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A spin-1 Hamiltonian with arbitrary bilinear and biquadratic pair interactions has been studied in the

molecular-field approximation by using one- and two-sublattice models, Various types of orderings and

transitions are found for the Hamiltonians with different symmetries, For a system described by a
one-sublattice Hamiltonian with Ising, isotropic, or cubic symmetry, only one phase transition is found;
either from the paramagnetic phase to a ferromagnetic or to a ferroquadrupolar phase. (Parallel
alignment of quadrupoles is denoted ferroquadrupolar. ) For the one-sublattice Hamiltonian with axial

symmetry, we find two separate phase transitions; first from the paramagnetic phase to a

ferroquadrupolar phase and then to a ferromagnetic phase. A two-sublattice system described by an

Ising or isotropic Hamiltonian can have a transition either from the paramagnetic phase to a
ferromagnetic phase, or to a ferriquadrupolar phase. Additional transitions are also found from the

ferromagnetic to a ferrimagnetic phase and then back to the ferromagnetic phase. The system can have

as many as three successive transitions. For a two-sublattice Hamiltonian with cubic symmetry, besides

the transitions found in Ising systems, there are "reorientation" phase transitions; i.e., transitions from a
quadrupole ordering along the cube edge to an ordering along the cube diagonal. This system can have

more than three successive phase transitions.

I. INTRODUCTION

Pair interactions between magnetic ions which
are described by higher-degree spin operators
have been known to exist for some time. ' Their
origins are rather diverse and range from multi-
pole expansions of the Coulomb and exchange inter-
actions to virtual phonon exchange. Except for the
few studies to be mentioned, higher-degree pair
interactions have been assumed to be small when
compared to bilinear ones. However, recent work
on magnetic systems, especially rare-earth com-
pounds, has provided examples where the higher-
degree interactions are comparable to the bilinear
ones.

Towards a better understanding of the effects of
higher-degree pair interactions on the magneto-
thermal behavior of systems, we have studied the
simplest system which admits these interactions,
i.e. , spin-1 systems with arbitrary amounts of bi-
linear and biquadratic pair interactions. Our work
differs from that of previous authors in that we are
primarily interested in determining the various
dipolar and quadrupolar orderings that appear by
using Hamiltonians with different symmetries.
Therefore we have considered Hamiltonians with
the following symmetries: Ising, axial, cubic, and
isotropic. We find that for spin-1 systems which
favor parallel ordering of quadrupoles (ferroquad-
rupolar ordering), two transitions occur for axi&
symmetry. When the biquadratic interactions favor
ferriquadrupolar ordering, e.g. , two sublattices
with quadrupole moments of unequal magnitudes
and possibly opposite signs, we find multiple tran-
sitions for all symmetries.

Whereas most treatments of the magnetic prop-

erties of solids have assumed that higher-degree
pair interactions are small compared to bilinear
exchange, some recent works have considered the
consequences of large higher-degree interactions.
Allan and Betts4 have used high-temperature-series
expansions to determine the effects of biquadratic
exchange on magnetothermal properties. Chen and
Josephs have used a similar expansion to find the
properties of the Schrodinger exchange interaction
for arbitrary spin. In this model there is only one
phase transition; all the multipoles order at the
same temperature at which the dipoles order.
Blume et al. and Qran have studied spin-1 Ising
models. Allen has considered a special case of a
spin-1 model which is relevant to UO&. Nauciel-
Bloch et al. and Brown' have considered an iso-
tropic spin-1 model restricted to cases where the
ground state of the system is ferromagnetic. Final-
ly, Sivardiere eI; a/. have considered the spin-

+& Ising model as well as some other restricted
symmetries for arbitrary spin.

The opposite limit of only higher-degree interac-
tions and no bilinear coupling has also received
some attention, e. g. , the quadrupolar ordering of
molecules in solid hydrogen, '3 in liquid crystals, "
and the cooperative Jahn- Teller (structural) phase
transitions in magnetic crystals (most recently
DyV04). ' ' As we are interested in determining
the conditions for spin-1 systems to have distinct
dipole and quadrupole phase transitions we need
not consider here the limit of zero bilinear cou-
pling; pure quadrupolar coupling does not produce
two transitions for a spin-1 model.

The exchange interactions for an effective spin-1
system can be completely described by the Hamil-
tonian
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where

Qo ——38g
—2, Qo =- 8„-8, , Q~ = S„S„+S~8„,

and the first summation is taken over all pairs of
ions i and j. When there are relationships among
the exchange constants, the Hamiltonian may have
certain kinds of symmetry. As is well known
there are phase transitions associated with the
ordering of the dipole moments 8„, 8„, and 8,; with
the presence of quadrupole moments Qa, Qo, Q„„, Q
and Q„, , there may be additional phase transitions.
In this paper we first consider this Hamiltonian
with positive values of the exchange constants. In
this case the dipole and the quadrupole moments of
the ions tend to align themselves along the same
direction, and the system can be treated as a one-
sublattice model in the molecular-field approxima-
tion. We then consider Hamiltonians with negative
biquadratic exchange constants, and present solu-
tions based on two-sublattice models appropriate
for loose-packed lattices.

In Sec. II we briefly discuss the molecular-field
approximation, and present some general proper-
ties of systems containing quadrupole moments.
The Ising, isotropic, and cubic Hamiltonians are
studied in Sec. III for values of the exchange con-
stants commensurate with a one-sublattice model.
We find that, aside from the direction of ordering,
these three systems have exactly the same thermo-
dynamic properties. They exhibit only a single
phase transition, either the dipole and the quadru-
pole order simultaneously, or the dipole does not
order at all. We next consider a Hainiltonian with
axial symmetry. %'e find that this system shows
two separate phase transitions. The quadrupoles
order first, subsequently the dipoles order at a
loge er temperature.

In Sec. IV we consider cases where some of the
interactions constants are negative. We present
two-sublattice models with Ising, cubic, and spher-
ical symmetry. For the Ising and isotropic Hamil-
tonians, we find transitions from the paramagnetic
to a ferromagnetic phase, from ferromagnetic to a
ferrimagnetic phase and from the ferrimagnetic
back to a ferromagnetic phase. For the Hamiltonian
with cubic symmetry we find an additional transition
in which quadrupoles aligned parallel to a cube
diagonal reorient themselves into an array of quad-
rupoles parallel to the cube edges. Specific heats
for some of these systems as well as the effect of
an external magnetic field on the order parameters
are discussed in Sec. V. We summarize our re-
sults in Sec. VI.

II. SOME GENERAL PROPERTIES

For the Hamiltonian Eq. (1) the one-ion molecu-
lar-field Hamiltonian is given by

P~(Qt&Q~,

where

f+t =~ ~o' s fPt =~+0's PO= o ~

The thermal averages (8,) and (Q,) are the set of
values which minimizes the Gibbs free energy

G=- erin(Tre "o"')-—,'(&,),
where Tr e "o is a partition function Zo and the
Hamiltonian Zo is given by Eq. (2). Note the term
——

(3co& in Eq, . (3). The correct internal energy U
of the system per ion is —,'(Xo&. Therefore the
proper Hamiltonian in the molecular-field approxi-
mation is

3C„=XO——,
'

(XO) .
The term —o (Ão) is a constant matrix, and may be
neglected in Eq. (2) for simplicity, However,
——,

'
(Ko& is a function of the dipole and quadrupole

moments, and must be included in the Gibbs free
energy.

The thermal expectation values (S,) and (0,) can
be determined from the set of self-consistent equa-
tions

eG eG

These equations yield the following relations;

( )
kT SinZo
la, 8(8,)

( )
kT sin Zo
fP~ s(Q~&

'

These self-consistent equations may have many
solutions; the one which has the lowest Gibbs free
energy, Eq. (3), describes the equilibrium state of
the system.

Before investigating in detail specific values of
the interaction constants in Eq. (2), we state with-
out proof in this section some simple and useful
properties of systems having dipole and quadrupole
moments.

(a) In the one-sublattice molecular-field approxi-
mation, and at T=0 K, the system is in a pure
state. A spin-1 particle can be described by the
wave functions

q) =(a+a) fm, = I&+(e+fd) fm, =O&

+ (e+if) ~m, =-1). (6)

As we are free to choose the three coordinate axes,
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the phase, and the normalization we are left only
one variable, e.g. , the magnetic moment m.
Therefore if each ion in the system has a dipole
moment (8,&

= m (the e axis is so chosen that (8„)
= (8„)= 0), and if we choose the x axis such that

(Q„„&=0, then the other moments for each ion are
&@0&=I, (Qa&=(I-m'}'", and &Q,&=&9,.&=0.

(b) Two relations among the expectation values of
the vax'ious moments at T = 0 'K which can be ob-
tained from the wave function, Eq. {6), are

&8~&'+ ~ &Qg&'+ 3(QO&'= 3,
C~Ãs 3f sS tA y 3f3ts3fCy XC

Z (s„)(s„)

&Q~)&&Icy&+ k &Qo)&(@ay& - 7 (V. b)

In Eq. (Vb), i and j refer to ions in different sub-
lattices. One important consequence of Eq. (Va)
is that the system will have &Qo& =- 2 and other mo-
ments vanish at T=O K if the interaction constants
a, and p, in Eq. {2)are less than unity, i. e. , the
system has zero magnetic moment even at zero
temperature.

(c) At finite temperatures the system is no longer
in a pure state, and the system is described by a
density matrix (with eight variables). Then the
relation among the thermal avex'age of the various
moments, Eq. (Va), becomes an inequality with the
left-hand side less than 34.

(d) Another inequality given by Fano' states that
if we choose the coordinates so that (Q~& = (Q„&
= (Q„&=0, then the tip of the vector (5& is confined
within an ellipsoid whose axes lie along the coordi-
nates

Z, = Tre "01'r= e'o ' [e 'o + 2 cos h JCam, ],

6/I = - InZO + g am' + +6 qo .

2 sinh Ka.m,m-
e 'oI('+ 2 cosh~a. m

se qog

e 'o~+2 coshEnm~

(10)

For zero external magnetic field the partition func-
tion, Eq. (9), is an even function of m„and the
solutions with (S,) =+ (m, l have exactly the same
properties. So, we assume m, &0 in the following
discussion. Equations (10) have three sets of solu-
tions: (1) m, o0, q040, (2) m, =O, q040, and (3)
m, =qo =0. By comparing the free energy of these
solutions we find the following results.

(a) For a&1, the solution with m~&qo&0 has the
lowest fxee energy. At very low tempex'atures m,
and qo are approximately given by

For 0. large enough, the system behaves as the
usual Ising model, the transition occurs at kT, /I
= ~as(8+ 1}=Sa, and is of the second order. About

the critical point T T„ the magnetization is
small, m, «1, and we can use the expansion

Here and in the following sections, the convenient
notations K, m„, m„qo, qa, and q~ stand fox the
normalized inverse temperature I/OT and the ex-
pectation values (8„), (8,), (Qo&, &Q~&, and (Q~&,
respectively. From Eq. (5) we find the set of self-
consistent equations

—(T —T}=Am +8m + ~ ~ T T (12)

The values (Qo&, &Qa&, i.e. , (8„), (8„), and (8,&,
and the position of the vector &5& in the ellipsoid
depend on the details of the Hamiltonian. Vfe have
considered the Hamiltonian Eq, . (2) for various
symmetries, Ising, sphexical, cubic, and cylin-
dx'leal. %e find that fox' these Hamlltonians the
Gibbs free energy, Eq. (3), is minimized only when
the dipole moment lies along one of the coordinate
axes. For instance, if (8„& is greater than (8„)
and (8,), then the dipole moments order along the
x axis,

IH. ONE-SUBLATTICE MODELS

A. Ising Hsfailtonian

For an Ising Hamiltonian

Xo =- I [am, S,+ ~3q, q, ],

By eliminating q~ from Eqs. (10) and by expanding
the x'esultlng expl ession in po%'er of st~ &e imme-
diately find that 2=0 (as required by symmetry of
m, ), and B= a(a —2)/4(a —1), i.e. ,

4(a-1) }t
m,

( )
(T,-T), T-T, .

4~

(13)

By substituting Eq. (13) into Eqs. (10), we find

3
q = —(T —T) T-T .0 ~ 2 I e 0

Equations (13) and (14}are valid only if a &2. For
a & 2, qo (or m, ) has a positive slope in a qo(m, )
vs T plot when qo(m, ) « I. This means that for
e & 2, the phase tx'ansition occurs at a temperature
kT/I & la, and that the transition is first order. In
the (a, T) phase diagram the point a=2, kT/I=+
is a tricritical point. This result agrees with
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Nauciel-Bloch et al. who used Landau's theory of
second-order phase transitions" to obtain the tri-
critical point.

(b) For o. &1 the solution with no dipole ordering
m, =O, and q0& 0 has the lowest free energy for
kT/I& 1/ln4 =0. 72. For kT/I &1/ln4 the solution
with m, =q0=0 has the lowest free energy. %'e de-
fine a positive function Q(kT/I) which occurs fre-
quently in the following discussions:

kT 1- kT 1
Q —= —2q for —&I 0 I ln4

kT 1for I ln4 '

where qo & 0 is the solution qo of Eg. (10) for o. = 0.
At T=0'K, Q= 1; at kT/I= 1/ln4, Q=2. At very
low temperatures (T-0 'K)

Q(kT/I ) =1 —Se-2»" (18a)

B. Isotropic Hami1tonian

For a spin-1 system mith isotropic exchange in-
teractions between ions, the Hamiltonian is given
by

X= —Z [Z)~S) 'S~+Kq~(8( ~ S~) ].
Oy&

When E,z =0, this reduces to the Heisenberg Hamil-
tonian. For E&& ——J&&, the Hamiltonian reduces to
the exchange interaction model for 9=1. In the
molecular-field approximation the Hamiltonian for
each spin is

Xo -—-I[em S+q2Q2 y 2qoQo ], (18)
where

Rnd near the transition point kTo/I= 1/ln4,

kT 1 (ln4) k
Q I 2's 214I('

(18b)
Therefore, for a&1 the system has zero magnetic
dipole moment and a transition from the paramag-
netic phase to a ferroquadrupolar phase. The
quadrupole moment qo = —2Q(kT/I) appears at kTo/I
= 1jln4, with a discontinuity equal to 50 jo of its
saturation value. '

{c)For o, =1, the system has two degenerate
solutions. One with qo = m, = Q(kT/I); another with
m, =0, qo= —2Q{kT/I). These two sets of solutions
have the same Gibbs potential and coexist at all
temperatures T & T.

For a given temperature T, and e, the equilibri-
um values of the dipole moment m, and quadrupole
moment q0 can also be directly obtained by calculat-
ing the Gibbs free energy, Eg. (9), at all points in
the m -q plane. The phase diagram for the Hamil-
tonian Eq. (9) is shown in Fig. 1 and thermal vari-
ations of m, and q0 for several values of a are
plotted in Fig. 2.

/
/

/
/

/
/

/

O
/

I

I

I

I

I

I

I

I

0 I

O 0.72
I

I.Q 1.33 k T/X

FIG. 1. Phase diagram for a spin-1 system described
by an Ising Hamiltonian, Eq. (9), with I&0. Region I
represents a disordered state of the system; region II a fer-
roquadrupolar phase with qp& 0 and m~=0; region III
a fer1omagnetic state with olde11ng parameters Flag & fftp

&0. Dashed lines indicate first-order transitions, solid
lines, second-order transitions.

1I= —5 Kg, (o. '- l)I=K Z)q.

—=- —lnZ0+ —w g+ ~qa+ 6 q20. (19b)

By using Eqs. (5) we find that a necessary condition
for the Gibbs free energy to be a minimum is

(o, —1)m, q, =0.
For a+1, we have three solutions, m, 40, q3=0;

m, =0, q&40, or both m, and qa vanish. When

ln deriving EOt. (18) we have chosen coordinates
(the Hamiltonian is spherically symmetric) such
that q„„=-q„=q„,=0, and me have dropped a con-
stant —

3 I.
As mentioned in Sec. II, if q~ = q„,= q„,= 0, the

dipole moment mill order along one of the coordinate
axes. Without loss of generality me assume that
the dipole orders along the e axis. Then Eq. (18)
is written as

Xo = I [umgSg+q2Q2+ 2 I0Qo ] .
The partition function is given as

Z =Tre0

= e"~' [e "2+2 coshK(q22+ n2m2)"2]

and the Gibbs free energy is
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qz=0, qo=-2Q(kT/I); these two solutions are
equivalent. Therefore, for at1, we can always
choose the coordinates such that m, and qp are the
only nonvani shing moments.

In other words, within the molecular-field theory,
for ak1, the isotropic Hamiltonian has exactly the
same thermodynamic properties as the Ising
Hamiltonian. The dipoles and the quadrupoles
order simultaneously for a &1; and the dipoles do
not order for n &1. The only difference between
the two Hamiltonians is that for the isotropic
Hamiltonian the dipoles and the quadrupoles can
order in any direction, while for the Ising Hamil-
tonian they order only along the z axis.

For @=1, m, and q, cannot be determined
uniquely, but are related by

(m', +q', )'"=q, = Q(kT/I).

This solution has exactly the same free energy as
the solution

0 ——
0.3

(c)
I 0 ——

0.5—

0.5 0.7 0.9 I.O I

-20
G/k

— 10

m, =q2=0, qo= —2Q(kT/I).

C. Cubic Hamiltonian

For a system with cubic symmetry, the molecu-
lar-field Hami1tonian can be written'

X,=-I(nm S+PX'"+X"&),
where

X ' = q~ Qa+ 3 qp Qp

0.8 I.O l. 2 I. 33 kT/g

FIG. 2. Thermal variations of the dipole and quad-
rupole moments m~, qo, and the specific heat for spin-1
systems described by the Ising Hamiltonian, Eq. (9), for
(a) 0. &1.0„(b) 0,'=1.5, and (c) n=2. 0.

qz = 0, Eqs. (19) reduce exactly to those for the
Ising Hamiltonian, Eq. (9). So, we have only to
investigate here the case q~ 0 0. For qa W 0, m, = 0,
and the self-consistent equations for qz and qp are

2 sinhKq2
e 'P~+ 2 coshEq&

(s&3~'
' =q Q +q„Q„+q..Q..

We first consider two special cases of the above
Hamiltonian.

(a) For P=O, Eq. (22) reduces to Eq. (18). From
Sec. III B we know that both the dipole and the
quadrupole moments of the system order along one
of the cube edges when n &1, and that only the
quadrupole moment qp occurs when e & 1.

(b) For P»1, Eq. (22) reduces to

X,=-I[nm S+PX'"]. (23)

By using the procedures described in Sec. II, we
find that the stable states of the above Hamiltonian
are as follows.

(i) For n & p the lowest-free-energy solution of
Eq. (23) is

3e 'p
qp = 1—

e 'o"+2coshXqz ' (21) m =q2 =qp=0

This set of equations is similar to Eqs. (10) with
e-1 and m, -q~. From the discussions in Sec.
III A we know that Eqs. (21) have two degenerate
solutions:

(i) q2=qo= Q(kT/I), (ii) q, =O, qo= —2Q(kT/I).

A rotation which brings the y into the z axis trans-
forms the solution qz =qo= Q(kT/I ) into the solution

q =q„=q„,= ——, Q(kT/IP).

This system is in what we call a ferroquadrupolar
phase with the symmetry axis of the quadrupoles
parallel to the [ill] direction.

(ii) For n & p the lowest-free-energy solution of
the Hamiltonian describes a ferromagnetic state
with the dipole and quadrupole moments pointing
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along the [111]direction, i.e. ,

qp =qo=0

m„=m =m, =m/&3,

1
q~ =

ques= ques= 3 q ~

Here q and m are given by

2 sinhEzm
e '~~+ 2 coshKa~m

-qgK

+ 2 coshEo. %pl

With proper normalization [Kp-K', n/p- u'], the
above equations reduce exactly to Eqs. (10). This
means that the Hamiltonian described by Eq. (23)
has exactly the same properties as an Ising Hamil-
tonian with bilinear and biquadratic interaction
constants In and IP/3, respectively. The only dif-
ference is that Eq. (23) prefers an ordering along
the [ill] direction, while the Ising system only
orders along the z axis.

For general values of P, we rewrite Eq. (22) as

X,=-I[X&"+X"']-I[o.m S+(P- I)X"'].
(25)

The first term in the above Hamiltonian is spheri-
cally symmetry, and does not prefer any direction
of ordering. If P&1, all the constants I, o. , and
(p- 1) are positive, the direction of ordering of the
cubic Hamiltonian will be determined only by the
second term in Eq. (25). From the preceding dis-
cussions we know that the second term prefers an
ordering along the [ill] direction; so does the
cubic Hamiltonian. When the system orders along
the [111]direction, qz = qo = 0 and X ' ' vanish;
therefore for P&1, the cubic Hamiltonian, Eq. (22),
reduces exactly to Eq. (23).

When P & 1, the exchange constant I(P- 1) is
negative, and the above argument is not applicabl.
We rewrite the cubic Hamiltonian as

X,=-IP[X'"+X"']-I[am S+(1-P)X"'].
(26)

In the above equation the interaction constants IP,
Io., and I(1—P) are positive, and the first term is
spherically symmetric. The direction of ordering
is only determined by the second term, which
forms an ordering along the [100]direction. This
shows that for P& 1, q~=q, =q„,=p, and the cubic
Hamiltonian reduces to Eq. (18).

We see that a cubic Hamiltonian can order either
along the [ill] direction, or along the [100]direc-
tion, and the system may have either the dipoles
and the quadrupoles order simultaneously or only
quadrupolar ordering occurs. In Fig. 3 we show
the tyyes of ordering of the system for different
values of e and P. The thermal variations of the

dipole and the quadrupole moments for the cubic
Hamiltonian are the same as for the Ising model;
it exhibits only one phase transition.

D. Axially Symmetric Hamiltoman

In this section we study systems which are in-
variant under rotations about the z axis. The
Hamiltonian has the form

2(P- o. )
qo = — ——

4n- p-3 '

2(o. - I)
q2= 4e —p-3 '

(2a)

At finite temperatures the system described by
Eq. (27) may have no dipolar ordering; it may have
the diyoles pointing along the z axis or along the x

Xo=-I[om S+P(q, Q, +q„,Q )~-,'q, Q, ]. (27)

Here we assume that the interaction constants for
Q„and for Q„, are much smaller than IP and I,
therefore, they are neglected. The form of Eq.
(27) is unchanged under rotation about the z axis.
We can choose the x axis such that q~ =0; through-
out this section we will assume that q„, = P.

Before investigating the finite-temperature be-
havior, we consider the zero-temperature spin
configurations of the system described by Eq. (27).
The procedure is as follows. Assume at T=O 'K
that the system has a magnetic dipole moment m
pointing along an axis z'. Along z' axis, qo = 1,
and we can choose the x' axis such that q~
= (1 —m2)'~, and all other moments zero. We then
reexpress the moments m,', qo, q2, referred to the
x'y'z' axes in terms of moments referred to the
coordinates xyz. The axes are related to one
another by the Euler angles (8„82, 8,}. The free
energy of the system at T=0 K, which is equal to
the internal energy U= —,'(Ko), is expressed as a
function of nz, 8„8z, and 83. For each set of
values of the interaction constants o. and P, we can
minimize the free energy to find m and {8,}. In
fact, if we allowed q„, to be nonzero, due to the
symmetry of the Hamiltonian, 83 can be any value.

By using this method we have found the zero-
temperature spin configurations shown in Fig. 4(a).
Spin configurations obtained by rotating the spin
arrangement about the z axis are equivalent. In
Fig. 4(a) region I represents a quadrupole state
with qo =- 2; the dipole moment and other quadru-
pole moments are zero. Region II also represents
a zero-dipole-moment state with qo =qa =1. In re-
gion III the system has a magnetic moment pointing
in the z direction with m, =q0=1. Region IV repre-
sents a state with the dipole ordering along the x
axis and

2[2(o,- l)(2n- P-I)]'"
4n —p- 3
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2.0—

FIG. 3. Various types of ordering
for a one-sublattice Hamiltonian
with cubic symmetry, Eq. (22). In
regions I and IV only quadrupolar
ordering exists. In regions II and
III both the dipoles and quadrupoles
order. The moments order along
the [100] axis in regions I and II,
and along the [111]direction in re-
gions III and IV. The phase tran-
sition is second order in the shaded
area, and first order, elsewhere.

0
0 2.0

axis. Dipoles pointing along the y axis are equiv-
alent to those pointing along the x axis, with qz-
—q~. We will consider these cases separately.

(i) When the system is in a ferroquadrupolar

phase, m=0, and the equations for qa and qo are

2 sinhXPqa
e-«~+ 2 coshEPqa

2.0

2.0

I .0

0
0 I.O 2.0 l.38 l.5 l.67 l.73 2.0

FIG. 4. Various types of ordering for an axially symmetric Hamiltonian with positive interaction constants, Eq. (27).
(a) The nonvanishing moments in each region are (I) qo&0, (II) qq&qo&0, (III) mg&qo&0, and (IV) m„, q&&go. A single
first-order transition occurs in region I and the unshaded area of regions II and III. A single second-order transition
occurs for P&2 in region II and for n&2 in region III. (b) The details of region IV are shown in Fig. 4(b). Region (a)
has a single dipole and quadrupole transition of second order; region (b) has a single transition of first order. In regions
(c), (d), (e), and (f) two separate dipole and quadrupole transitions are found. The dipole transition is first order in
regions (c) and (e) and is second order in regions (d) and (f). The quadrupole transitionis secondorder inregions (c) and (d),
and first order in (e) and (f).
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(n —P) m, qz --- 0 . (so)

Since m, 40, when no p, q~ vanishes, and the
Hamiltonian (27) reduces to the Ising-Hamiltonian,
E@. (9). The magnetization m, and quadrupole
moment qo are given by Eq. (10). This set of solu-
tions has the lowest free energy for an axially
symmetric Hamiltonian when n & 1 and p & 1 (region
III).

(iii) In region IV the dipoles order along the x
axis. The Hamiltonian (27) is

3CO
———I [nm„S„+Pqz Qa+ 3 qo Qo]

and the partition function is given as

g ceo»/3 (&wan»

(31)

+2e "'2''0"co -shK[-,'( qP, +q, )'+n'm', ]'").
By using Eqs. (5) we find that the self-consistent
equations are

P-e
qo=

~
q2~

2(n —1) 3

4n —P- 3

(32a)

(32b)

Se ojyK

qo-1—
e 'o~+2coshXPqz '

These equations are similar to Eqs. (10), with
n - P and m, -qz. Equations (29) have one solution
with qz=o, qo= —2q(kT/I). This is the lowest-
free en-ergy solution for Eq, (27) when n and P are
less than one, i. e. , in region I. Another solution
of Eq. (29) has qz &qo&0. This solution is the low-
est-free-energy solution of Eg. (27) at all tempera-
tures below T in region II and also at some tem-
peratures for P & a in part of region IV.

(ii) When the dipoles order along the z axis, the
possible nonzero moments are m„q„and qo. By
using Egs. (5) we find that

(31) is as follows: Either q2, qo, and m„order
simultaneously at a single transition temperature
TDQ, or q~ and qo order at a higher temperature
T than m„, which orders at T=TD.

At very low temperatures, K- ~, Eg. (32c) is
approximately

F n[1 e-P» 2e-za» ] (34a, )

2(2n'+ nP- n —2P)P= 4n —P-3
By placing this in Eqs. (32a) and (32b) we find

n 1 — 2(n —1)
( ~»)

P- n 4n —P-3 (34b)

Phase transitions occurring at TDQ, T, or TD may
be first order or second order. We now examine
these three cases separately.

(i) For a transition from the paramagnetic phase
to the ferromagnetic m„, q~, and qo order simulta-
neously and we find from Egs. (32) that

q, = —R —FcothICY)
2(n-1) 3

(ss)

6 kT q kT—=Go+G~ n, P, m„+G4 n, P, —m, + ~ ~ ~,

(st3}

If the transition is second order, q„m„are very
small near TDQ Then qo and Y, which are related
to qz and m„by Eqs. (32), are also very small.
We can eliminate F from Eqs. (32) and (35) and

express qp in powers of pl„:

q&
——A(n, P, T)m„+B(n, P, T)m„+ ~ ~ ~, T Tn@.

(ss')
To see whether the transition corresponds to a real
second-order transition, we perform a Landau de-
velopment of the free energy G, Eg. (33), by using
Eq. (ss'):

Y= —e '~ sinhEY2Q q yg

where

h=e '~~ +2e '3~ coshEY,

F= [a'q,'+ n'm'„) '",

a= — , b=n(P 1) nP-2P+n-
2(n —1) ' 2(n —1)

The Gibbs free energy G is given as

(32c)
where

G = —(I/K) lns.

At the transition temperature TDQ,

G, (n, P, kT/I)=O,

and we find that the transition temperature is
kTn@/I= 3n. If the transition is second order,
G4(n, P, kTn+/I) should be positive. We find that
64&0 if

n& 8 [7p+5+ (49p —58P+25)'~ ]. (37

G 1 q„nm„Pq, qo—=- —inc- —"+ " + —-'- + —'I EC 3 2 2 6
(33)

Equations (32) and (33) are valid only when m„WO.
When m„=0 the equations for qo and q2 reduce to
Eqs. (29). The general behavior of the Hamiltonian

This is the condition for a second-order phase tran-
sition to be found in region IV at the transition
temperature kTno/I= &n This region . is shown in
Fig. 4(b) aS region (a). Just below Tnu(= 2nI/sk)
all the moments m„, q&, qo appear, and are given
by
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(k/I)(T„- T) =am'„

n-1 2(n —1) 3 SA
P-a o 4n —P-3 2 n

where

A= n(4n —VnP- 5n+8P)
18(a- P)(n-1)

(ii) We now consider the case when q, and qo or-
der first at T and m„order at a lower tempera-
ture Tl,. Below T+ and above Tl„qa and qo are
given by Eqs. (29). Frosa the discussion in Sec.
IIIA we know that the transition at T is first order
for p&2, and is second order for p&2. Just below
the transition temperature T~, m, goes to zero
while qa and qo remain large; the quadrupole mo-
ments qo and qo are given by Eqs. (29) and related
by Eq. (32a). For given values of n and P, if the
dipole transition is second order, the transition
temperature T~ and t, he values of q, and qo at T~
can be found by solving Eqs. (29) and (32a). This
can be done numerically. We find TD exists only
if o(P+1) n - P, and 0 &kTo/I&.oP. In particular
k Tn/I = o P for n = P, and Tn = 0 for n = o (P+ I).

To check whether the phase transitions at TI, are
real second-order transitions we performed a
Landau development of the Gibbs free energy near
T~. For a second-order phase transition m„ is
small, and we expand qa in terms of m„by using
Eq. (35) where F is given in Eq. (32c):

kT g kT 4qa=q+A a, , —m„+B ~, , —m„+ ~ ~ .,
T- TD. (39)

are the regions where two separate phase transi-
tions are found. In regions (c) and (d) quadrupole
transitions are second order and occur at kTo/I
= —', P. In regions (e) and (f) the quadrupole phase
transitions are first order and kTo/I& oo p. The
dipole transition at To is first order in regions (c)
and (e) and is second order in regions (d) and (f).

In Fig. 5 we show phase diagrams for p= 1.5 and

P = 3.0, respectively. Thermal variations of m„,
qo, and qo for P=3.0 and a=2. 1, 2. 2, and 2. 8 are
plotted in Fig. 6.

IV. TWO-SUBLATTICE MODELS

Vfhen some of the interaction constants are nega-
tive, the spin and quadrupole moments may not be
the same at each ion, and we need several sublat-
tices to describe the system. If we confine our
attention only to loose-packed lattices with nearest-
neighbor interactions, a two-sublattice model will
be sufficient to describe the system in the molecu-
lar-field approximation. In a loose-packed lattice,
if we change a to —e, the thermodynamic proper-
ties of the system are unchanged except that the
dipole moment (if any) in one of the two sublattices
reverses its direction. Therefore, in this section
we will assume that the dipole exchange interaction
favors a parallel alignment of the dipole moments.
We will not discuss the Hamiltonian with axial sym-
metry because the number of different solutions is
indeed staggering.

A. Ising Hamiltonian

For a loose-packed lattice with Ising interactions
between nearest-neighbor ions, the molecular-field
Hamiltonians for sublattices A and 8 are

This equation is valid for temperatures T near the
transition TD. Here q and T~ are solutions of q~
and T for Eqs. (29) and (32a). With this expansion
the free energy is written as

3C o" ——I[- nm ~sS.+ o qo Qo ]

Xo ———I[ nm, S, + oq—

ohio].

(41)

G kT—=Go+62 cy, p, qa, —
kT

+G4 Q~ ~ qg~
—+ ~ ~ ~ . 40

At TD, qo=q, and Go(n, p, q, kTo/I) =0, and the
transition is second order when G4(n, P, q, kTn/I)
&p.

So far we have determined T~ only when the tran-
sition is second order. If the transition is first
order, TD can be obtained only by numerically
solving the simultaneous equations (32) and by com-
paring the free energy with m„00 to the free energy
with m„=0, q~, qo+0. We find that the regionIV
in Fig. 4(a) can be divided into six subregions as
shown in Fig. 4(b). In region (a) a single second-
order phase transition occurs at kTn+/I= ,'n. In-
region (b) a single first-order phase transition oc-
curs at kTnu/I& oo n Regions (c), (d. ), (e), and (f)

If the interaction constant I is positive, the lowest-
free-energy solution is the same as for the one-
sublattice case, qo =qo and )m,")= )m~). Therefore
we will study in this section only systems with
I& 0. With the methods described in Sec. IIwe find that

KZo" = e-'o"lo(e'o + 2 coshIfnms),
(42)

Zoo --e-~br~'(e'o + 2 cosh%am,").
The dipole and quadrupole moments are determined
by the following set of self-consistent equations:

2 sinhKnm~
m..=

e~o +2coshKem~

2 sinhKem, A

m = a"Ke'OK + 2 cosh Ko.m,"
+0K

A
~~0~+ 2 cosh K~m~
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PIG. 5. Phase diagrams for the axially symmetric Hamiltonian Eq. (27) for (a) P=1.5 and (b) P=3. 0. Dashed lines
indicate first-order transitions, and solid lines second-order transitions. P means paramagnetic, Q ferroquadrupolar,
and M ferromagnetic.

3 Qx
qo'=1- e« ~+ 2 cosh%am,"

B
&o =1 — aEeo (45)

Here the normalized inverse temperature is
K= I I)/kT. The average Gibbs free energy per ion
is

Here qo and qo not only have unequal magnitudes
but have opposite signs. This solution describes a
ferriquadrupolar phase of the system. As T-0 K,

ln(Zo Zo )+ mgmg —
g qoqo

3 2Ego=1-~ e

qo
——-2+ 6e

(45')

As in the one-sublattice case, the self-consistent
equations may have several sets of solutions, and
the one which has minimum Gibbs free energy de-
scribes the equilibrium state of the system. It is
interesting to note that the solutions of Eqs. (43)
do not correspond to the minima of the Gibbs free
energy G, but are saddle points on the hypersur-
face of G.

Equations (43) have the following sets of solutions:
(i) A trivial solution m,"=ms=qo"=qos=0. This

solution describes a disordered state and is the
lowest-free-energy solution at high temperatures.

(ii) A zero-dipole-moment solution. With m,
= ms = 0, Eqs. (43) reduce to

q&X3e 0
~o =1 ~BKe'0 +2

When the temperature T increases the magnitudes
of qo and qo decrease, and approach zero at kTo/
(Il= 3. The transition is second order and as
T~ Tq

8k
qo qo I (Tq &) (45")

This solution is independent of e and has lowest
free energy for q (1. The thermal variations of
qo" and qos are shown in Fig. 1(a).

(iii) A solution with m,"=mg=m, and qo =qos=qo.
Vfhen the two sublattices have the same moments,
the equations for m, and qo reduce to

2 sinhEnm,
m

e~o + 2 coshEem,
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3eel
e'0E +2coshEem, ' (46)

As T increases, a second-order phase transition
occurs at kT/ [Il = 3a, and just below T,:

4(~+I) f
mg —

( 2) iii (Tc T) t T Tc

~' (0)I.O-

x

Qo
Q

C/k

0.5

0.6
Ji

(b)

Q~

I.O I.52 2.0 kT/ I
j&

C/k

0.5—

0—
0.6

, 0I (C)

fA„

Q~

I.O l.87 2.0 kT/ I

C/k

0.5—

0--
0.6

Qo

I.O 1.8 2.07 k 7/ I
FIG. 6. Thermal variations of the dipole and quad-

rupole moments m„, qo, qq and the specific heat for the
one-sublattice axially symmetric Hamiltonian, Eq. (27),
for P=3. 0 and for (a) 0.=2.1, (b) 0.=2. 2, and (c) @=2.8.

This solution has the lowest free energy for all
temperatures below T, for a &1.18, and only for
some temperatures below T, for 1 & e & 1.18. At
very low temperatures, rn, and qo are given ap-
proximately as

m =1-e ~'
8

(46')
3e-E(+ i)

q = —(T —T) T-T .3
@+2 )I) C ' (46")

+ m,"exp [-2K+ SKms coth Knm,"]= 0

(47)and

2m~ coshEnm,"-2 sinhEo. m,"
+ ms exp[ - 2K+ SKm,"cothKnm s] = 0 .

If the solution m,"gm, exists, there must be a tem-
perature T, at which m,"=m~=m„and either above
or below the critical temperature, m", =m, + 5",
and m, = m, + 5, with 5", 5 going to zero as
T- T,. By expanding m,"and mg in Eqs. (47) about
m, for the inverse temperature K near K„and by
keeping the zero and first-order terms in 5" and
5~, we find that for a given n, X, and m, satisfy
the following eq,uations:

2m, cosh K,o!m,—2 sinh K,om, —m, exp(K, q, ) = 0
and

2coshK, am, + exp(K, q, ) —SK,m, n exp(K, q, )

x csch K,am, = + [2K,o.m, sinhK, o.m, + 3K,m,

x exp(K, q, ) cothK, am,

—2K,n coshK, um, ], (47')
where

q, =- 2+ 3m, cothK, zm,

is the value of qo and qo at the critical tempera-
ture. In Eq. (47a) the plus sign corresponds to the
solution with 6"= —5~; this solution has the lowest
Gibbs free energy. The minus sign is related to a
solution with higher free energy, and will not be
considered further.

By using the positive sign in Eq. (47a), K, and
m, are solved numerically. Solutions exist only
when 1n & 1.18. For each e we find two critical
temperatures, T„and T~, shown in Fig. 8. T„is
associated with the transition from a ferromagnetic
phase (m", = ms) to a ferrimagnetic phase (m", erne).
Tz is associated with the transition from the ferri-
magnetic phase back to the ferromagnetic phase.
The thermal varjatjons of ~, ~, qo, and qo for
o. =1.10 are shown in Fig. 7(c).

For a =1, two sets of solutions have exactly the

As can be seen in Fig. 7(b), these equations are
approximately valid for temperatures as low as
1

C'

(iv) The most interesting solution of Eqs. (43) is
the one with m,"0m, and qo Oqo. The solution
exists only for some values of n and for certain
ranges of temperature. Before solving Eqs. (43)
explicitly, we examine the conditions under which
the solution m,"Wm~ may occur. By eliminating
qo and qos in Eqs. (43), we find that

2m cosh++~~ —2 si
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{0)
I.O--

-I.O—

kTriri

same free energy. The solution with m,"m, has
the moments related as follows: m,"=qo and —m~

=qo. The values of q,"and qo are equal to minus
one-half of the qos and qe" shown in Fig. V(a). The
other solution is given by Eqs. (45).

The phase diagram of the Ising Hamiltonian is
shown in Fig. 8. All of the phase transitions in
the figure are second order.

B. Isotropic Hamiltonian

qo

-2.0

0.5

"(b)
C/k

—1.5

—I.O

For an isotropic system we can choose the axes
such that q~, q, , and q„, vanish in one of the sub-
lattices. Within the molecular-f ield approximation
the q, q„„and q„', on the second sublattice are
decoupled from the first because the terms to
which these moments are coupled, the q„„, q„, q„,
of the first sublattice, are zero. Similar to the
one-sublattice case, when q„, q„, , and q„,=0, the
dipole moments order along one of the coordinate
axes, e.g. , the z axis. The Hamiltonian for sub-
lattice A reduces to

0.5 +a =+ lfl(- &m ~ +qs@a + s qo@o) (48)

Crk

mA
z

m8
z

0.5

0'
0

kTX

JISM

Here we assume I is negative. The thermal aver-
ages of gz q3 and qo are given by

q,"= 1 —(3/as) e'e",

m,"= (1/b, s)2 sinh(XFs)

arne/Fs,

(49)

q,"=(I/as) 2sinh(AFs)q, /Y's,
where

b ~ = e~o + 2 coshEF~

[(~ms)2 (qs)2 ] 1/2

If either q3 or m", is nonzero we find by using these
equations

Similarly, from B sublattice we find

qB
0

.735
k Tr [r. )

or
(n'- 1)m,"qss = 0.

-0.5
-q

-I .0

FIG. 7. Thermal variation of dipole and quadrupole
moments qo, qo, m~, and m~ for the two-snblattice Ising
Hamiltonian Eqs. (41) for (a) n «1.0, (b) n =1.5, and (c)
n = 1.1. The specific heats for n =1.1 and l. 5 are also
shown.

For ne 1 we have either m,"=0 (this implies ms
=0) or qs =0 (this implies qs =0). For o. & I, we
find that the solution with m, WO has the lowest free
energy, and the thermal variations of m,", m, , qo,
and qo are exactly the same as for the Ising Hamil-
tonian (43).

For a&1, the stable states of the system have
m", =m~8=0. Two solutions with the same lowest
free energy are found. One solution has qz =q2 =0
and the values of qo and qo are exactly the same as
for the Ising Hamiltonian, Fig. V(a). Another solu-
tion has q& =qo &0 and q3 =qo &0. These two solu-
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1.0

0.5— k Tt I 1 I

0.5

FIG. 8. Phase diagram for a
two-sublattice Ising Hamiltonian Kqs.
(41). Region I represents a disor-
dered phase of the system, region
'll a ferriquadrupolar phase with —

qo
&go &0, region III a ferromagnetic
phase with m~ =m~, qo =qo, aud re-A 3 A

gion IV represents a ferrimagnet-
,
ic phase with m,"~ m, , q~q & q0. All

the transitions are second order.
Details of the phase diagram for the
ferrimagnetic phase are shorvn in
the inset.

0
0

I I

0.5 0.67 1.0 1.5 2.0 kT/ )I)

tions are equivalent and are transformable into one
another by a rotation of the coordinate axes.

When a = 1, q~" and m,"as well as qa~ and nz, can-
not be uniquely determined; however, the quantities
[(qs") + (m,") ] '+ and [(qss)'+ (ms) ] '@ take the roles
of m", and ms in Eqs. (43) for the Ising Hamiltonian.

We conclude that for n o 1, besides the arbitrary
direction of ordering, the isotropic Hamiltonian has
exactly the same properties as the Ising Hamil-
tonian.

C. Cubic Hamiltonian

For a system with cubic symmetry, the Hamil-
tonian for one of the two sublattices is written as

—Il q;Q,"+—.'qssQ."]. (5o)

In Sec. III C we studied cases where the interac-
tion constants I and I~ are positive. In this section
we will consider the other possibilities, i.e. , (1)
I&0, Is&0, (2) I&0, Is&0, and (3) I&0, Is&0. As
mentioned before we assume that I, is positive. We
define the parameters K= II)/kT, n=I, / III, and
P= II 1/ II, l.

(i) When I& 0 and Is & 0, the n- p plane can be
divided into three regions as shown in Fig. 9(a). In
region I the system has a quadrupole moment qo
= —2Q(kT/I) where the function Q is defined by Eq.
(15), and other moments are zero. In region II the
nonvanishing moments are qo and m, ; they satisfy
Eqs. (10). Therefore in region I and II a system
has the same behavior as systems described by the
Hamiltonian (18). Phase transitions are first order
for n & 2, and second order for n & 2. In region III

a system forms two sublattices A and B with qo
=qo =qo and q" =-q„,=q~; the dipole moments and
other quadrupole moments are zero. The values
qo and q~ are given by

2 sinhÃPq„,
s-~sr+ 2coshItPq~

3 o

e 's +2coshXPq~

When we replace P by o. and q by m„ the above
equations exactly reduce to Eqs. (10). This means
that systems in regions II and ID have the same
thermodynamic properties although their ordering
parameters are different.

(ii) In the case I&0 and Is &0, the n PPlane-is
divided into five regions as shown in Fig. 9(b).
Systems in region I have nonzero moments qo and
qo~. The thermal variations of qo and qo~ are exact-
ly the same as those shown in Fig. 7(a). In region
II the nonzero moments are m„= m„=m, and q~
=q„,= q„,. The thermal variations of these mo-
ments are the same as those of a system with the
same o. and P in region III of Fig. 3. The phase
transition is first order for a &2P and is second
order for n &2p. In region III the nonzero mo-
ments are q =-q„,=-q„,&0. A system in this region
has exactly the same properties as a system with
the same P in region IV of Fig. 3. A first-order
transition with a 50%% discontinuity occurs at kT/ III
= P/ln4. In regions IV and V systems exhibit two
phase transitions. At kT/lIt=r3 a system trans-
forms from a disordered state to a ferriquadrupolar
phase with qo &0 and qo~ & 0 as in region I with all
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1.0
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0

0.93

0.5

1.0

9(c). The behavior of systems in region I is the
same as for region I in Fig. 9(b). The ordered
state of a system has the quadrupole moments qo
and qos as shown in Fig. 7(a). In region II systems
order along the [111]direction with m„"=m,"=m",

are given by equations similar to Egs, (43). If we
make the substitutions m ~ ~ ~ qo~ q
qos-qs, ff'-Kp, and o, - n/p, then Eqs. (43) be-
come the equations for m", m~, q", and q . From
the discussion in Sec. IV A we know that for n
&1. 18P a single second-order phase transition oc-
curs at kTj)II= &o.. When u&1. 18P, the shaded
area of region II in Fig. 9(c), three separate sec-
ond-order transitions are found. There are tran-
sitions from a disordered state to a ferromagnetic
state, from a ferromagnetic to a ferrimagnetic and
from ferrimagnetic back to the ferromagnetic
state.

In region III the ordering is along the [100]di-

0.67 1.0 I.O-
{p)

A

0 0.67 k T/ III

- I.O-

0
0

l

0.67 1.01.18

Jl

I.O {b)
A

0
FIG. 9. Various types of ordering for two-sublattice

systems with cubic symmetry [see Eq. (50)]. (a) I&0,
I2& 0, (b) I& 0, I2&0, and (c) I& 0, I2& 0. o' =—I~/l II and

P =—
I I21/I Il . See text for discussion of ordering in the

different regions.

0.4 0.55 0.67 kT/III

dipole moments zero. At a lower temperature a
system in region V xeceients its quadrupole mo-
ments to a one-sublattice ordered state with q~
=q„,=q„,&0, as in region III. Also a system in
region IV at lower temperatures transforms into a
one-sublattice state with m„= w,, =m, and q =q„
=q„„as in region II. The thermal variations of
the various moments in region IV, e.g. , a=0. 8,
P=-0. 4 and in region V, e. g. , a& P=O. S are shown
in Figs. 10(a) and 10(b), respectively.

(iii) When both I and Iz are negative, the o.-P
plane is divided into five regions as shown in Fig.

-2.0

FIG. 10. Thermal variations of the dipole and quad-
rupole moments for a "reorientation" phase transition in
a system described by a cubic Hamiltonian with I& 0 and
I~&0. (a) +=0.8 and P=0. 4. (b) n&P and P.=0.8. At
low temperatures the system orders along the [111]direc-
tion as systems in regions II and III of Fig. 9(b). At
higher temperatures the moments order along the [100]
direction in an identical fashion to systems in region I
of Fig. 9(b).
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rection with m,", m, , qp, and qp described by Eqs.
(43). Again a single second-order transition oc-
curs at k T/I Il = ~n for n & l. 18 and three separate
second-order transitions are found in the shaded
area of region III for n & 1.18. In region IV the
ordered state has the nonzero moments qp, qp,
q" &0, and q„&Q. If we replace m,"by q„"„, m~ by
—qs, and o. by P, then Egs. (43) describe the vari
ous quadrupole moments for this region. A single
second-order transition occurs at kT/) II = 3P for
P&1. 18, and three second-order transitions are
found for P& 1.18. In region V at low temperatures
a system has both the dipole and quadrupole mo-
ments order along the [111]direction as in region
II. As the temperature increases the dipole mo-
ments vanish and the quadrupole moments xemient
and point along the [100]direction with q0 &0 and
qas & 0 as in region I. Finally for n & 1.18P, the
shaded area in region V, in addition to a quadrupole
reorientation transition there are transitions from
a disordered to ordered state, from the ferromag-
netic to ferrimagnetic state, and from the ferri-
magnetic back to ferromagnetic state. Therefore
in this region more than three separate phase tran-
sitions are found.

+I(g Qmg+ g qg+ g q0)

= %0+ —,'I (o.m', + q', + —,
'

q', ), (52)

where the second term is the energy correction due
to double counting of the exchange energy in the
molecular-field approximation. The partition func-
tion is

Z = Tre-"~»
0

= e'o ~3(e '0 + 2coshK[q2+(nmg+k)']' ].
(53)

By using Eq. (5) the self-consistent equations for
mgq qp) and qp ale

2(nm, +k)
m, = ' sinhKY,hY

qz = (2'/&F) sinhKF,
(54)

q, =1 —(3/~) e-~&.

V. MAGNETOTHERMAI. PROPERTIES

A. Influence of a Magnetic Field

When an external field exists the thermal varia-
tions of the dipole and quadrupole moments are
changed. In this section we consider a simple but
most interesting case, the one-sublattice isotropic
Hamiltonian of Sec. III B with an external magnetic
field. The molecular-field Hamiltonian, Eg. (18)
including the Zeeman energy -gp~ IIS, = —IAS, , is

K~ = —I[(o.m, + k)S, + qz @2+ —,
'

q0@0 ]

dU d(K~)
tfT dT (58)

The thermal average of the various moments m and

q have zero slope at T=O 'K, so that C = 0 at ab-
solute zero. At each transition temperature, except
for the quadrupole reorientation in Sec. IV C, either
the slope —dm/dT or —dq/dT reaches its maxi-
mum, and the specific heat has a peak. Therefore,
we observe two peaks in the specific-heat curve

Here 6 is defined as

b =g 'P +2coshEY

and Y is given as

1"= [q', +(o,m, +k)']'+.
When the quadrupole moment qa = 0, Eels. (54)

reduce to

2 sinhK(nm, + k )

e 'or+-2 coshK(o. m, + k)
(55)

qpK

p
—1

e 'ox+2coshK(nm, +k)

Equations (55) are the same equations as for a sys-
tem with an Ising Hamiltonian with external mag-
netic field. Both m, and qp have a high-temperature
tail.

If the quadrupole moment q, 40, we immediately
find from Egs. (54) that

m, = k/(1 —o. ) and q2 = [F' —m2 ] '+ .

This means that as long as T WO, the magnetic mo-
ment m, is independent of temperature The va. lues
of Y and qp are determined by the same equations
as Eqs. (21) with q, replaced by F. Therefore for
qz 0 0 we find that F= qa = Q(kT/I ) for kT/I & 1/ln4.
For kT/l&1/ln4, F and qa may not be zero. By
comparing the free energy for the two sets solu-
tions, q=0 and q40, we find that if n &1 or k & (1
—n), the system is in a state with qa = 0. If n & 1
and k & (1 —n), the system has a constant magnetic
moment m, = k/(1 —o,') for temperatures below To.
Above T, q&-0 and m, decreases. Typical plots
showing the influence of magnetic field on the iso-
troyic spin-1 systems are shown in Fig. 11.

For systems with lower symmetry the inQuence
of the external field strongly depends on the relative
direction between the external field and the sym-
metry axes of the system. For systems which are
described by two or more sublattices, each sublat-
tice responds differently to the external field.
These cases are very complicated and will not be
considered here.

B. Specific Heat

The constant-field specific heat of a magnetic
system in the molecular-field approximation is
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the quadrupole moments. For I&0 and 0. &1, the
discontinuity in specific heat associated with the
transition from the disordered state to a ferriquad-
rupole phase is kC/k = —,. Finite discontinuities in
the specific heat are also found for transitions be-
tween the ferrimagnetic phase and the ferromagnet-
ic phase. The specific heat shown in Fig. 7(c) has
a minimum in the ferromagnetic phase.

For finite external magnetic fields a system may
not have a phase transition, e.g. , when e &1 or
k & (1 —o.') in Eq. (52). However, the specific curve
has a maximum, As shown in Fig. 11(c), the spe-
cific heat has a peak associated with the ordering
of the quadruyole moment q& and has a maximum
at a higher temperature where no transitions oc-.

cur.
As a final point we mention that when the mag-

netization is independent of temperature, see Fig.
11, the specific heat can be written

"(c)
0.4

C/k ~
0.6 0.75 0.8 ~

-I0

I.O kTgI

(-,a m, + —,q, + —,q, + km, )
2 d & 2 & 2 1 2

= 3&'„(qo). (57)

N~

qo

0.5 2.0

To derive this result we used dm, /dT=O and qz=(q~o
—m, )' . Therefore as long as qadi 0 the specific-
heat curve depends neither on the external field h,
nor on the dipole exchange constant n.

VI. DISCUSSION OF RESULTS AND SUMMARY

I.o

0
0,3 0.5 0.62 0.7 O.S I. I kTI I

FIG. 11. Thermal variation of the dipole and quad-
rupole moments m~, qo, q2 and the specific heat for
systems described by the one-sublattice isotropic Hamil-
tonian in an external magnetic field. (a) 0. =1, k=0. 1,
(b) @=0.5, 5=0.1, (c) m=0. 5, &=0.4. The constants
refer to Eq. (52).

when there are two separate transitions.
Above the highest transition temperature, i. e. ,

in the disordered state, the specific heat is identi-
cally zero in the molecular-field approximation.
For a second-order phase transition from the para-
magnetic to an ordered state, the discontinuity in
the specific heat b C/k can be found from Eq. (56)
and from the asymptotic form of the ordering pa-
rameter near the transition. For example, by
using Eqs. (13), (46 ), and (56) we find for an Ising
system that the discontinuity in the specific heat in
going from the paramagnetic to the ferromagnetic
state is b, C/k = 2(n —I)/(o. —2) for f &0 and o. &2,
and hC/k=2(o. +I)/(@+2) for I&0 and a&1. The
dipole moments fully account for this discontinuity
in the specific heats, there is no contribution from

In this paper we have studied the thermodynamic
properties of a spin-1 Hamiltonian containing bilin-
ear and biquadratic interactions. We have con-
sidered several symmetries within the molecular-
field approximation. We find that for the one-sub-
lattice model where al1. the interaction constants
are positive, the Ising, isotropic, and cubic Hamil-
tonians have exactly the same thermodynamic prop-
erties. They show only one phase transition, either
the dipoles and quadrupoles order simultaneously
or only the quadrupoles order. The reason for the
identical thermodynamic behavior is that the dipoles
and quadrupoles are aligned parallel" to one another
in these three systems. The one difference in
these systems is that the diyole and the quadrupole
moments of an isotroyic Hamiltonian can order in
any direction, for a cubic Hamiltonian the moments
can order either along the [111]direction or the
[100]direction, and for the Ising Hamiltonian or-
dering occurs along the z axis. To have separate
dipole and quadrupole phase transitions the system
must have axial or lower symmetry. With axial
symmetry and in the two phase transition region
the dipoles order perpendicular to the symmetry
axis of the system and the quadruyoles are aligned
so that qo or q„, are nonzero.

For the two sublattice models where some of
the quadrupole interaction constants are negative
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the isotropic and Ising Hamiltonian have the same
thermodynamic properties. They differ only in
their directions of ordering. When the quadrupole
interaction is negative and e & 1 the ordered state
of the system has zero dipole moment; and the
quadrupole moments are in a ferriquadrupolar
phase, i. e. , the quadrupole moments in the two
sublattices have different magnitudes and opposite
signs. When the quadrupole interaction is small,
o, &1.18, the system has a single phase transition
from the paramagnetic state to a ferromagnetic
state. For comparable dipole and quadrupole in-
teractions, 1.0 & a & 1.18, the system undergoes
two additional transitions, i. e. , from a ferromag-
netic to ferrimagnetic state and from ferrimagnetic
back to ferromagnetic state.

For the two-sublattice model of the cubic Hamil-
tonian, additional transitions are found. They are
the transition from the disordered state to one with
perpendicular quadrupole alignment, i. e. , q"
=- q~~. There are also transitions associated with
the reorientation of the quadrupole moments.

When comparing our results to others we find
our work on the Ising model agrees with that of
Oran. ' Our Hamiltonian (27) reduces to the one
stodied by Allen, ' and our results agree with
those he found except for a small discrepancy in
the phase diagram. We find that when a and p- ~,
two separate phase transitions will be found in the
range 0. 5 & n/p & 0. 88 while Allen's result is 0. 5
& ot/P & 1.0 [in our notation Eq. (27)]. Nauciel-
Bloch et al. find that the sufficient condition for a
ferromagnetic ground state is —J&&/2 &%&& & J'&& and

J,&
&0 [in the notation of our Eq. (17) and for S= 1].

In the molecular-field approximation we find that
the necessary and sufficient condition for a ferro-
magnetic ground state at T=O 'K is E&& & J&& and

J,&
&0. The condition for an ordered state to be

the ferromagnetic state at finite temperatures is
—2Z,I /(1. 18 —1)& X,q

& J;J and Z,~
& 0.

From a comparison of Figs. 2 and 7, we see that
in the ferromagnetic state for I&0, biquadratic
exchange interactions tend to enhance the magne-
tization. For sufficiently large biquadratic ex-
change I& 2Ie the transition becomes first order

and the transition temperature increases. When
I&0, the biquadratic exchange interactions tend to
decrease the magnetization but the transition tem-
perature remains the same.

On comparing the result for the spin-1 Ising
Hamiltonian to those for spin S= jI-" we find most
of the properties of these systems are the same.
The major differences are the following. (i) The
quadrupole phase transition is always first order
in spin-1 system when I&0, while the correspond-
ing transition is second order in the S= $ system.
(ii) For 1&0, in the nonmagnetic phase, the quad-
rupole moments in the two sublattices have equal
magnitudes and opposite signs for the S= & system.
For $=1, the quadrupole moments in the two sub-
lattices have unequa/ magnitudes and opposite
signs. The above differences can be explained by
the fact that the Hamiltonian for a spin-$ system
with pure biquadratic interaction has the same
thermodynamic behavior as a spin-& system with
pure bilinear interactions. (iii) For the spin-1
Hamiltonian the ferrimagnetic state is not a proper
ground state at T=O K, except for a=1. It is for
this reason that the systems we have studied under-
go transitions from a ferrimagnetic state to the
ferromagnetic state as T-0 'K. However, the fer-
rimagnetic state is a ground state for the S= +~

Hamiltonian at T = 0 'K; therefore the above-men-
tioned transition is not found in S= ~ systems.

Finally, our molecular-field results can also be
compared to those found for a spin-1 isotropic
Hamiltonian in the constant-coupling approxima-
tion. ' We find in the region where the constant-
coupling model was evaluated that the molecular-
field approximation always predicts higher transi-
tion temperatures. This is to be expected because
the Curie temperatures for bilinear exchange inter-
actions display the same behavior.
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High-temperature series expansions are derived up to terms in T ' for the dipole and quadrupole
susceptibilities for arbitrary lattices. The expansions are evaluated for a spin-1 isotropic Hamiltonian
with bilinear and biquadratic pair interactions. We compare the dipole and quadrupole phase transition

temperatures determined from these series to those obtained by the molecular-field and

constant-coupling approximations. There are large uncertainties in the estimates of the quadrupole
transition temperatures because of the few terms in the series.

The Hami'. tonian for a magnetic system with iso-
troyic bilinear and biquadratic yair interactions
between nearest-neighbor ions on an arbitrary lat-
tice is given by

3e=-J Z [S, Sq+n(S, ~ Sr) ].
&i, j&

This system has been investigated mostly for
spin-1, S= 1, and when n is either very small or
n = 1. Recently, this Hamiltonian has been studied
for S = 1 and for all values of n by using the molec-
ular-field'3 and constant-coupling3 approximations.
It is generally felt that effective-field theories give
only qualitative results and do not accurately pre-
dict the critical temperatures. We report in this
paper on a study of the critical temyeratures of
the spin-1 Hamiltonian found by deriving and ana-
lyzing the high-temperature series expansions for
the dipole and quadrupole susceptibilities.

For n «1 and for arbitrary spin the high-tem-
perature series expansions for the dipole suscepti-

xt= &t«(g*)~ (2)

bility have been calculated up to the term T by
Joseph by using a diagrammatic method. For e =1
and S = 1 the dipole susceptibility series expansions
for terms through T 7 was obtained by Allan and
Betts' by using a cluster-expansion method to-
gether with group-theoretical techniques. Here
we calculate the dipole and the quadrupole suscep-
tibility series to terms through T" for S = 1 and for
arbitrary c)t by using the cluster-expansion method.
The estimates of the critical temperatures we ob-
tain particularly those from the quadrupole series
have large uncertainties because of the few terms
in the series.

The zero-field dipole susceptibility X, is yroyor-
tiom, l to the mean square fluctuation of the dipole
moment S,=Q,S„, i.e. ,


