) is far from the
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real axis and we have no problem, But if ImZg
is small, the integrand is nearly singular. We
wish to find a method for evaluating Eq. (A1) in
either case.

Simpson’s rule involves approximating the in-
tegrand in an interval 2% by a quadratic. We gen~
eralize this by using a ratio of two quadratics
Specifically, we write, using y or x=y - (22+1)2
as the variable of integration,

(2m2)h A" dxPiexs
A S|, e
(B2)
where
a =_12’ (BZmz +Bap — 2B2m-1),
b=% (Bapz — Bzn),
¢=Bsp , (B3)

and similarly for d, e, and f. Here, e.g.,
By, =B(2nh), and we have omitted indices from a,
b, etc. for simplicity.

The integrals can be evaluated by elementary
means to give

I=dlg+elp+fl, , (B4)
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where
_k_1 (1-x)1+x.)
el mx) T ex)l-x)

%y=[- b+ (8® - 4ac)*'?)/2a ,

h a+b+c b

n

I""":Z_a. lna—b+c —%I"l ’
2n b c
Ing=—"r -;Inz";Inl . (B5)

We can rewrite Eq. (B4) in the form

I,= %AZn(IhS = Ipp) + Agpy (I - n3) + %AZmz(Ins*'Inz) ’

(B6)
in which case the coefficients of the A’s are the
generalization of the triple +% (1, 4, 1) of Simpson’s
rule. For the entire integral we have

N
, —BG)—dx="Z=i AW, ,

Wom1=Ing=1Ipg
Wan=3% (Lig = Ing + Iney, 3+ Iy, ), (B7)

where Iy;=Iy;=0.
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