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"By parallel dipole and quadrupole moments we mean that
the quadrupoles have a unique symmetry axis which is parallel
to the dipole moments.
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High-temperature series expansions are derived up to terms in T ' for the dipole and quadrupole
susceptibilities for arbitrary lattices. The expansions are evaluated for a spin-1 isotropic Hamiltonian
with bilinear and biquadratic pair interactions. We compare the dipole and quadrupole phase transition

temperatures determined from these series to those obtained by the molecular-field and

constant-coupling approximations. There are large uncertainties in the estimates of the quadrupole
transition temperatures because of the few terms in the series.

The Hami'. tonian for a magnetic system with iso-
troyic bilinear and biquadratic yair interactions
between nearest-neighbor ions on an arbitrary lat-
tice is given by

3e=-J Z [S, Sq+n(S, ~ Sr) ].
&i, j&

This system has been investigated mostly for
spin-1, S= 1, and when n is either very small or
n = 1. Recently, this Hamiltonian has been studied
for S = 1 and for all values of n by using the molec-
ular-field'3 and constant-coupling3 approximations.
It is generally felt that effective-field theories give
only qualitative results and do not accurately pre-
dict the critical temperatures. We report in this
paper on a study of the critical temyeratures of
the spin-1 Hamiltonian found by deriving and ana-
lyzing the high-temperature series expansions for
the dipole and quadrupole susceptibilities.

For n «1 and for arbitrary spin the high-tem-
perature series expansions for the dipole suscepti-

xt= &t«(g*)~ (2)

bility have been calculated up to the term T by
Joseph by using a diagrammatic method. For e =1
and S = 1 the dipole susceptibility series expansions
for terms through T 7 was obtained by Allan and
Betts' by using a cluster-expansion method to-
gether with group-theoretical techniques. Here
we calculate the dipole and the quadrupole suscep-
tibility series to terms through T" for S = 1 and for
arbitrary c)t by using the cluster-expansion method.
The estimates of the critical temperatures we ob-
tain particularly those from the quadrupole series
have large uncertainties because of the few terms
in the series.

The zero-field dipole susceptibility X, is yroyor-
tiom, l to the mean square fluctuation of the dipole
moment S,=Q,S„, i.e. ,
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and

(8,)= Tr S,e" /Tr e ~.
P is the inverse temperature, (keT) ', and C, is a
constant. For a spin-1 system besides the dipole
moments S„,S„and S„ there are five addition-
al ordering parameters, the quadrupole moments
Oo ', O~ ', O„„O„„and0„.' Associated with
each ordering parameter, a susceptibility can be
defined as the thermal fluctuation of that moment.
Because of the invariance of the Hamiltonian under
rotations it is sufficient to investigate the quadru-
pole susceptibility for one of the quadrupole mo-
ments, e. g. ,

Oo '=Z [3S),-S(S+1)].

The quadrupole susceptibility X~ is written as

q, = c,p~(op'),

where the meaning of the symbols is the same as
in Eq. (2). As we approach the stability limit of
the high-temperature phase either X, or Xz diverge.
If X& diverges at a temperature T, equal to or
greater than the temperature T@ at which X2 di-
verges, the system has a second-order phase tran-
sition from the paramagnetic to a ferromagnetic
state. Similarly, if T@ & T, the system undergoes
a second-order phase transition to a ferroquadru-
polar' state at T@. All this assumes that a first-
order phase transition does not occur at a tem-
perature higher than T, or Tz. W'e will discuss
this point in greater detail further on.

Since the susceptibilities X~ and X~ are extensive
thermodynamic quantities, we can derive the high-
temperature series expansions by means of the
cluster-expansion method. 6 This method states
that the susceptibility (or other extensive quantity)
per spin on the lattice G is

(4)

where (C„G) is the high-temperature lattice con-
stant of the cluster C, on the lattice G. The f; are
given recursively by

f((T)= g(C(, T) —Z (C~, C()f~(T).

(C„C~) is the lattice constant of the cluster C, and

C& and g(C„T) is the susceptibility of the cluster
C, . The lattice constants (C„' C&) and (C„' G) are
known. 8 The lowest power in T to occur in f, is
equal to or greater than the number of pair inter-
actions in the cluster C, .

It is convenient to reexpress the high-tempera-
ture series expansion Eq. (4) in the form

C ~1 JP
nt 3 0"

where the coefficients g„contain the lattice con-
stants (C;; C,-), (C„G) and the susceptibilities f, (T).
The constant C for the dipole susceptibility is
C=2N/3k; we assume that gee= 1. Similarly for
the quadrupole susceptibility we define it as

C = 2N/0.

In order to obtain the susceptibility series to
terms in T 4, we have to evaluate the traces of K",
R"S„and K"(Oo ') for n ~ 4 and for all clusters
containing up to four pairs of interactions. To ex-
plain our method of evaluating the traces for finite
clusters, let us consider a cluster of four ions.
The dimension of the matrices over which traces
are evaluated is (2S+1)4x(2S+1)4, i. e. , 81x81.
Although calculations (mainly multiplication) with
matrices of dimension 81X81 can be handled by a
fast computer, we considerably simplify matters
by writing the matrices in a representation where
the basis states are simultaneous eigenfunctions of
3, and & = (g; S;) . The method used to express the

matrices in the S~, 8, representation is straightfor-
ward. We first write the matrices in the repre-
sentation in which the basis states are eigenstates

Sggp Spg p $3 and S4, ~ The transf ormation ma-
trix between the two representations is constructed
by using the rules of the addition of angular momen-
ta. Since [K, ,]=[X, s ]=0, the Hamiltonian does
not have matrix elements between states of dif-
ferent 3~ and, . Thus the Hamiltonian is reduced
into a direct sum of submatrices associated with
different sets of eigenvalues of S2 and g, . The
matrix of (00'~') contains off-diagonal elements be-
tween states with different eigenvalues of $~ and the
same eigenvalue of g, . However, these off-diag-
onal elements do not contribute to Tr R"(OP')
since 3C" does not have off-diagonal elements.
Therefore, the size of the largest matrix involved
in the trace calculations is determined by the num-
ber of states having the same eigenvalues of 3 and

By using this method we are able to reduce the
trace calculation for a four-spin cluster from 81
x81 matrices to submatrices of which the largest
is 6x6. These traces are then evaluated by ma-
chine calculations.

The coefficients a„„for the dipole susceptibility
y, are given as

a,o=2(o+1), a„=—(o+1),

agQ= (a+1) (8o —3)p ag, = —8(o+1) (o 1), -
a„= (o+1) (2o —7),

a,o= 12(o+1) (4o2 —3o —3) —360p~,

as, = —3(o+ 1) (24o —38o —3)+270ps,

a32= 12 (o+ 1) (3o —llo +4) —360p~,

a33= —3(o+1) (2om —14o+11),
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FIG. 3. Comparison of the transi-
tion temperatures T, and T@ for the
fcc lattice as a function of the ratio
of biquadratic to bilinear interac-
tion constants 0.. These tempera-
tures are obtained from high-tempera-
ture series expansions (HTS), the
molecular-field approximation (MFA),
and the constant-coupling approxima-
tion (CCA). The error bars give
the uncertainties in the estimates
from the series expansions. The
dashed line gives the critical tem-
peratures as determined from the
MFA. The tricritical point in the
molecular-field approximation is
at ~=-,.—2

for n & 1. For the face-centered-cubic lattice and
for —0. 5 ~ Q. ~ 2. 0 the stability limit of the high-
temperature phase (the higher of T, and To) is
shown in Fig. 3. The fact that X2 may diverge at a
higher temperature (T@) than X, (T,) does not neces-
sarily mean that the system has separate dipole and
quadrupole phase transitions. In the temperature
range T & T@, the high-temperature series expan-
sion for the dipole susceptibility y, is not valid be-
cause it does not include the effects of the nonzero
quadrupole moments on the dipole susceptibility.
It is also possible to find from high-temperature
series that y, diverges at a higher temperature (7', )
than yz (To). However, this too should not be in-
terpreted as indicating that the quadrupoles order
at a lower temperature than the dipoles. This is
clearly not possible because once the dipoles order
in a system, the quadrupole moments will also be
nonzero.

As mentioned above a first-order transition may
occur at a, temperature higher than the stability lim-
it T, or Tz. In the molecular-field approximation
the dipoles and quadrupoles order at the same tem-
perature for n& 1 and the transition is first order
f0r 3 & n ~ 1.' The calculation based on the con-
stant-coupling approximation shows that the transi-
tion is second order for all a ~ 1. However, this
result must be substantiated by improved calcula-

tions based on this approximation. 3 For a & 1 the
molecular-field approximation predicts a first-or-
der quadrupolar transition. Results based on bet-
ter approximations are not available for this region.
To ascertain whether a first-order transition is
possible it is necessary to compare the free ener-
gies of the high- and low-temperature phases of the
system. If the temperature at which the free en-
ergies are equal is higher than T, or T@ a first-or-
der transition occurs. We plan to investigate this
possibility.

We have also analyzed these susceptibility series
for the body-centered- and simple-cubic lattices.
The dependence of the stability limits, T, and T~,
on n for these two lattices are similar to that of
the face-centered-cubic lattice. However, the uncer-
tainties in the estimates of T, and T, are much lar ger.

To summarize, we find that the critical tempera-
tures in the region 0 & n & 1 as determined from
the high-temperature series are always lower than
those obtained by the molecular-field and constant-
coupling approximations. For n & 1 the stability
limits of the high-temperature phase Tz as extrap-
olated from the series expansions are always low-
er thtan those found in the molecular-field approxi-
mation. However, due to the relatively few terms
in the series there is considerable uncertainty in
our estimates of T@ .
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