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Functional-integral approaches to the Anderson model are checked and compared in simple
limiting cases. We examine eight approximation schemes and no single scheme is found to
perform correctly in all of the ten limiting cases. The two most sophisticated schemes we
have investigated are those of Keiter and Hamann, respectively. The former suffers from
deficiencies inherent in the 1-field functional-integral formalism (as described by Keiter), the
latter from difficulties related to the extremal approximation to the y field.

I. INTRODUCTION

During the last three years the method of func-
tional integration has been extensively applied to
the calculation of the partition function and mag-
netic susceptibility of the Anderson model. ~ The
crucial term in the Hamiltonian is the two-body
interaction

Un, n,

describing the repulsion between electrons on the
d site, where n, = d~d, is the number operator for
the d level. The functional-integral (FI) transfor-
mation can be applied, however, only to cases
in which the perturbation is of the form

n„O, (1.2)

where 0„is a quantum mechanical operator. Ac-
cordingly, (l. 1) must be appropriately trans-
formed. Since there are many ways of casting
(1.1) in the form (1.2), there are correspondingly
many FI schemes. Principal among them are the
"1-field" formalism, corresponding to

(the first term on the right-hand side is then ab-
sorbed in the unperturbed Hamiltonian), which has
been investigated by Schrieffer, Evenson, and
Wang ' and by Keiter, and the "2-field" formal-
ism, corresponding to

which has been employed by Hamarm. Within
each of these formalisms, moreover, one must
make approximations. - As a result, there has
arisen a somewhat bewildering series of FI
schemes: 1-field static, 2-field static, 2-field
static with extremal approximation to the y field,
1- and 2-field random-phase approximation (RPA)
and RPA', not to mention quartic', Hamann's hop-
ping function, and Keiter's particle-hole ladder
sum. For the intrepid, 3-field and 4-field formal-
isms are also possible. As is fairly well known,

II. FI SCHEMES

The FI method effectively transforms a two-
body interaction into a one-body interaction with
time-dependent external fields which are to be
averaged over with Gaussian weight. ' ' Specifi-
cally, one begins with the partition function

g T e-g (Ho+H~)

where in the present case

(2. 1)

not all of the schemes perform equally well in

limiting cases, and to date, none has provided an
adequate theory of the Kondo regime U/1» 1,
where I' is the d-level width.

In order to clarify the situation for those fol-
lowing the literature, we have looked at the most
important of these schemes in various simple
limiting cases in which the answer is known from
les s s ophisticated (usually per turbation-theoretic)
methods. Each of the FI schemes claims to be
exact in certain limiting cases. (We include mean-
field theory as a "limiting case" even though it
does not refer to a limiting value of U/1". ) Our
summary aims to compare the schemes and make
clear in what sense a given FI scheme is "correct"
in the limit of weak and strong coupling, U/I'
« I and U/I'» 1, respectively. We shall see that
no single FI scheme gives the correct result in
all of the limit cases. In addition, by investigat-
ing the behavior for vanishing I' we gain insight
into the validity of various schemes for finite I .
Qor results are displayed in Table I. The following
is a discussion of the indicated schemes and
limits. For the sake of brevity we have not de-
scribed in detail the eight FI schemes listed on
the vertical axis, but have merely indicated the
features which distinguish each from the others
(Sec. II). The reader is referred to the original
works for a more comprehensive description of
the schemes. In Sec. III we explain what is
meant by each of the limits listed on the horizon-
tal axis of the table and analyze the behavior of
the various FI schemes.
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Ho=5 c&»c&»c&»+Z (I JJ c&»d»+H. c. )+ Z EJ d»d»
a

(2. 2)
Energies are measured from the Fermi surface
and HJ is givenby (1.3) or (1.4). The width of
the d level is 1 =pI V~„t No, where No is the den-
sity of band states at the Fermi surface. Under
the FI transformation, (2. 1) becomes [choosing
(l. 3) for H&, as done in Refs. 2-4]

z= f D~e-"'"'z[~], (2. 3)

in which $(&) is any real continuous function on

[0, 1], f D$ indicates functional integration over
all g's, II)[I = w fo dv g(v), and

z[&]=z,
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The measure D( is represented in terms of the
Fourier coefficients of $(v), Zo is the partition
function for Ho+ —,'U(n, +n, ). Using nonequilib-
rium-Green's-function techniques, one finds that

Zl(]=Znex2 Le" {1n(1—K'[(I)} ), (2. 2)
ne

in which K' is a matrix in discrete frequency
variables:

(K'[&])„„=—(2wPU)' 'a)„„.G,'(n') . (2. 6)

In (2. 6), v=+1(-1) for up (down) spin and $„„.is
the n —n' Fourier coefficient of $(v). G,(n') is
the d-level Green's function for Ho+-,'U(n, +n, ).
given by

Go(n) = [i(u„—P(e, + —,
' U) —S,(n)] '

where

(2. 7)

S.(n)=R'5
~
V„,~'(i „-Re,)-'

and i&@„=i(2n+ 1)w. Equations (2. 3) and (2. 5) are
the basic equations of the 1-field formalism.
Using (1.4) for HJ leads to the 2-field formalism
in which

Z f Dx f Dye-((x(( -((&(( Z[gy] (2. 6)

with

Z[XY] = Ze exp ( 2 e '"e {ln(1—K'[XY])}„„)(2. 2)
n

(K»[gI ])
wHU «n-n ~ + Ji'K-n e)

(2 Io)

In the 2-field formalism the coupling constant for
the "time"-dependent problem is (wPU) as op-
posed to (2wPU) in the 1-field formalism, and

the d-level energy is not shifted by —,'U. It should
be noted that (l. 3) introduces interactions between
d electrons of equal spin. This leads to t chnical
difficulties as discussed by Keiter. The 2-field
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Z=Z f D]e 8&Ltl (2. 11)

and similarly for the 2-field formalism, Eq. (2. 8).
Given the basic equations of the 1- and 2-field

formalisms, the various FI schemes may be re-
garded as approximations to the exponent in (2. 5)
and/or (2. 9). Hence all the schemes lead to a Z
of the general form (2. 11), in which each scheme
produces a particular approximate F. For ex-
ample, expanding ln(1 —K) to second-order re-
sults in the RPA. This approximation is only
good for U/I" «1 and introduces mathematical
(nonphysical) divergences for U/I'= 1. It is not,
therefore, of much use for arbitrary U/I'. The
simplest useful scheme is the static approximation
in which the range of functional integration in
(2. 3) [or (2. 8)] is restricted to "time"-indepen-
dent constants )o (or xo, yp). In other words, one
sets $„„.= 5„„.)o in (2. 6) [and similarly in (2. 10)].
There results

Z Z f d( e 8F st{to-& (2. 12)

and a similar expression in va.riables xp yo for
the 2-field formalism. Note that we have in-
cluded the contribution from the last two terms on
the right-band side of (2. 2) in e 8 ". The forms
of F„maybe obtained from Refs. 2, 4, and 5.
These are the schemes listed in rows 1 and 5 of
Table I. The &p (ol xp yo) integral(s) cannot be
performed exactly for arbitrary values of U/I'
and our calculations rely on expansions of F„
appropriate to limiting values of U/I'. The static
approximation is of use, even though (2. 12) can-
not in general be evaluated, because F„canbe
plotted for all values of U/I'. For example, in
the 1-field scheme the result is particularly sim-
ple: As a function of gp, E„basa single minimum
at the origin for U/I'«1, and goes smoothly to a.

function with two minima, corresponding to up
and down localized moments for U/1" » 1. The
static approximation thus provides a qualitative
insight into the transition from a Pauli suscepti-
bility to a local moment regime.

Given the free-energy functionals E„(go)and
E t(xp yo) in the 1-field and 2-field formalisms,
respectively, the extremal values of go and xo,
$0 can be determined from the equations

st ($ ) 0
0

(2. 13)

scheme based on (1.4) does not introduce inter-
actions between electrons of equal spin, and there-
fore avoids the extensive "renormalization" pro-
cedure required in Keiter's calculation. As we
shall see, however, neither formalism is free
from defects. Note that, given (2. 5), (2. 3) assumes
the form

8Fst —— ~Fst
(&oyo)= ' (&oyo)= 0 .

8X0 8Xo
(2. 14)

[It is known that, in general, the extremal func-
tions g(v) and x(7'), y(v), which minimize (2. 5) and

(2. 9), respectively, are "time" independent. 8'7]

Within the 2-field static approximation a further
("lower level" ) approximation results by simply
setting yp = yo as given by (2. 14), and deleting the

yp integration. This is the scheme listed in row
6 in the table. Justification for the extremal ap-
proximation to the yp integral (but not the xo in-
tegral) is based on the fact that the y field couples
to the d-level charge density, n, +n, , which, it is
argued, ' undergoes negligible thermodynamic
fluctuations (owing to a large energy cost) in com-
parison to the spin, n, —rs, , to which is coupled
the x field. This scheme, however, is attended by
peculiarities, as Baric has recently noted and as
we shall discuss in Sec. III. For the moment let
us note that setting yp = f(PU/4v)ii 8 (valid if —U

& f8 & 0 for I'-0) leads to an incorrect partition
function as 1"-0, and, in general, to the wrong
ground-state energy as I'- 0 (taking limr p either
before or after lim„o). Note also that yp= —i(PU/
4v)t appears in Hamann's paperP corresponding
to a coupling constant —(vpU)imp in (2. 10). The
difference in sign is unimportant.

The RPA' scheme in rows 2 and 7 of the table
results upon setting

K =Ko+K (2. iS)

xexp F t ln 1 2PU4 p 2 17
v&p

in which C „()o)is a polarization bubble, as de-
scribed in Refs. 2 and 4.

At this point we note an interesting feature of the
static approximation: If $(v) is restricted to a
r-independent constant, (2. 4) may be written

Z(gp) = Tr exp( —P [Ho —(2m U/P)'i (n, —n, )hp] t
(2. i8)

In general, however, the explicit "time" depen-
dence of $(7) requires the presence of the T op-
erator in (2. 4). Thus only in the static approxi-
mation do we have Z = f dgoe "toZ()o), in which
Z()o) is a "true" partition function in the sense

in (2. 5) or (2. 9), where Kp in the diagonal part of
K' (leading to the static approximation), writing

in(1 —K') = in{1 —K,')+in[I —{i-K', ) 'K', ]
(2. ie)

and' expanding the second term to second order.
(Expanding to fourth order gives the quartic' as
discussed in Ref. 3. We have not included it since
it offers no advantage in the physically interesting
regime U/I'» i. ) There results

Z„,„.=Z, ,f" dip
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that it can be written Tre ~". This fact may well
be of no importance and has been so treated, yet
to our knowledge no one has investigated this by
examining the connection between the finite fre-
quency variables $„and the noncommutativity of

Hg and Ho For if [H~, Ho] = 0 the "time" -ordering
operator in (2. 4) is unimportant and the static ap-
proximation becomes exact.

The scheme of Amit and Bender, row 3 of the
table, may be most easily understood in contrast
to the RPA': Instead of expanding the second term
of (2. 16) to second order in all the variables $,
[Fourier coefficients of $(v)], it was treated to all
orders in the two variables (, and $,. The par-
tition function was then given as an integral over
variables ho, $z, $ &. While this scheme offers no
advantage over RPA' from the viewpoint of simple
limit cases, it sheds light on the form of the func-
tional F[$], which was the main intent of the
paper. Its chief drawback lies in the fact that all
variables $„for v~|il'/2w are believed to be im-
portant ' and therefore, as T-O, one must worry
about $, for many values of the frequency index
v not only 0, +1.

The remaining two schem. es in the table are
those of Keiter and Hamann, ' listed in rows 4
and 8. They represent more advanced (higher
level) approximations than the other schemes,
and are aimed at the problems encountered in the
Kondo regime (I'«U). Keiter used the 1-field
formalism, comparing the FI method with stan-
dard diagrammatic perturbation theory. In this
way he demonstrated the complications resulting
from artificially introduced interactions between
electrons of equal spin, endemic to the 1-field
formalism and of importance when U/I'» 1. Fol-
lowing a renormalization procedure (valid for
U/I" » 1) designed to overcome this difficulty, a
particular subset of diagrams (the particle-hole
ladder series) was summed and inserted in the
FI expression for the partition function. It was
shown that the resulting dc susceptibility con-
tained a Kondo-like logarithmic divergence in
O(I' /U ). We note that Keiter's calculation can
be more easily done within the 2-field formalism
since the renormalization procedure mentioned
previously is circumvented; there are interactions
between electrons of opposite spin only.

Hamann's scheme uses the 2-field formalism
with extremal approximation to the yo integration.
An approximation to the exponent of (2. 9) is made
based on the physical idea that certain functions
x(v.)—the "hopping paths" describing spin flips on
the d level —provide the dominant contribution to
the partition function for U/I" » 1 and low temper-
atures. Using the technique of Nozieres and De-
Dominicis (ND)~o Hamann obtained a partition func-
tion identical to that derived by Yuval and Ander-

son~~ for the Kondo Hamiltonian (also based on
ND ~0). No explicit calculation of the suscepti-
bility was given, although results from the Yuval-
Anderson theory were cited. ~ We note that as
T decreases below the Kondo temperature the
number of hops (measured by Tx/T) and thus
the amplitude of the high-frequency components
of the field x(7) (each hop being of duration 7=1/
U) become increasingly large. (The contribution
from the nonhorizontal portions of the paths is
contained in the "transient" term T. ) The ND

approximation, however, is an asymptotic approx-
imation, correctly describing only the large
"time" response, 7» 1/U, of the d level to the
random field x(v). The validity of the ND approx-
imation in describing the d-level response there-
fore comes in question~4: Does the approximate
Green's function adequately describe the re-
sponse of the d level to the hopping paths for
T «T&'? Hamann has presented arguments in
support of the ND approximation, notably that the
resulting partition function is insensitive to the
high-frequency details of the paths. Schotte and
Schotte, "based on numerical calculations of the
Yuval-Anderson s-d model, ~~ have asserted the
adequacy of the asymptotic time approximation.
A discussion of Refs. 11, 12, and 15 is beyond the

scope of this paper, since they involve the scaling
approach to the s-d model. The issue, however,
has to our knowledge not been definitively re-
solved. In any event, leaving aside the question
of the transient term and the ND approximation,
the use of the extremal approximation for the y
field leads to difficulties (Sec. III) and is, in our
view, an unsound basis for higher approximations.

It is worthwhile noting that the Keiter and Ha-
mann schemes proceed from fundamentally differ-
ent points of view: Keiter's method is formalistic,
relying on a diagrammatic calculation, while
Hamann's is intuitive, relying on physical insights
about the nature of paths in function space.
Schrieffer has also investigated this approach (the
"time-domain approach" ~) although apparently
without conclusive results. At present no con-
nection between the two has been established. It
would be of interest to see whether or not the dia-
grammatic series and the hopping paths are in
any way related.

In Sec. III we explain the ten limiting cases
listed along the top of Table I and discuss the be-
havior of the FI schemes in greater detail.

III. LIMITS

In this section we explain the limits and discuss
the performance of the schemes in each case.
Where "T- 0" is written, it refers to the thermo-
dynamic potential; that is, we are then talking
about a ground-state (GS) energy, limr„o(-k~T
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X"""= 2u', A, (0)(I+UA&(0)f, (3. 1)

in which A„(0)denotes the d-level spectral form
or "state density" evaluated at the Fermi surface.
In the "symmetric" case, e„=——,'U, A~(0) = I/7(I'.

Within the FI approach, the d-level suscepti-
bility is given by

--s (2(((&pP)r, —1) (1 field)

U
~s (2v(xp)r, —1) (2 field)

(3 2)

2 - 0J Dp ~R (-BEI:(])
(~p)PI I j ( BEH1)Dye

(3 3)

and similarly for the 2-field formalism. Each FI
approximation scheme for U/1 «1 leads to an ex-
pression for E which is minimized in $p at $p= 0
(or x, = 0 for fixed yp). Expanding E in $p (or xp)
to second order leads to a simple Gaussian in-
tegral for ($p)r, (or (xp)»). The resulting ex-
pression for x can be compared with (3.1) above.
For example the 1-field static approximation
y3.81d8

y= 2upA~(0)[l+2UA~(0) j (3.4)

The coefficient of U is incorrect by a factor of

&& 1nZ). Furthermore, for U= 0 or I' = 0 the parti-
tion function for the Anderson model can be cal-
culated exactly, hence one can speak of an "exact"
U= 0 or 1'= 0 partition function (and/or GS energy).
We discuss the simplest cases first, those in
which U/I'«1.

Table I, columns 8-10. T&0, lim~ p' llm, p p

limU 0; limp p limy p' these refer to the cases
in which U is set equal to zero —with T nonzero
(column 8); before T is set equal to zero (column
9); and after T is set equal to zero (column 10).
For U=0, the Anderson model becomes a simple
one-body problem. All the FI schemes reproduce
the exact U=- 0 partition function (and suscepti-
bility). In particular, the order of limits T- 0,
U-- 0, is unimportant. Note lastly that a "yes" in
column 8 guarantees a "yes" in column 9. A
"yes" in column 9, however, need not imply a
"yes" in column 8, for a GS energy may be right
even though the partition function is wrong. The
U= 0 cases are somewhat trivial and have been
included for completeness. (The I'=0 cases are
not so trivial. )

TabLe I, column 6. O(U/I'); columns 4-6 refer
to the (weak-field) dc susceptibility of the d level
calculated to low orders in U/I' or I'/U as in-
dicated. The exact dc susceptibility to first order
in U/I" can be obtained using standard techniques
and is given by

2, hence a "no" appears in row 1, column 6 of
the table. All the remaining schemes give the
correct result.

Table I, column V. Hartree-Fock (HF); here
we are concerned with the relation between the
FI method and the mean-field theory of the Ander-
son model. Applying a mean-field or "Hartree-
Fock" approximation to the interaction term
Un, n, leads to a self-consistent equation for the
d-level occupation:

(n, ) = ———tan
1 1,e, +U(n, )
2

(3. 6)

Column 7 then answers the following question:
Can Eqs. (2. 13) and (2. 14) for the extremal values

$~ and xp, yp be made identical to (3. 5) for all
F/I' by appropriately relating (n, ) to $p or xp,
yp

'P All 1 f ield schemes fail: In the static ap-
proximation, (2. 13) can be transformed to (3. 5)
but with a factor of 2/7( instead of I/((. The RPA'
scheme is valid only for U& pI' and gives a free-
energy functional divergent for 2U= mF. Keiter's
scheme (aimed at the local-moment regime) in-
volves an expression for Z which is valid only for
I'/U«1 and which therefore corrects the de-
ficiencies of the 1-field scheme only in that re-
gion. (Using Keiter's approach within the 2-field
formalism produces a "yes" in this column. )

The 2-field schemes are consistent with mean-
field theory, with the exception of the 2-field
RPA' which, similar to the 1-field RPA', leads to
a logarithmically divergent free-energy functional
for U= pX'. Specifically, the mean-field quantities
(I(L) =(n, )+(n, ) and (a,) =(n, ) —(n, ) are related to the
extremal values gp and yp according to

xp —— cr, , yp ——i N . 3. 6

Equations (3. 6) will be important for the discussion
of the extremal approximation of row 6 of the table.

Columns 6-10 (in particular columns 6 and 7)
check the behavior of the FI schemes for small
U/I' (recall that mean-field theory is valid for
small U/I'). We now turn to their behavior for
large U/I'.

Table I, column 1. T&0 limr p' one sets I"=0
in the expression for Z obtained in each FI scheme
and compares the result with the exact I'=0 par-
tition function. All schemes reproduce the exact
result except the 2-field static scheme with ex-
tremal approximation to the yp integral, row 6 in
the table (as noted by Schrieffer and Wang'~ and
by Bari') and, therefore, Hamann's method (row
8 of the table), which incorporates it. Since the
extremal approximation to the yp integral neglects
charge fluctuations on the d level, and since charge
fluctuations are strictly nonvanishing for 7 & 0, it
is not surprising that the scheme of row 6 pro-
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duces the wrong I" =0 partition function. The dif-
ficulty, however, goes deeper than this as can be
seen from the following. For I"=0, the partition
function in the 2-field static approximation is eas-
ily shown to be

Z.' =Z„,j"dx, I"dy,

(
x exe

(

—w(xo + e G ) +r )n(( + e '*"*s's')
)
(3.7)

where

pE,(x0y0)= pcs —&2(ox0+iy0), &2= («pU)~/2

That is,
ro P" l' " -il'(@2+ y2 )

Zsf Zband J I&0 g dyoe 0 0
~ 0O

&&(I + e 82es 2(e'& &t0 Ses 0 4I0 8
(& (&

(2 &&)0)

(3. 9)

Zr=o Z (1+2e-ses +e 8&2eseU&)

Note that Z"„'0/Z„„sis of the form g„e8 ", where
E„=0, &„,&„,R„+U, corresponding to states
~4) = ~0,0, ), ~1,0, ), ~0, 1,), I l, l, ). The extremal
equations (2. 14) become [E„(x0y0)= exponent of

(3. 'I)l

(n.) =f(4,+ U(n .)) . (3. 12)

f is the Fermi function. We thus recover the
mean-field-theory result for I' = 0. For T-0 the1

Fermi function approaches a step function and the
solutions of (3. 11) and (3. 12) are

crx0 —iy0 = (PU/«) / f [e., —(vU/P) /'(crx0+iy0)]

(3. 11)
or, using (3.6),

(n, ) =1,

(u, ) =0,

(n, ) =(n, ),
(n, ) =(n, ) =0,

(n, ) =(n, ) =1,

x, = (PU/4v)"',

x, = - (PU/4v)"',

Xo= 0,
xo=o

X'0 ——0,

y, = i(pU/4U)"',

y, = i(pU/4U)"',

y0 = 2(pU/4U)"'2 (n.),
yo= 0,

y, = i(pU/U)" ',

—U& e„&0

6~& 0

&~+ U& 0 (3. 13)

The various values of yo correspond to the d-level
occupations (f&&), which for 1" =0 and T-o can only
be 0, 1, 2 (recall I' is the energy broadening of the
d level). In particular, y0 =i(PU//4U) / means (N)
= 1. Setting y0 =i(PU/4«)'/ in (3. 9) and deleting
the yo integration yields

Z r=o =Z e~ ~ dX e~"0
8t, yo ext band 0

(
~ -8&2eS+U& A&ed+U/2& e)e0 S&e eU/2&e(e)(0)' 1+8 +e

Z ( SU/4 2 -SeS -8&2eS+3U/4&)
band

(3.14)
(3. 15)

As in (3. 10), the partition function (3. 15) is that for
a 4-state system (the d orbital) but with energies
——,

'
U, 4:s, 48, 2es+ —,

' U; the states with (i&/) =0, 2

are thus assigned the wrong energies, ——,
'

U, 2&„
+4 U, respectively. Accordingly, the ground-state
energy is

——U1
4 --,' U«„&0

2 „+-,'U, -U

order to obtain the correct partition function and
ground-state energy for 1"=0 using an extremal ap-
proximation to the yo integration, one must use dif-
ferent values of y0 in the four terms of (3. 9), ap-
propriate to the occupation of the four states to

which the terms respectively correspond. Further-
more, since a nonzero I merely broadens the
atomic levels, this difficulty per sists for finite but
small I'/U. However, the use of separate y0's for
each term in Z is then impossible since Z is no
longer a sum of four terms. Before discussing this
case (column 3 of the table), we describe the
ground-state-energy limit of column 2.

Table I, column 2. limr 0 limr 0(-k»Tlnz); a
"yes" in column 1 clearly implies a "yes" in col-
umn 2, hence only schemes 6 and 8 are of interest,
because a "no" in column 1 could still be followed
by a "yes" in column 2. As shown above, however,
the schemes employing the extremal approxima-
tion [y0 = i(PU/4«) /2] to the y0 integration yield the
correct 1"= 0 ground-state energy E02„8+48 (for
—U& e, &0) only if --,'U&4, & ——,'U.

Table I, column 3. lim„0 limr 0(-k»Tlnz);
the limit of column 2 cannot be taken if we require
k/&T& 1. For example, the explicit form of E„($0)
shown in Refs. 2 and 4 was derived for the case
Pl" » 1. %e therefore consider the reverse order
of limits: first T -0, then F- 0.

Our procedure in this case was to begin with the
forms of E„($0)and E„(x0y0)appropriate to pl » 1,
expand to O(I'/U) about the minima for I"/U«1,
take limr 0 (-kSTlnz), and then set I'=0. This is
essentially a steepest descent evaluation of Z and

after the limits T-O, I'-0 are taken, the resulting
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= v(xo+yo)+ pcs —otiyo

+ —Z ln 1+ —' —PE, tan
1 PI' Z, '
g 2 I' ' I"

(3. IV)
where E, is given by (3. 8). For —U& e~& 0 and
I' «U the extremal Eqs. (2. 14) [identical with (3.5),
using (3.6)], give a minimum at yo = i(P U/4w) ~,
xo= +(Pv/4o)'~ . From (3. Il) we find, for I'-0,

PI'„~4, s
4

= ~~+0—
(3. iS)

as desired. However, an additional calculation
shows

PE„O,z—
—pe/4v+ O(r/V), ——,

' V«, & 0

p(2c +-,'v)+ o(r/v), —v«„&--,'v .
(3. i9)

Thus for --,'U& e„&0or —U& e„&--,'U, the absolute
minimum of PF,t [xo, i(PU/4w) ~

] occurs at xo = 0
with value ——,

'
P U or P(2s, + —,

'
U), respectively, not

Pe„. The extremal approximation to the yo integral
(row 6 and row 8, which incorporates it), there-
fore, receives a "yes if --,'U& e„&—4U" in column
3, as in column 2; the order of the I'- 0, T- 0
limits does not matter. The 1-field schemes pre-
sent no problem: The expansion of PF„(go)about
the extremal points for I'/U«1 leads to

pF„(g,) = p~, + o(r/v) .
Hence there appears a "yes" in rows 1-4. Row 5,
the 2-field static scheme, and row 7, which in-
corporates it, were left blank since our method of
calculating the limit of column 3 is equivalent to an
extremal approximation„a true calculation of
lim„olimr o (—ko TlnZ) requires an exact evalua-
tion of f dxo dyoe o~&t'"o'o' using (3. 1 l) for PF„,
followed by the indicated limits. This we have
been unable to do, and have therefore made no
entry in column 3, rows 5 and 7.

Table I, column 4. O(I'/U) (dc susceptibility):
to O(I'/U) the dc susceptibility of the Anderson

odeL18 j

X=~ T
1

U
(3.20)

The 1-field formalism of rows 1 and 2 yield (u2e/

ko T) (1 —41 /vv), incorrect by the characteristic
factor of 2. Keiter has shown that this failure is

ground-state energy is simply the minimal value of
For example, if PI"» 1 the form of the 2-

field static-free-energy function(al) is

PF.t(xo yo)

due to the inability of the static and RPA approxi-
mations to sum diagrams with interactions between
electrons of equal spin which are artificially intro-
duced by (1.3). Keiter's renormalization proce-
dure involved summing these diagrams such that
the correct susceptibility is recovered.

Since the 2-field formalism does not introduce
interaction between electrons of equal spin, the
correct dc susceptibility is recovered to O(I'/U)
by all the FI schemes based upon it.

Table I, column 5. O(1 /U ) (dc susceptibility):
the Schrieffer-Wolff transformation connects the
Kondo Hamiltonian and Anderson Hamiltonian for
I"/U«1 according to J'= 8r/vv. Logarithmic di-
vergences should, therefore, appear in the coef-
ficient of the I' /U term in the dc susceptibility
of the Anderson model. (Ultimately one hopes to
see a treatment of the Anderson model for r/U«1
in which these divergences are removed. ) Keiter's
scheme is the only one to reproduce this behavior.

No calculation of the susceptibility was presented
in Hamann's paper. His partition function is iden-
tical to that of Ref. 11 which in turn is equivalent
to the partition function of certain classical one-
dimensional systems (charged rods and Ising model
with logarithmic and inverse-square interactions,
respectively) and has been studied by Anderson,
Yuval, and Hamann. Computer calculations of
the static susceptibility have been made by Schotte
and Schotte, "who found Curie-Weiss behavior at
high temperatures and a finite susceptibility at
T= 0. A closed analytic expression for the suscep-
tibility was not given.

IV. CONCLUSION

The FI method as applied to the Anderson model
remains enigmatic. It offers itself in general as
the method most capable of treating the Anderson
model for all values of U/1 within a single approx-
imation. In particular, one hopes for a good de-
scription of both the Kondo regime (U/r» 1) and
the intermediate coupling case (U/1" =1). Present-
ly, neither case has been adequately treated. We
think it not unfair to require that prior to a suc-
cessful attack on these problems, the simpler
cases listed in Table I be correctly described. The
two most sophisticated schemes are those of Keiter
and Hamann. As we have seen, none of the
schemes gets a "yes" across all columns. Keiter's
scheme comes closest but is in general not con-
sistent with mean-field theory. This difficulty can
be removed by applying his technique within the 2-
field formalism. The calculation is straightfor-
ward and leads to the same result for the dc sus-
ceptibility while avoiding the "renormalization"
procedure required for the 1-field formalism. It
is doubtful, however, that his diagrammatic-FI
approach can be extended to the intermediate cou-
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pling case, for it is generally agreed that for U=I'
no particular subset of diagrams is dominant.
Furthermore, having obtained a Kondo-like log-
arithmic divergence, it is not clear how to re-
normalize such that a well-behaved local moment
susceptibility, consistent with experiment, results.

Hamann's scheme, less formalistic and perhaps
on firmer ground than Keiter's in terms of physical
insight, suffers from the two difficulties discussed
in Sec. III; the extremal approximation to the y
field does not appear to be as innocuous as previ-
ously thought, and the ND approximation may be
only marginally adequate for the calculation of the
d-state Green's function for the "time"-dependent
problem.

The 2-field formalism without extremal approx-

imation thus appears to us to be the best frame-
work for more powerful schemes. Furthermore,
the limitations of the ND approximation can per-
haps be overcome or shown to be unimportant. Al-
though one can hope for a new breakthrough, for
the present we must conclude that the FI method
as applied to the Anderson model has proven more
exotic than effective.

ACKNOWLEDGMENTS

The authors gratefully acknowledge useful dis-
cussions with Professor J. R. Schrieffer and Dr.
John Hertz. One of us (R.F.H. ) owes thanks to
Professor J. W. Wilkins for assisting with re-
search done at Cornell University.

Supported by the U. S. Army Research Office,
Durham, N. C.

tSupported by the National Science Foundation through
Grants No. GP-27355 (for research done at Cornell) and
GP-2 8630.

P. W. Anderson, Phys. Rev. 124, 41 (1961),
2J. R. Schrieffer, lecture notes, Canadian Association

of Physics, Summer School, Banff, 1969 (unpublished);
and S. Q. Wang, W. E. Evenson, and J. R. Schrieffer,
Phys. Rev. Letters 23, 92 (1969).

3J. R. Schrieffer, W. E. Evenson, and S. Q. Wang,
Proceedings of the International Conference on Magne-
tism, Grenoble, 1970 (unpublished).

H. Keiter, Phys. Rev. B 2, 3777 (1970).
(a) D. R. Hamann, Phys. Rev. Letters 23, 95 (1969);

(b) Phys. Rev. B 2, 1373 (1970).
6Reference 4, Sec. VI.
~J. Hubbard, Phys. Bev. Letters 3, 77 (1959).

R. Bari, Phys. Rev. B 5, 2736 (1972).
OD. J. Amit, C. M. Bender, Phys. Rev. B 4, 3115

(1971).
P. Nozieres and C. DeDominicis, Phys. Rev. 178,

1097 (1969).
~~G. Yuval and P. W. Anderson, Phys. Rev. B 1, 1522

(1970).
~2P. W. Anderson, G. Yuval, and D. R. Hamann, Phys.

R,ev, B 1, 4464 (1970).
~3See Ref. 5(b), Sec. VI B.
i4See Ref 5(b) Sec IV B
~~K. D. Schotte and U. Schotte, Phys. Rev. B 4, 2228

(1971).
~6J. R. Schrieffer (private communication).
~'See Ref. 5(b), Ref. 22.
~BD. J. Sealapino, Phys. Rev. Letters 16, 937 (1966).
~B. Kjollerstrom, Phys. Status Solidi 43, 203 (1971).

PHYSICAL REVIEW 8 VOLUME 7, NUMBER 1 1 JANUARY 1973

Electron Distribution around a Magnetic Impurity in a Nonmagnetic Host*

P. Jena and D. J. %. Geldart
&epa~ent of Physics, Dalhousie University, Halifax, Nova Scotia, Canada

(Received 19 June 1972)

The spatial dependence of the electron density polarization per spin pn (z), produced by a
magnetic ion in a nonmagnetic host, has been calculated in terms of the Friedel —Anderson model.
The numerical results are found to be rather insensitive to variations of the model parameters
describing the virtual bound state provided self-consistency is maintained. Our numerical re-
sults differ considerably, even in sign, from the well-known asymptotic form at first-nearest-
neighbor distances and the asymptotic form is not adequate until x 10k+. An interpolation
formula, incorporating lowest-order preasymptotic corrections, has also been given.

I. INTRODUCTION

It is well known that Mossbauer and nuclear-
magnetic-resonance experiments probe local elec-
tronic spin and charge polarization at selected nu-
clear sites in alloys. The results of such experi-

ments yield very sensitive tests of current theories
of the electronic structure of alloys. For a. brief
review, we refer to the articles of Daniel and
Friedel and Blandin. In almost all theoretical
work to date, two assumptions have been made.
First, the magnetic impurity ions are considered


