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The two-pole approximation due to Roth for electron correlation in a narrow s band is applied to
ferromagnetic and antiferromagnetic symmetries in simple cubic (sc) and body-centered-cubic (bcc)
crystal structures and to ferromagnetic symmetry in the face-centered-cubic (fcc) structure. Numerical
results in the case of zero-temperature, infinite-Coulomb-repulsion, and tight-binding nearest-neighbor
band structures are presented. When the number of electrons is less than the number of sites, the
paramagnetic susceptibilities of wave numbers corresponding to both magnetic symmetries exhibit two
singularities as a function of electron concentration for both the sc and bcc structures, while there is

no zero-wave-number singularity for the fcc structure. When the number of electrons is greater than
the number of sites, there are two zero-wave-number singularities for the fcc structure and also, as a
consequence of the electron-hole symmetry, there are two singularities for the sc and bcc structures,
Magnetizations and energies are calculated for the various magnetic solutions as a function of electron
concentration. Where it exists, the ferromagnetic solution having maximum total spin has the lowest
energy, These results are in agreement with Nagaoka's conclusions for almost half-filled bands in the
infinite-Coulomb-repulsion limit,

I. INTRODUCTION

In this work a numerical study of the magnetic
properties of the narrow-s-band model within the
two-pole approximation of Roth' is presented. The
approximation is applied at zero temperature to
narrow s bands modeled by nearest-neighbor tight-
binding band structures in the limit that the Cou-
lomb interaction between electrons of antiparallel
spin associated with the same lattice site is in-
finite. Only ferromagnetic and antif erromagnetic
configurations are considered.

In Sec. II the model Hamiltonian for the elec-
tronic system is presented. The static paramag-
netic susceptibilities are calculated in Sec. III, and
two instabilities toward both ferromagnetism and
antiferromagnetism are found for both simple-
cubic (sc) and body-centered-cubic (bcc) lat-
tices. Instabilities toward ferromagnetism in the
case of face-centered-cubic (fcc) lattices exist
only when the number of electrons per site is
greater than one. The calculation of the magnetiza-
tion is presented in Sec. IV. In Sec. V, the rela-
tive energies of the configurations studied are
presented. The lowest-energy conf iguration cor-
responds to the ferromagnetic phase of largest
total spin, an extrapolation of the exact result ob-
tained by Nagaokaa for the nearly half-filled band.
In contrast, of the two antiferromagnetic configura-
tions calculated for each lattice, the lowest energy
corresponds to the phase with the smallest sublattice
magnetization. In Sec. VI the results are discussed.

II. MODEL HAMILTONIAN

The model considered is the Hubbard Hamilto-
nian3 for a narrow s band special. ized to nearest-

neighbor tight-binding band structures:
nn

a=tQQ c'„c„+-'.fQPn„n, , (&)
$ J 0 't 0'

Here t is the transfer energy between states at
neighboring sites, and I is the repulsive Coulomb
energy for two electrons of antiparallel spin at the
same site. The one-electron band energies are
defined by

nn

t g sfr '%) (2)

where R, labels lattice sites. (The marking of
vectors in indices will be suppressed throughout
the paper. ) The limit of infinite I will be assumed
in what follows.

The expectation values of the Hamiltonian and
the number operators n&, are calculated from one-
electron Green's functions. ' The prescription
used to obtain approximate expressions for these
Green's functions is due to Roth. ' A complete
discussion of the application of the technique as
applied to ferromagnetism is presented in Ref. 1.
However, the formalism presented by Faulkner
and Schweitzer is more easily adapted for this
study. Their results may be adopted for both mag-
netic symmetries with only a trivial specialization.
The Fourier energy transform of the propagator is
found to be the solution of

nnof 5

G';~(&u) = G'(ro)&;z+ Gf (v) t 2 G&z(tu),

' where

G;(~) = (1 —n; ,) (~ —E;,) ', .
with

n„=(n„),

4253



4254 J. S. ME YER AND J. W. SCH WjEl IT ZER

nnof i

E,,= —f Q (Ct(, C),)(1—n;,)
' .

Equation (4) holds only when the number of elec-
trons per site is less than one. This restriction
is without loss of generality since the electron-
hole symmetry of the model under the change in
sign of t can be exploited to extend the results to
the case where the number of electrons is greater
than the number of sites.

0.8

III. STATIC PARAMAGNETIC SUSCEPTIBII.ITY

The static para. magnetic susceptibility )((q) be-
coming infinite signals the possibility of spontane-
ous magnetization with spatial variation character-
ized by q. In particular, ferromagnetism is char-
acterized by q=O, while antiferromagnetism is
characterized by q = v(1, 1, 1) for the sc lattice and

by q=2m(l, 1, 1) for the bcc lattice. For the case
of the two-pole approximation with infinite I,
Schweitzer and Maynards have given an explicit
expression for 1(q). This expression is very
lengthy and will not be reproduced here. However,
at zero temperature the expression simplifies
considerably for the values of q and the band struc-
tures considered in this work.

For q=O, the inverse susceptibil. ity is given by

(gps)~, 1-2n ( 1 —2n
X (0)

(1 ) (1) l~ 1+(1 )3

2
+ ep(e) de . (7)

OD

For q= q„, where q„equals v(1, 1, 1) for sc and
2v(l, 1, 1) for bcc lattices, we find using the fact
that ~,

A

y, '(q„' = ' ep(s) de

1 —2n "' p(e) de

(1 —6)'
+ woo

Here n =Kg, =n „g is the Fermi energy, and p(e) is
the density of states associated with e~ defined by
Eq. (2) and is assumed to be normalized to unity.
The density-of-states curves~ for the three lattice
types are shown in Fig. 1 where we have chosen
the transfer energy f in Eq. (2) to be equal to ——,',
—4, and —

8 for the sc, fcc, and bcc crystal struc-
tures, respectively. The Eqs. (7) and (8) are re-
stricted to the range of n where 2n&1; however,
if one replaces everywhere p(e) by p(- e), then
these expressions for X

' give the inverse sus-
ceptibility for n holes provided the number of elec-
trons is greater than the number of sites. This
follows from the electron-hole symmetry effected
by changing the sign of t.

The curves for the inverse susceptibil, ity versus

0,4

0.2

0.0
—3.0 2.0 I.O I.O 2.0

FIG. 1. Tight-binding nearest-neighbor density of
states for simple-cubic, body-centered. -cubic, and face-
centered-cubic structures as a function of energy. A11
densities have been normalized to unity.

the number of electrons per site (n =2n) are shown
in Figs. 2 and 3 for sc and bcc l.attices, respec-
tively. Since the susceptibilities are symmetric
about n = 1, only the values for n & 1 are shown. In
Fig. 4 the curve of ){ '(0) for the fcc lattice is
plotted for the entire range of electron concentra-
tion. Only the positive values of X

' are plotted in
each of the three figures. Note that the sc and
bcc lattices exhibit an instability toward ferromag-
netism and also antiferromagnetism for tuo values
of the electron concentration for n & 1 (and, of
course, also for n& 1). The fcc lattice, while ex-
hibiting no instability toward ferromagnetism for
n&1, exhibits an instabil, ity at n=1. 2 and another
at n=2.

The fact that the susceptibility becomes infinite
at two values of the electron concentration is a
novel feature which suggests the possibility of two
distinct ferromagnetic (antiferromagnetic) solu-
tions at a given electron concentration. That this
is indeed the case will be seen in Sec. IV.

G;~(&u) = K 'Q G'(k, ~)e'" 'R'

where k is summed over the first Bril.louin zone

IV. MAGNETIZATION

A. Ferromagnetism

For ferromagnetic solutions (i. e. , r7„=n„ inde-
pendent of the site) the Green's functions G;;(&u)
depend only on the difference R; —H;. Hence the
set of equations for G';;(&u) given by Eq. (3) is
easily solved by introducing G'(k, &u) defined by
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method.
At zero temperature this yields the set of self-

consistency relations

1.0,

0.8—

l

bcc FE

n. =(l-r7, )N '+8(r. [E-.+(1 F7-,)e,J), (11)
k

(1 —n, )E, = —(1 —n, )N ' Ze, 8(t —[E .+ (1 —~ .)&&1),
k

(12)
where r. is the Fermi energy and 8(x) is the heavi-
side unit function. The magnetization (m =

I n, —n, I )
versus electron concentration (n= n, + n ,) c.urves
are plotted in Figs. 5-7 for the sc, bcc, and fcc
crystal structures. For the fcc structure there
are only paramagnetic solutions when n & l, in
agreement with the susceptibility. For the sc
and bcc structures the magnetization curves are
symmetric about ~= l.

The most distinctive feature of these results is
the existence of two ferromagnetic solutions. The
one corresponding to the larger magnetization be-
comes saturated (m=n) for n sufficiently near the
half-filled-band limit. The fcc results are ex-
ceptional in this respect. The logarithmic singu-
larity in the density of states at the band edge is
responsible for the saturated solutions throughout
the range of ~ greater than one.

A similar calculation for the sc structure may
be found in Ref. l, and one is referred there for
detail. s on the method used to find solutions to
Eqs. (11) and (12). However, there only the mag-
netization curve corresponding to the one in Fig.
5 with maximum magnetization was presented.

B. Antiferromagnetism

The Green's functions G,', (&u) for antiferroma. g-
netic solutions will depend on the difference
R; —R,. only if 0; and 5; belong to the same mag-

0.6—

0.0
0.0

I

0.2
I

0.4
I

0.6
il
0.8 1.0

FIG. 6. Magnetization per site at absolute zero as a
function of electron concentration for the body-centered-
cubic lattice.

where the subscript Si l.abels a site on the sublat-
tice S. The prime on the summation symbol. is to
indicate that the sum is over the first Brillouin
zone appropriate to the sublattice. The antiferro-
magnetic solutions are by definition

+S,c +-8, -e ~

where S and —S denote the two sublattices. Since
there is the symmetry between interchange of sub-

1.0

netic sublattice. In that case one can introduce
Gz(k, a&) defined by

Gz~ z~ (~) = 2N P G'(k, u&)e'" '+s~ "si& (12)

1.0
0.8
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0.2

0.0
1.0 1,2 1.4 1.8 2.0

PIG. 5. Magnetization per site at absolute zero as a
function of electron concentration for the simple-cubic
lattice.

FIG. 7. Magnetization per site at absolute zero as a
function of electron concentration for the face-centered-
cubic lattice. No magnetic solutions occur until the band
is half-filled.



ZERO- TEMPERATURE MAGNETIC PBOPEBTIES OF THE. . .

lattice and interchange of spin orientation, the sub-
lattice label may be suppressed.

Since our model has only neax'est-neighbor trans-
fer terms, the set of equations given in Eq. (3)
easily decouples for the two sublattices. One finds

G'(k, (u)=G'(co)[l —e,'G'((u)G'((u)]',

where G'(~) is given by Eq. (4) provided the num-
ber of electrons per site is less than one. The
expectation values (cI, c&,) are evaluated using the
standard Green's-function technique. The result-
irg self-consistency conditions for the electron
concentx'ation n, the sublattice magnetization
m = Ijn, —n, I, and a quantity z axe given by the
following at zero temperature and for n& 1

are plotted in Pigs. 8 and 9 for the sc and bcc lat-
tice structures, respectively. There are two
antiferromagnetic solutions as was indicated by
the susceptibility results. In contrast with the
ferromagnetic solutions, the curve corresponding
to the larger sublattice magnetization does not
saturate except at n= 1. That there are no satu-
rated solutions for n & 1 is a general result for
the model within the two-pole approximation and
does depend on the particular density of states.
This can be seen by substituting n= m in Eqs. (23)
and (24) to find X, = X~, while by their definitions
(19) and (20) it follows that Xa&X, for n& 1.

n= (2 n)X-, + mx„

m=mx, +(2-n)X„
~= mXS,

(16)

(1V)

(18)

A calculation of the energy per site for each con-
figuratlon gives

Z, =-', X 'Q(l-n, ) [(2-n.) e, + E,]
x 8(f —[E,+ (1 —s,)e~]) (25)

for the ferromagnetic phase and

E„=(X, + —',n —2) (o, /2m)[(2 —n)~ —m ] (26)

2-n
+~ (-- --- a-B~ ~, 19

m

2-n—8 g- ~ —8 20
m

2-n—8 g- n-Aq, 21

fox' the antlf ex'x'omagnetlc phase. These expres-
sions are valid only when the number of electrons
is less than the number of sites. However, since
the enex'gy pex' site fox' the model with n holes is
given by

Z(n, holes, f) =E(n, electrons, —f)+ —,I(s —1),
(2V)

where the first term on the right-hand side of
Eq. {2V) denotes the energy per site for the model
with the transfer energy t replaced by —t, Eqs.
(25) and (26) are sufficient to determine the energy
even when n&1.

The paramagnetic and lowest ferromagnetic and
antiferromagnetic energies are plotted as a func-

ft, = (e+ —.'[(2 —~p —m'le'„&"' . (22)

Equations (16)-(18)define a system of three
equations in three unknowns with one parameter.
These equations may be decoupled by choosing n
as the parameter and introducing a new variable
ZI& I

which is equal to the value of e, at which there
is the discontinuity in one of the two heaviside unit
functions for a given g, m, and the parameter n.
The discontinuity appears in one or the other, de-
pending on whether X, & —,

' or X, & —,'. The new set of
variables are m, ~, and g with n as the parameter.
If now Eqs. (16) and (1V) are inverted

I.O—

0.2—

I I

sc ANTIFE

X, =[~(2- s) - m']/[(2-~)3- m'],

X, = 2m(1-n)/[(2 —n)' —m'] .
(23)

(24) 00—
0.0 0.2

I

0.6 0.8 I.O
Equation (23) determines Z as a function of m.
Then Eq. (18) will give n as a funcbon of m; and
finally Eq. (24) gives m.

The solutions for the sublattice magnetizations

FIG 8 Sublattlce Dlagnetiz ation per site Rt absolute
zero as a function of electron concentration for the simple-
cubic lattice.
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FIG. 9. Sublattice magnetization per site at absolute
zero as a function of electron concentration for the body-
centered-cubic lattice.
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tion of the number of electrons per site in Figs. 10
and 11 for the sc and bcc structures, respectively.
The ferromagnetic solution of lowest energy cor-
responds to the solution of larger magnetization.
The other ferromagnetic solution has an energy
between this ferromagnetic solution and the para-
magnetic solution. In the antiferromagnetic case
the energy corresponding to the solution of lesser
sublattice magnetization lies slightly above the
paramagnetic solution, while the energy of the
other solution lies slightly above the first magnetic
solution. In Fig. 12 are plotted the curves for the

0.0

-O. I

-0.2

E/N

-02

-0.5
O.O 0.2 0.4 0.6 0.8 I.O

FIG. 10. Energy per site at absolute zero as a func-
tion of electron concentration for the simple-cubic lattice.
The curve marked PARA is the paramagnetic energy.
The lowest-energy antiferromagnetic configuration is
labeled ANTI, and the lowest-energy ferromagnetic con-
figuration is labeled FERRO. The scale of energy is such
that the transfer energy between states at neighboring
sites is —y.

FIG. 11. Energy per site at absolute zero as a func-
tion of electron concentration for the body-centered-cubic
lattice. The curve marked PARA is the paramagnetic
energy. The lowest-energy antiferromagnetic configura-
tion is labeled ANTI, and the lowest-energy ferromagnetic
energy is labeled FERRO. The scale of energy is such
that the transfer energy between states at neighboring
sites is —8.

paramagnetic and both ferromagnetic energies of
the fcc lattice. Again the ferromagnetic solution
of larger magnetization gives the lowest energy.

VI. DISCUSSION

The two-pol. e approximation of Both' is» im-
proved version of the first Hubbard theory3 for the
narrow-s-band model. It is obviously an improve-
ment for the studyof the magnetic properties since
it includes a band shift that makes ferromagnetism
more likely in the nearly-half-filled-band case for
simply-shaped densities of states. The work of
Harris and I.ange shows that this spin-dependent
shift is implicit in the model. Furthermore, two
known deficiencies of the two-pole approximation
are probably not serious when one examines the
possibility of ferromagnetism. One, the approxi-
mation does not give the Kanamori' results at low

density; however, one only expects instabil. ities of
the paramagentic state at higher electron concen-
trations. Two, it shares with the Hubbard' theory
the defect that the single-particle spectrum has a
gap for any finite I, no matter how small; however,
nonparamagnetic phases are likely to occur only
when I is the order of the bandwidth or greater, in
which case one may expect a gap in the single-par-
ticle spectrum.

A novel feature of the two-pole approximation is
the appearance of two solutions for both the ferro-
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0.0

-O. I

E/N -0.2

-0.4
0.0 0.2 0.4 0.6 0.8 I.O 1.2 1.4 I.6 I.8 2.0

FIG. 12. Energy per site at absolute zero as a function of electron concentration for the face-centered-cubic lattice.
The curve marked PARA is the paramagnetic energy. The curve labeled FERRO I is the energy of the saturated config-
uration, and the curve labeled FERROII is the energy of the configuration of smallest non-zero magnetization. For n &1
the energies plotted are E/N- 2 1(n-1). The scale of energy is such that the transfer energy between states at neighbor-
ing sites is —@.

magnetic and antiferromagnetic phases. The physi-
cal origin of the two solutions is associated with
the gap in the single-particle spectrum. (In fact,
such a situation can arise in the original Hubbard3
theory )It is .believed that this is a real feature
inherent in the model and not an artifice of the
approximation used.

For I infinite there are certain exact results for
nearest-neighbor band structures, as considered
in this paper. These results, due to Nagaoka, a

can be summarized as follows. When the band is
nearly half-filled (i. e. , the number of electrons is
slightly less than the number of sites), the ferro-
magnetic state with maximum total spin is the
ground state for sc and bcc crystal structures,
while for fcc crystal structures the maximum total
spin ferromagnetic state is or is not the ground
state, depending on whether the number of elec-
trons is greater or less than the number of sites.
Note that our results based on the two-pole ap-
proximation are in compl. ete agreement with the
conclusion of Nagaoka. 3

For exactly one el.ectron per site and an infinite
I, the energy per site must vanish rigorously for
all magnetic configurations. The two-pole ap-
proximation is seen to give this result for the
phases studied. With one electron per site and I
large but finite, the antiferromagnetic state has a

lower energy than the ferromagnetic state. ' Un-
fortunately, since our calculations are for I= ~,
there is no indication from our work whether the
two-pole approximation will give the relative ener-
gies correctly when I is finite and the number of
electrons per site is one.

In the present investigation we considered only
the case where I is infinite. This affords a con-
siderable simplification since one need consider
excitation energies corresponding to only one of
the two subbands resulting from the splitting of
the unperturbed band due to the Coulomb term.
Also, one has the greatest confidence in the two-
pole approximation when I is infinite since certain
two-particle correlation functions involving a double
occupancy vanish rigorously and one need not find
approximate expressions which are of uncertain
validity. The results we have obtained for the case
of infinite I confirm by their agreement with the
exact conclusions of Nagaokaa this confidence in the
Both~ approximation. This fact indicates that it
would now be of interest to attempt an extension of
these results to finite I so that one couM make
comparisons with the Hartree-Fock-type analysis
by Penn and the t-matrix analysis by Caron and
Kemeny, '~ as well as the more recent functional
integration methods. We intend to make such a
study in the future.
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Low-Temperature Structure of PbTiO, f
P. Doshi, J. Glass, and M. Novotny

Department of Physics, North Dakota State University, Fargo, North Dakota 58102
(Received 19 October 1972)

Measurements of the perturbed y-y directional correlation have been made for the first excited state
of "Sc in polycrystalline lead titanate at —(189+5) 'C. A static electric quadrupole interaction was

observed, having an interaction strength ~QV„=(4.09+ 0.09)X10 s V, which is greater than the value

obtained at room temperature by a factor of 1.04+0.02. The field gradient at the "Sc-ion site is found

to have axial symmetry, indicating a tetragonal structure for lead titanate at —189'C. The axial ratio
at this temperature is estimated to be 1.108+0.027, which agrees well with recent x-ray studies

indicating a new tetragonal phase formed by a transition at —160'C. Using a recently reported value

of y (Sc'+), the quadrupole moment of the 68-keV state in "Sc is found to be (0.109+0.020) b. Using
this number it is shown that the room-temperature values of field gradient observed with '"Sc and "Fe
probes differ by a factor of 16.5.

I. INTRODUCTION

Lead titanate PbTiO~ is ferroelectric at room
temperature and has a Curie temperature of 490 'C,
highest known among the perovskite-type ferro-
electrics. In recent years much work' ~ has been
done on the structure and properties of PbTi03
and its solid solutions from room temperature up
to 600'C. It has been many years, however, since
most studies have been made of the low-tempera-
ture structure of this ferroelectric.

The permittivity of PbTi03 ceramic was first
measured by Shirane and Hoshino~ over a tempera-
ture range of —170 to 580 'C. These measure-
ments indicated only one structural transition, in
sharp contrast to BaTi03 in which three transitions
occur. An x-ray diffraction study from 30 to
535 C indicated a tetragonal structure below the
Curie point, but showed a decreasing axial ratio
and unit-cell volume with increasing temperature.
This was attributed to the temperature dependence
of a strong polarization. In later works, Kobayashi,
Ueda, and Okamoto 9 performed an x-ray study
and measured the dielectric constant for PbTiO~
powder samples in the temperature range of 40
to —150 'C. The x-ray data showed a distinct
transition at —100 C, with an associated increase
in the negative volume expansion coefficient and the
appearance of superlattice lines. The new phase
of PbTi03 below —100 'C was interpreted as a super-
structure in which oxygen ions in different sublat-
tices are considerably displaced in antiparallel di-
rections. This, combined with the negative value of
the volume expansion coefficient, strongly suggests
that PbTi03 transforms into an antiferroelectric

structure at —100'C. This transition, however,
could only be observed if the sample was cooled or
heated very slowly at a rate of 0.3 'C/min. The
dielectric-constant data showed a slow change in
temperature dependence around —60 'C and anom-
alies at -100 and —150 'C, but due to experimental
difficulties no x-ray data were taken at —150 'C.
A detailed report has recently been given 0 on
x-ray, thermal, and piezoelectric studies of the
low-temperature phase transitions. X-ray mea-
surements from 26 to -192 C have indicated a pos-
sible transition to a new tetragonal phase at around
—160 C. Differential thermal analyses showed
anomalies at —160 'C, but not at —100 'C. From
measurements of the electromechanical coupling
factor of the longitudinal length extensional mode,
the authors have concluded that the two low-tem-
perature phases at around -100 and —160'C are
not antiferroelectric. No superlattice lines were
observed below —100'C in this study.

The techniques of perturbed y-y directional cor-
relations (PDC) and Mossbauer spectroscopy (MS)
have recently been used to probe fields at the Ti4'-
ion site in both BaTi03 and PbTiO~ at room tem-
perature. The field gradients observed are
axially symmetric and have magnitudes in PbTiO3
greater than those in BaTi03 by a factor of 1.41
+0.04 (MS) or 1.46+0.07 (PDC). A comparison
of field-gradient values obtained by these two
techniques will be made later in this paper. We
wish to report here the application of PDC to the
measurement of the electric field gradient at the
titanium-ion site in PbTi03 at liquid- nitrogen tem-
perature.


