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The linear-chain Hubbard model with nearest-neighbor hopping parameter t is reexpressed in terms of
pseudospin operators according to the Jordan-Wigner transformation. The resulting spin model is then
treated classically. It is found that for a half-filled band there is a phase transition in the ground state
as a function of t, The electrical conductivity is calculated and shown to vanish discontinuously at the
critical value of 4t = U (Coulomb repulsion). A Josephson-type relation is obtained between the difference
in azimuthal angles of adjacent spins and the potential diA'erence between sites. It is also shown that a
local magnetic moment exists in the insulating state. For the non-half-filled band, it is shown that the
ground state is ferromagnetic for 4t ( U.

as
The one-dimensional Hubbard model is written

K= —t Z (C), C),~, +H. c. )+ UZn„n„.
f pic'

The hopping t is among nearest neighbors. Cq,
creates an electron on site B& with spin 0; n;,
= C&, C„. U is the intrasite Coulomb repulsion.

The Jordan-Wigner transformation is applied
to K. We define (with N= number of sites)

( S
S) ——C(, exp isi Zng, + Znq,

T,'=C;, exp iv Znq,

K= —2f Z (S)S),~+S)Sf,~+ T)T),~+ TfT";„)

+ UZSfT)+ 2 UZ (S';+Tf) + ~NU. (4)

Here S', =S",+iS~~, T', = T~+iT&, and it also follows
that S';= n;, —~ and T';= n;, —&. The vector opera-
tors S = (S",S",S') and T = (T*,T', T') are each spin- —,

'

operators and satisfy the usual angular momentum
commutator algebra. In terms of the spin opera-
tors II is written as

The Hubbard model is now in the form of the sum
of two spin- —,

' XF models; each is in a transverse
uniform magnetic field and the z components of the
two spin systems are coupled by an intrasite ex-
change. The equivalence of (a class of models of)
an interacting, one-dimensional electron gas to a
spin model was discussed by Lich and Mattis. '

Although the equivalence allows one to regard
the Hubbard model from a different point of view,
the transformation to the spin variables does not
lead to an apparent simplification of the problem
(but its usefulness is illustrated in Ref. 4). In this
paper, we use the spin equivalence to generalize
the Hubbard model to arbitrary spin. In particular,
we study the classical-spin limit of Eq. (4). The
connection with the original spin- —,problem is now

remote and in fact we expect the two systems to
have qualitative differences. The classical Hub-
bard model can be thought of as a system of inter-
acting multidegenerate bands in the limit of an in-
finite number of bands. The band model thus ob-
tained [by working back to a set of fermion oper-
ators from the classical-spin generalization of Eq.
(4)] is not completely realistic since it does not
sort out Hund's-rule effects, allows intersite, in-
terband hopping of electrons and includes interac-



CLASSICAL LINEAR-CHAIN HUBBARD MODEI:. . . 4319

tion terms beyond the usual short-ranged variety.
We introduce two sets of spherical coordinates

such that

S';= 2cos8;,

S» = —,
'

sin8» cosP»,

g 1
Tg = p coscEg y

Tg = 2 sin@) cosP) y (5)

S» = —,sin8» sing», T» = 2 sinn» sinp» .
H is now expressed as

I

H= —~tg[sin8» sin8», »cos(Q» —Q»+»)

+ sinn, sina». , cos(P» —p». ,)]+ ,' UZ —cos8,cosa»

+ —,
' UZ (cos8»+ cosa»)+», ÃU .

The total number of particles is given by

N, =Z (n», +n», )=N+ &Z(cos8»+cosa»);
t

A, can vary continuously for O~N, ~2N.
We first consider the case N, = N (the half-filled

band). This implies that g»(cos8»+ cosa, )= 0 or,
by translational invariance, cos8+ cosa; = 0. The
last condition implies that the polar angles satisfy
the condition 8;+a;=»». Thus Eq. (6) can be sim-
plified to

H = —2 tZ sin8» sin8»„[cos(p» —p»+»)

+ cos(p» —P»„)]——,UZcos28, + ', NU, (—7)

Here we have used the identity cos 8& = 1 —sin 8;.
We introduce new variables f»„according to the
Fourier transform

here a is the lattice spacing. In terms of the new
variables, Eq. (8) is written as

H= Z(-

gati

cosk»»+ ~U) iIf»,
I (10)

We wish to find the ground state of Eq. (7). We
observe that since 0 —8q ~

m, sin8; sin8~, &
~0. With

t &0, we must maximize the quantity in brackets
in Eq. (7) (since the azimuthal angles do not occur
elsewhere in H). We get P» —

&f&»,» =0 (or 27») and
P»

—P, »»0 (or 2w). If we had taken t &0, then we
would get Q»

—Q„,= +»» and p»
—p„,= +»». In either

case Eq. (7) becomes

H= —~t
~

Zsin8» sin8», »+ & UEsin 8» . (8)

CaseII: 4ltl & U

In this case the minimuxn- of co~ occurs for coo
= —

I t l + 4U. The ground-state energy is minimized
by taking If„!2=N5»,,0, where 5,, 0 is the Kronecker
5. This implies that sin8„= 1 for all n or 8„= &m

for all n. Thus 4 I t j = U is a phase-transition point
of the ground, state. The phase change is charac-
terized by the abrupt change in the polar angle of
the spin vector. From Eq. (5) we see that for
4 I f I

& U, S» = —,
' cosp„S» = —,

' sing„S» = 0, T»
= ~cosP;, 7'» = ~sinp», 7'»=0. For 41' I & U, we see
that S» = S» = 0, S» = 2 (or ——,'), T» = T» = 0, T;= ——,

'
(or —', ). Since the transverse degrees of freedom
are associated with the hopping motion of the orig-
inal Hamiltonian, Eq. (1), the abrupt disappearance
of S&, 8~&, T&, T~& at 4 I t I = U suggests that the transi-
tion is a metal-to-insulator transition. This will
be shown to be the case in the calculation of the
electrical conductivity.

We can define a magnetic moment per site as m&

n», —n», =-—,'(cos8» —cosa»). Since 8, + a» = »», we
have m; = cos8;. In the metallic state, 8~ = &m, so
thatm»=0. Inthe insulator 8, =0 (or»»), sothat
m» = 1 (or —1). There are no moments in the met-
al, but at the transition point a moment appears.
We note that the moment is fully saturated but that
since there is a complete degeneracy between 8;
=0 and 8q= m, the moments are not ordered. In the
spin- 2 Hubbard model, antiferromagnetism occurs
for small I f I/U because of (quantum-mechanical)
mixing in of virtual polar states in the ground
state. In the classical case, the ground-state con-
figuration is either that of the simple metal (U=0)
for 4 I f I & U or that of the simple insulator (f = 0) for
4lt I & U. Of course, the ground-state energy var-
ies continuously between these limits; H= (- I t I

+ —,
' U)e(lt I

—~ U); here e(x) is the familiar unit step
function.

We confirm the suggestion of the ground-state
calculation that the phase transition is a metal-in-
sulator transition by calculating the dc conductivity
in linear response. The current operator (with e
denoting electric charge) is given by

Z=ieat 5 (C», C»,»,—C„»,C»,),
f,e

which, in terms of classical spin variables is writ-
ten as

& =
& eat Z[sin8» sin8». » sin(P» —p»„,)

We study Eq. (10) for two cases.
CaseI: 4ltl& U

This implies that vq—= —Itl coska+ + U&0 for all
k. Equation (10) takes its minimum value for
If», I = 0 for all k. This implies that sin8„= 0 for
all n, or 8„=0or n'for each n.

+ sina» sina», » sin(p; —p».,)].
From the conditions found on 'the azimuthal angles,
we immediately deduce that the ground state does
not carry current. In order to calculate the cur-
rent induced by an electric field, E, we introduce
the Hamiltonian
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In obtaining J in linear response, we note that
since the azimuthal angles lead to zero current in
equilibrium, we need only consider the change in

'the azimuthal angles to first order in E. The polar
angles are evaluated at their equilibrium values.
The change in the azimuthal angles can be found
by studying the time (~) evolution of S»(r). It is
readily found from the equation of motion for S;(r)
that

S.( ) S.( )»8»»»»»~.

here S»(v) denotes the value of S»(7) in the absence
of E. When we express S»(7') in terms of classical
spin variables we find that P»(r) = P»(7)+ eER»7'.
Since $»(r) = $»„(7) (mod 2»»), we get (we have f &0;
if t &0, the equilibrium phase difference is +m, but
the sign of f will not affect the current)

y», ( )7y»(7)=eE—a~.
From Eq. (11)we note the Josephson-type rela-
tion d(bP)/dv =eEa. &P=P»., —-Q» is the relative
azimuthal angle between sites i+ 1 and i and eEa
isthe potential across these sites. The same re-
lation holds for &P= Pq, &

—P~. To lowest order in
E we have

J= e'»»'
I
f

I ~EX sin8» sin8». . ..

we use the equilibrium ground-state results found
for the polar angles to rewrite J as

~=Ne'&'l&I~Ee(lfl —lU) . (12)

We see that the current falls abruptly to zero at
4l tl = U; this proves that the transition at
4 I t I = U is indeed a metal-insulator transition.
For 4ltl &U, Eq. (12) shows free acceleration be-

lfex»=« ~ R»&~a,
k, ty

which describes the presence of a uniform time-
independent electric field. In terms of the class-
ical-spin variables,

H, ~=eEQR»(S»+T'») .

havior, consistent with Newton's Law for a free
particle, i.e. , the current for N free point par-
ticles with velocity v is J=N'ev and the equation of
motion is m8=eE. This implies that Z =Ne ~E/m.
This is identical to Eq. (12) for 4 If I & U if one
identifies the effective mass of the discrete sys-
tem as»»~ItI -1/m.

The analysis of the ground state for arbitrary
density is completely straightforward and similar
to the above. We briefly outline this calculation
and give the results. The particle number density
n, =N,/N -imposes the condition cos8»+ cosa»
=2(n, —1) on the polar angles. W'e use this condi-
tion, the identity

2 cos8» cosa» = (cos8»+ cosa») —2+ sin»'8» + sinma»

and the condition on the azimuthal angles (as be-
fore) to rewrite Eq. (6) as

a=-,'Q~, (ly, l'+ Ig, l')+-,'NU(sf-n, ) . (13)

Here we have introduced g&, the Fourier trans-
form of sine&. The energy is minimized by choos-
ing I f», l and Ig», l to have weight only at 0=0.
This implies that sin8& and sine& are independent
of i. With the help of the particle number condi-
tion, Eq. (13) can be expressed as

ff//N= (- lfl + 4U)[sirP8+2(n, —1)cos8]

+2lfl(n, —IP+-.'U(s. —I) .
After'maximizing or minimizing the factor contain-
ing 8 for 4l tI & U or 4I tl & U, respectively, we find
that

(1) for 41tI &U, the ground state is paramagnetic
and has a finite conductivity;

(2) for 4lt I & U, the ground state is ferromag-
netico with maximum magnetization for all In, —1 I

&0. Although there is a finite conductivity, it is
smaller (at a given n, ) than in the case 4lfl &U.
There is a discontinuous jump in the conductivity
at U=4ttl for all n, .
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