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Hall effect and transverse and longitudinal magnetoresistances have been measured in polycrystals at
4.2 K and below, in the fields up to 7 T. For pure iron (p 0/p4 =523 and 1993),extrapolation of
the Hall angle P~ to the high-field limit gives a nonzero value tang~=( —2.2+0.5))&10 ' in

agreement with our theory of asymmetric scattering in compensated metals. A nonzero high field,

tang~ =2X10,. is also found for pure lead (p /p = 24 300) at 1,5 K.; this and the nonlinear
variation of the Hall resistivity might come from asymmetric scattering by traces of iron impurities

known to be present. The Hall-resistivity data for pure iron, dilute Fe-Co, and the iron whiskers of
Dheer fall roughly on the same Kohler curve which does not go through the origin. Extrapolation to
the low-field limit for Fe-Co gives a nonzero value, tan)~=(1.4+0.2) X 10, in agreement with asymmetric

scattering theory. Kohler's rule holds very well for the transverse magnetoresistance and the Hall

resistivity of the Fe-Co alone. It fails completely for the Hall resistivity of Fe-Cr, which seems

dominated by the nonclassical "side-jump" mechanism and not by asymmetric scattering. The value of
the side-jump hy for Cr impurities in iron at 4 K is eight times as large as the usual value for
scatterers in iron at 300 K.

I. INTRODUCTION

The Hall resistivity in a ferromagnetic poly-
crystal is usually given' by (in mks units)

p„=E~ /j„=RQ, +R,M, (I)

where j II x is the electric current density, f the
electric field, and B II z the magnetic induction.
The first term has its origin in the I orentz force
acting on the electrons and is present in nonmag-
netic materials too. R, is called the "ordinary"
Hall constant. The second term, characteristic of
a ferromagnet, depends on the magnetization M
while R, is known as the "extraordinary" or the
"spontaneous" Hall constant. Two different mech-
anisms are responsible for R„namely, the clas-
sical Smit asymmetric scattering~ and the non-
classical transport (side jump). '

Many of the existing experimental investigations
of the Hall effect in ferromagnets suffer from the
following defects: (a) The electron relaxation time
is too short for the classical Boltzmann equation
to hold. ' The nonclassical "side-jump" mech-
anism is dominant. (b) The temperature range is
such that it is uncertain whether electrons are
scattered by magnons, phonons, impurities, or
other electrons. In alloys, impure base materials
give additional uncertainties on the nature of
scatterers. (c) In alloys, the solute concentration
is so large that the impurity wave functions are
likely to overlap.

Most of these objections are removed if we work
at 4 K with pure metals and sufficiently dilute al-
loys (concentration smaller than I at. %) made
from zone-refined materials. This experimental

situation ensures that the electrons are mostly
scattered by isolated and well-defined impurities.
Then the dominant mechanism responsible for the
spontaneous Hall effect of magnetic materials is
often the classical Smit asymmetric scattering of
electrons by impurities. This has already been
detected in the case of nickel-based alloys. '~

We have detected asymmetric scattering through
measurements of Hall effect and magnetoresis-
tance in pure iron, pure lead, and iron-cobalt, as
a function of magnetic fields up to 7 T for pure
iron and 6 T for the others. The temperature of
the experiments is 4. 2 K in most cases but some
measurements are taken at lower temperatures
down to 1.35 K. We find the side-jump mech-
anism to dominate in the case of dilute iron-
chromium alloys under the same conditions.

II. ASYMMETRIC SCATTERING

We discuss the "asymmetric scattering" of
magnetized conduction electrons on impurities,
proposed by Smit. In the presence of a spin-
orbit interaction there is a left-right asymmetry
in the differential scattering cross section. As a
result the electrons tend to pile up on one side of
the sample producing a transverse electric field.

The parameter &,7, where &, is the cyclotron
frequency and v the electron relaxation time, may
become large in pure metals or dilute alloys at
low temperature. A theory of asymmetric scatter-
ing for arbitrary +,~ was recently developed by
Berger, using a two-band model with n, and n„
number of electrons and holes per unit volume.
General expressions were obtained for the tangent
of the Hall angle tan&f&s =E„/Z„, the transverse
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magnetoresistivity p =E„/j „, and the Hall resis-
tivity p„=E,/j„,. They show that, for a given im-
purity type and constant magnetization 1II„
Kohler's rules are valid even in the presence of
asymmetric scattering, i.e. , tanPH, p/po, and

pH/po are functions of B/po alone, where po is the
residual resistivity when B=Q. This theory may
be easily extended to an arbitrary number of
spherical bands of electrons and holes.

In the low-field limit &,~« 1, the above theory
gives

v.(s;,/s'„„) + v„(s"„,/s"„„)„
0'~ + 0'g

p=(v, +v„) '~c,
p~ = R0 I3g+ R, JI/I,

where

/n~c + vg /tip, cg

(v, +o„)

(2)

(5)

flee O'e + O'If e e + b

where b = v„/v, . is the ratio of conductivities of
holes and electrons. The sign of R, determines
the relative conductivities of the electron and the
hole bands. This is exactly what is obtained in a
two-band model without the asymmetric scatter-
ing. Combining Eqs. (3) and (6) we get

R, =ap (8)

where a=t Qa„n/ Mis a constant of proportionality.
In the high-field limit we get for a compensated
metal (n,e, +n„e„=0) such as iron,

(5)

Here the tensors S' and S have the dimension of
the inverse of a, mobility. The off-diagonal ele-
ments S'„, and S"„,describe the asymmetric scatter-
ing and are proportional to 1Il„whereas the diag-
onal elements S'„„and S"„„give the Ohmic resistivity
just as in a nonmagnetic metal. All elements of
8' and 8" are proportional to the impurity concen-
tration c. The conductivities are given by 0,
= n,e,/S'„„and v„=n„e„/S"„„, where e, = —e„&0.
Equation (2) shows that there is a nonzero asymp-
totic value of tan/0 in the low-field limit, caused
by asymmetric scattering. In the case of a com-
pensated metal ( en, +en„=0) such as iron, Eq.
(5) gives

First we summarize the results obtained by
Smit for the scattering of free electrons by a
square-well impurity potential V(r) in the presence
of the spin-orbit interaction. If R is the range of
the potential,

V=(e'/2m)(u'-u', ), ~&R
(12)

where k and 0, are the wave numbers of the elec-
tron outside and inside the well, respectively. The
solutions of the Schrodinger's equation for the
above potential in spherical coordinates are ' '"

tt" =Z agj, (b,~)P, (cos8),
l=0

Equation (9) implies a nonzero asymptotic value
of tang„ in the high-field limit, caused by asym-
metric scattering. It is to be noted from Eqs. (2)
and (9) that, in the special cases when v, =o„or
when S'„,/S'„„=S"„,/S"„„, the low- and the high-field
asymptotic values are equal in magnitude and op-
posi.e in sign. The magnetoresistance as given
by Eq. (10) is the usual one for a compensated
metal. The M, B,/c term in Eq. (11) is observ-
able only in case of a very pure metal.

It should be emphasized here that the usual two-
band model without asymmetric scattering pre-
dicts that tangH should vanish in both the low- and
high-field limits for a compensated metal.

Previous measurements of Hall effect in iron
by Volkenshtein and Fedorov and Dheer are not
suitable for high-field extrapolation as z,v was
rather small.

Reed and Fawcett concluded from high-field
magnetoresistance measurements on iron single
crystals that it is a compensated metal with some
open orbits. Since our iron samples are poly-
crystalline rods, for some orientations of the
grains the magnetic field will give rise to open
orbits. This high-field effect is not taken into ac-
count in the usual two-band model. The more
general theory without asymmetric scattering,
developed by I ifshitz, Azbel, and Kaganov, is
discussed by Fawcett. It is shown that although
the open orbits may affect p„and p, tang„would
still vanish as 1/B except in a "singula. r field
direction, " which is presumably a zero-probability
event in a polycrystal in the high-field limit.

III. ORDER OF MAGNITUDE OF ASYMMETRIC SCATTERING
IN THE LOW-FIELD LIMIT

v.-'(s'„,/s„'„) + v„-'(s"„,/s"„„)
Oe +OI

p ~ B',/c

p~" M. B',/c .
(10)

g"=e'"'+Z b, b( rb) I( cso)8, ~&R
Z=O

The wave vector k is chosen along the polar axis
x and the electron spin along the 2 axis (the angle
P being measured from z axis). The spin-orbit
Hamiltonian H„, given by
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80 2 2 2 8 8 (14) q&= —i (n —p ) —e ' (3x10 )
2 2 3 "2$0

2mcR p

if the s-wave phase shift is much larger than the
p-wave phase shift. The tangent of the Hall angle
is

tan&f&z = —S„,/S„„=—21m(qP()/3 I &o I

' (17)

We have calculated b0 and q~ from the boundary
conditions at x =R, keeping only the s and p waves,
and assuming k and k, to be real-valued:

(sinp cosn/p} —(sinn cosp/n }
(i cosn/p) + (sinn/n)

(IS)

is added. The wave function becomes p =g" +g",
with

("=Q p,j,(k rf) sing —P,(cos8), x&Rd
1=0

OO

qk, (kx) sing —&~(coss), x & R
l=0

We keep only s- and P-wave phase shifts on the
assumption of a shor](. -ranged potential. Then the
total scattering cross section, or the reciprocal
S„„ofthe mobility, obeys

(1S)

( —coen/n) + (sinn/n )
( —i cosn/n) + (i sinn/n') —sinn (i/P + 1/P)

(19)
where

n =kgR, P=kR,

In Eq. (14) we have considered only the spin-orbit
interaction associated with the impurity potential.
As shown by several authors, ' the combined ef-
fect of the impurity potential and of a periodic
lattice potential is to yield an effective spin-orbit
Hamiltonian which is similar in form to Eg. (14),
but with a coupling parameter enhanced by a factor
of = 3x10 . This enhancement factor has been in-
cluded in Eq. (19).

In the case of very repulsive impurity potential
V, k, and n become imaginary [see Eq. (12)]. It
is convenient to introduce the quantity e'=in in
that range in order to work with real quantities.
The potential will still be proportional to P —n
=P +(n') but n will take negative values. Then
the coefficients b0 and q& are given by

(sinP coshn '/P) —(sinhn ' cosP/n ')
(i coshn'/P) + (sinhn'/n') (20)

[g ( f)3] 3 pg( 4) ( coshn'/n ') + [sinhn'/(n') ]
2mcR p (coshn'/n') —[sinhn'/(n')']+ sinhn'( —1/p +i/p)

~

~ ~ (»)

The range of the potential R =0.026 nm is ap-
proximately obtained from the atomic spin-orbit
parameter for iron (= 0. 1 eV), and Eg. (14) ap-
plied to a Coulomb potential. Taking the electron
energy E = 1.7 eV (a reasonable guess for the
Fermi energy of 3d electrons in iron) we get
P = 0. 2 from the relation E = 8 k /2m = 8 P /2mR,
assuming free-electron mass. Of course this
value is very rough. A simple computer program
was written to calculate S„„and tang„= —S„,/S„„
as a function of P —n~ = P + (n'), using the effec-
tive II„. These are plotted in Fig. 1 where both

S„,and tanQH show s-type resonances for attrac-
tive potentials and a saturation effect for large re-
pulsive potentials. The top of the resonances is
not shown. These resonances and the very repul-
sive limit were not studied by Smit. tang„ is
odd with respect to the impurity potential, as Eqs.
(17)-(21)would imply, to lowest order in the po-
tential. Also the resonances of S„„and tang+ are
approximately z/2 apart in n. In the limit of
infinite repulsive potential (n- ~) and small po-

I

tential range (P 0), Eqs. (17), (20), and (21)
give

tan/8 = —(3x 104) x 2(h/2mcR)~ pe (22)

For p=0. 2 we obtain tang„= —2x10 ~ in agree-
ment with the extreme right side of Fig. 1.

On Fig. 1, tang„ is positive almost everywhere
in the region to the left of the origin. However,
if we were to choose a larger value of P, the com-
plex argument of q& would become sizably different
from v/2, and tang„would be negative in a larger
region close to each antiresonance. This is in-
dicated roughly by a dotten line in Fig. 1.

Huguenin and Rivier~ studied experimentally
asymmetric scattering in dilute nickel alloys and
found in the low-field limit tan/a = —1.1&&10 for
Ni-Fe and Ni-Co and = —2. 2&&10" for Ni-Cu al-. .

loys. One way of explaining the same sign of
tan&]&H in Ni alloys for different signs of the im-
purity potential is to assume that, for minority spin
carriers in Ni-Fe and Ni-Co, we are on the dotted
line at the left of point C (Fig. 1), while in ¹-Cu
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ASYMMETRIC SCATTERING THEORY

IN THE LOW-FIELD LIMIT WITH

JR=0.2 AND E= I.7'
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FIG. 1. Ohmic resistivity (fx: S„„)and the tangent of the Hall angle, tan/0, as a function of impurity potential (~ p' —n4)

according to asymmetric scattering theory in the low-field limit. All curves are for P=0. 2 except the dotted line which
shows roughly the effect of a larger value of p. Point C shows an additional change of sign of tan(t)„ for the latter case.
The S curve does not have any cusp at the origin.

w'e are on the right side of the origin.
The main defect of the present theory is that it

treats s-wave resonances instead of the d-wave
resonances really found in ¹ and Fe. Fert and
Jaoul have recently published a very interesting
study of d-wave resonances, which seems to pre-
dict a change of sign of tangs sometime after the
resonance has passed through the Fermi level
(similar to the dotted line on Fig. 1).

The residual resistance of dilute ferromagnetic
Ni alloys with transition-element impurities at
4. 2 K has been measured by Chen. ' He found that
the residual resistivity shows a very sharp reso-
nance when chromium is dissolved; the resistivity
is very small for elements between Cu and Mn,
and then there is an abrupt jump from Mn to Cr
and a rapid decrease upon continuing to V and Ti.
This behavior can also be explained 6 in terms of
the effect of scattering resonances on the inverse
mobility S„„(Fig. 1). Recently Arajs et al. '7

found a similar resonance in dilute iron alloys at
4. 2 K when the solute atom is chromium, but the
resonance is not so sharp as in ¹ialloys.

It is interesting to see whether the resonance in
the Fe-Cr electrical resistance is also found ex-
perimentally for tangs, and whether the two reso-

nances are shifted with respect to each other as
predicted by our square-well model.

IV. NONCLASSICAL TRANSPORT

It has been shown" that, if the dimensionless
parameter 8/ATE+ becomes large, where ~ is the
electron relaxation time and E~ is the Fermi en-
ergy, the classical Boltzmann equation does not
hold and nonclassical terms begin to dominate.
This corresponds to the cases of concentrated al-
loys or high temperatures. Luttinger' calculated
the Hall effect of ferromagnets on the basis of
quantum transport theory, and found a term R,
=Ap, not predicted by classical asymmetric scat-
tering, which leads rather to 8,= ap [Eg. (8)j.

Recently Berger '" has suggested an intuitive pic-
ture for the Hall effect of ferromagnets above 100K
which, in a sense, gives the physical interpretation
of the mathematical model developed by Luttinger.
He has proposed that, owing to the spin-orbit in-
teraction in a ferromagnet, an electron undergoes
a discontinuous and finite "side jump" at every
scattering by impurities or phonons. This also
leads to the equation

B,=Ap
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pz/po =f(M.by/b R./po»
where A is the electron mean free path.

To first order in by/A, and since I/A~ po,
this may be written

pz/po =fo(& /po) ™,pofi(+ /'po)

(25)

(26)

where fo is an odd function, and f~ an even func-
tion. The second term represents the effect of
the side jump, while the first term is the ordinary
Hall effect.

V. ANTIFERROMAGNETIC CHROMIUM IMPURITY IN IRON

The neutron elastic scattering data show that
the chromium spin is antiferromagnetically aligned
in iron. Izyumov and Medvedev developed the
theory of an impurity atom in a ferromagnetic
crystal, having an antiferromagnetic exchange in-
teraction with the matrix. They predicted the ex-
istence of virtually bound spin-wave modes, analo-
gous to electronic virtually bound states. Even
when the temperature is so low that these spin-

With the assumptions of Born approximation and
short-range potential it is shown that the constant
of proportionality A is the same for scattering by
different impurities. It is also suggested that the
phonon scattering might give the same constant.
The side jump by can be expressed (for a one-band
model) in terms of A as

by =AMPkz/ne

where I, is the saturation magnetization, k~ the
Fermi wave number of the electron, and n the
number of electrons per unit volume.

Lyo and Holstein '" have shown that hy is com-
pletely independent of potential range and shape,
if the 3&&10 spin-orbit enhancement factor is as-
sumed constant, in the Born approximation.

Jellinghaus and De Andres' found for several
dilute iron alloys at room temperature, contain-
ing Si, Ti, V, Cr, Mn, Co, ¹i,and Cu impurities,
that R, = (4x 104)po'oo over almost two decades of
resistivity, where R, is in (m /C) and p is in
(Am). Kooi, Jan, o and Jan and Gijsman ob-
served that R, = (6x 104)p' in pure iron and dilute
Fe-Si over a wide range of temperatures. Sub-
stituting M, = 2. 18 T, the rough values k = 10 m
n= 5x10 electrons/m, and A from the above
high-temperature data, we get from Eq. (24)
~y = 0. 1 nm. The neutron scattering experiments
show that the magnetic moment disturbance of the
above impurities in iron are all localized. Thus
the assumption of a short-ranged potential in ob-
taining Eq. (24) is well justified. The above ex-
perimental facts agree quite wel1 with the predic-
tions of the side-jump theory.

Kohler's rule (Sec. II) fails in the case of the
side-jump mechanism and is replaced by' "

wave modes are not excited, the sizable zero-point
motion of oppositely oriented spins causes a re-
duction of the projection of the spin of the impurity
atom along the spontaneous magnetization. This
is compensated by a contraction of the spins of
the matrix. This contraction is propagated in the
matrix and goes as e"~o", where x is the distance
measured from the impurity atom and

=
a (2zsa) (27)

Here a is the lattice spacing, S the spin of the
matrix, z the number of nearest neighbors, and

E, is the energy of the s-type virtually bound spin-
wave mode.

Equation (27) shows that, the smaller the energy
of the mode, the further the zero-point disturbance
(here the spin contraction) propagates in the ma-
trix. Kroo et al. showed the existence of an s-
type virtual spin-wave state in dilute Fe-Cr alloys
from neutron inelastic scattering experiments.
The mode energy is only E,™1.2 meV, at low
temperature. If we substitute the values of a, J,
S, z for iron and the above value of E, in Eq. (27),
we obtain a range, 1/2& = 1.8 nm.

Direct evidence of the correlation between range
of the spin disturbance and energy of the spin-wave
mode actually exists in the inelastic neutron
scattering data ' for Fe-Mn, Fe-Cr, and Fe-Er.

Such long-range zero-point spin disturbance
might cause considerabl. e small-angle scattering
of electrons. This is not expected to affect the
electrical resistivity, and indeed our recent resis-
tivity measurements in the range around
T=Egks=14 K, where the long-range localized
magnon mode should become excited, fail to show

any spin-disorder resistivity. But it may affect
the Hall data. This will be discussed in Sec. X.

The Cr electronic bound state may also cause
a long-range disturbance. 6

VI. SAMPLES AND THEIR THERMAL TREATMENTS

The pure-iron sample I and the Fe-Co and Fe-
Cr dilute alloys were obtained from Materials
Research Corp. (MRC). Using three-pass elec-
tron-beam zone-refined iron, the alloys were arc
melted by MRC in an inert atmosphere of high-
purity argon. Then they were cold swaged and cut
to size. The pure-iron sampe I' was kindly given
to us by Schwerer of the U. S. Steel Corp. Research
Center. All the samples are cylindrical rods of
diameter =3.1 mm and length =25 mm. The al-
loys were etched with aqua regia. Then the Fe-
Co alloys were annealed in a wet-H& atmosphere,
obtained by bubbling ultrahigh-purity hydrogen
through previously degassed distilled water, at a
temperature of 1300't" for a period of 24 h. Wet
hydrogen is essential for the removal of impurities



A. K. MAJUMDAR AND L. BERGER

such as carbon and nitrogen in iron. ' ' To re-
move the hydrogen from the samples, we annealed
them in a vacuum (P = Sx10 ' torr) for 2—', h at
850 'C. The samples were then furnace cooled
The Fe-Cr alloys were treated in the same way
except that they were annealed in a dry-hydrogen
atmosphere, since chromium is more oxidizable
than the impurities that we were trying to remove.
Instead of a bubbler, a liquid-nitrogen trap was
set up. The temperature of vacuum annealing
(850 'C) was chosen to be below the n yp-hase
transitiontemperature (= 900 C) for both Fe-Co
and Fe-Cr.

The pure-iron samples were not treated ther-
mally, to avoid contamination.

The main impurities, i.e. , cobalt and chro-
mium, were very accurately determined by
Ledoux and Co. , using atomic absorption and
colorimetric methods (Table I). Analyses of dif-
ferent pieces of the same alloy show that the main
impurity concentration differs by at most 0.02 wt%
from one piece to the other, indicating that the
samples are macroscopically homogeneous. The
alloys were spectrographically analyzed for all
metallic impurities by Spectrochemical Labora-
tories in Pittsburgh. Traces of Si, Mo, Ni, Mn,

V, and Sn were found. Residual resistance data
(Table I) give a more reliable estimate of sample
purity, which includes metalloids not visible by
spectrography.

The lead is 99.999%-pure material (ASARCO
grade A-58). It was machined to a rod of length
=2. 32 cm and diameter =0.3 cm. The sample
was etched in a solution of hydrogen peroxide and

acetic acid (1:2), and annealed in a vacuum

(p = 2x 10 torr) for 48 h, at 2'7'I 'C to remove
strains. It was then furnace cooled. The spectro-
graphic analysis supplied by the manufacturer
shows that Si, Cu, Mg, and Fe are present, in
amounts equal to or smaller than one part per
million in weight each.

VII. SAMPLE HOLDER AND MEASURING CIRCUIT

Two fixed Micarta clamps encircle the sample
close to its ends, and hold it in a given orienta-
tion. Each clamp, which may be tightened by
screws, also serves to press an iron wire against
the side of the sample. These wires are the po-
tential probes used in measurements of the Ohmic
resistance.

A third clamp encircles the middle of the sample
and presses two wires tangentially against opposite
sides of the sample. These wires, made of the
same material as the sample, are used as Hall
probes. The Hall clamp rides freely oD the sam-
ple, and follows it if it happens to move slightly
under magnetic forces. The Hall wires must be
positioned as accurately as possible in the same
plane normal to the sample axis, in order to
minimize the contribution of Ohmic voltages. The
Hall and resistance wires were annealed at the
same time as the corresponding samples. They go
to two small copper boxes, where they are sol-
dered to No. 24 copper wires which run to the top
of the Dewar vessel. Sample and copper boxes
are directly immersed in liquid helium.

The magnetic field is provided by a 38-mm-bore
Nb-Ti superconducting magnet. After Hall effect

TABLE I. Summary of sample properties. A, refers to the low-field limit for the alloys, high-field limit for pure
metals. 8, always refers to the low-field limit, and y to an intermediate-field range fEq. (28)]. The temperature is
4.2 K, unless specifically mentioned otherwise.

Sample No.

I
I'

Fe7 of
Dheer

(Ref. 11)
L

II
III
V
1
2
3

1 of
Carter

and Pugh
(Hef. 47)

Solute
concentr ation

Pure iron
Pure iron
Pure-iron

single crystal

Pure lead

0,25 wt/p Co
0.50 wt/0 Co
0.92 wt% Co
0.25 wt% «
0.54 wt/p Cr
0.98 wt/0 Cr
0.70 wt% Cr

p{B t ——0)
(10-" n m)

4. 357
4. 12 + 0.56
2.183

pp = p {B= 0)
(10-" n m)

1.910
0.502
l. 158

Residual
resistivity

ra.tio (pgpp/pp)

523
1993
863

26.6
46
94
91

166
274
199

22. 9
42. 9
91
85

160
274
195

45. 2
25. 2
12.5
14.0
7.73
5.56
7.20

0.082 at 1.5 K 0.082 at 1.5 K 24300 at 1.5 K

B0
(10 "m'/C)

12 0 2
—9.6

17 at 1.5 K
and 0.4T

—1.75
—1.35
—l.41

8.32
ll. 80
12.00
17.10

R8
(10 m /C)

1.51
2.70
6.06
3.85

14.14
37.09
26.30

(10-" n m)

5
3.05
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and transverse magnetoresistance have been mea-
sured with sample axis normal to magnet axis,
the sample is reoriented for the longitudinal mag-
netoresistance measurements.

Hall and resistance voltages are measured by
a Keithley 148 nanovoltmeter, which is a high-
gain, battery-powered, chopper amplifier with a
resolution of +10" V. The nanovoltmeter output
is fet into a United Systems Corp. 251 A digital
millivoltmeter through a Keithley 399 isolating
amplifier. The nanovoltmeter calibration is
checked with a Rubicon Thermofree potentiometer,
used as a low-impedance voltage source.

Sample current (= 20 A) and magnet current are
measured by two shunts connected to another
digital millivoltmeter. The outputs from the two
digital millivoltmeters go to a United Systems
Corp. 611E/620K printing system.

Owing to the small value (=10 V) of the Hall
voltages, precautions such as careful shielding of
circuit. , elimination of loop areas in magnetic
field, minimization of thermoelectric voltages, and
battery operation, and floating of nanovoltmeter
are essential. Sample current is reversed after
each data point, and magnetic field is reversed in
the middle of each run, to isolate in the usual
manner' the Hall voltage from other voltages.
The Ghmic voltage coming from Hall-probe mis-
alignment may be eliminated by field reversal only
if it is reproducible throughout the run, and is not
too large. This is checked carefully during the
runs.

VIII. RESULTS FOR PURE IRON AND Fe-Co ALLOYS

Figure 2 shows the longitudinal magnetoresis
tance of the two pure-iron samples I and I' as a
function of the external magnetic field at 4. 2 K.

The negative magnetoresistance in small ex-
ternal fields below saturation (Fig. 2) is often
found in pure iron and nickel at low temperature,
and can be explained3 ' ' in terms of the magneto-
resistance caused in each Weiss domain by the
internal field 8=M, =2. 2 T which exists even in
the absence of any external field. The external
field B,„,merely realigns these internal fields.
It is possible to find a value of p, called po, which
in principle has no magnetoresistive contributions,
by extrapolating the pure-iron data above satura;
tion back to B=0, as was done by Schindler and
La Roy. ' Nevertheless, we have chosen the min-
imum value of p (at B,„,= 0. 4 T) as our po since
the extrapolation seems to be quite uncertain. '
The residual resistance ratios ps, o/po and the
values of po are tabulated in Table I. The resis-
tivity at B,„,=O for sample I' varies considerably
from one run to the other. This results f rom the
lack of reproducibility of the demagnetized state.

The magnetoresistance data of sample I' in a

RESISTIVITY OF PURE IRON IN

A LONGITUDINAL FIELD

3
Cy

0
'o

l8
o—o—8 Fe I

l-X

X~X—X
Fe I'

X

l

0.2 0.4
I
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Bext. ~T~

0.8
I
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FIG. 2. The longitudinal magnetoresistance p of pure
iron is plotted vs the external magnetic field at4. 2 K.

longitudinal field of 0.4 T between 4. 2 and 1.46 K,
on extrapolation to 0 K, show that 11% of the re-
sistivity at 4. 2 K is contributed by electron-elec-
tron scattering, phonons, or other causes of ther-
mal scattering. This contribution is obviously
much smaller for the less-pure sample I and all
the dilute alloys. Thus in our experiments the
electrons are mostly scattered by impurities.

In the case of Fe-Co alloys, the longitudinal
magnetoresistance data above saturation are ex-
trapolated to 8 = 0 to obtain an approximate po
(samples II, III, and V). However, the p, values
are then slightly adjusted (as a matter of fact
only sample III has to be adjusted by 2/0) in such
a way that the Kohler's rule for longitudinal mag-
netoresistance holds for the three alloys put
together. These adjusted values of p, are tab-
ulated in Table I together with the resistivity
ratios. Figure 3 shows the Kohler plot for longi-
tudinal magnetoresistance where we have plotted
p/p, against B/p, for all three samples. This
procedure was followed by Schwerer and Silcox '
in the ease of nickel alloys. In our case, the
validity of Kohler's rule for the transverse mag-
netoresistance, with the same choice of po, mill
check the correctness of the above procedure.
The choice of po is quite critical because the mag-
netoresistances are quite small for these alloys.
We show only data above saturation. For longi-,

tudinal fields, we have in the rod B=B,„,+JI/I„
where M, = 2. 18 T.

The residual resistivity po when plotted as a
function of cobalt percentage gives an approximate
straight line [see Eg. (2)] with a slope of
9.2x10 Qm/wt% and a, very small intercept.
The latter clearly shows that the concentration of
all other impurities put together is much smaller
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than that of cobalt. Moreover, our measured
slope agrees very well with the average value of
9.4x10 Qm/wt% of the slopes obtained by Arajs
et al. and by Schwerer and Cuddys for Fe-Co
alloys at 4. 2 K.

Figure 4 shows the Kohler plot for transverse
magnetoresistance above saturation of the pure-
iron samples I and I' and the dots represent the
Fe-Co alloys. Here we use B=B,„,+M,/2 The.
behavior in B is typical of a compensated metal

[see Eq. (10)].
We have plotted the transverse magnetoresis-

tance of the three dilute alloys alone on a Kohler
plot in Fig. 5. Kohler's rule is satisfied extreme-
ly well here. This shows that our choice of pp
from longitudinal magnetoresistance data is
meaningful.

We have plotted in Fig. 6 the Hall resistivity
data for the pure-iron samples I and I', together
with those of Dheer" for iron whiskers, on a
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FIG. 4. Kohler plot for
the transverse magnetoresis-
tanee p of pure iron and Fe-
Co dilute alloys at 4.2 K.
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KOHLFR PLOT FOR TRANSVERSE

MAGNETORESI STANCE OF Fe-Ca

l.2-

b
bb

bb
bb

b SAMPLE 11 (0.2S/o Co)

x SAMPLE 111(0.50% Co)

e SAMPLE X (0.92% Co}
FLG. 5. Kohler plot for the trans-

verse magnetoresistance p of Fe-
Co dilute alloys at 4.2 K, on an en-
larged scale.
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Kohler plot. They are located nearly on the same
Kohler curve. This is the first time a Kohler plot
is drawn for the Hall effect of iron. Now it is
possible to interpret the data of different samples
of varying purities on a more general basis. The
dots near the origin show the data for the Fe-Co
alloys {later on magnified).

If we extrapolate the "high-field" pure-iron data
linearly back to 8/po = 0, we find a large intercept.
By large, we mean that, if we calculate the tangent
of the Hall angle at B/po =0 from this intercept,
we get tang„= 0.2-1.2. This intercept is related
to the curvature of the Kohler curve at &,7 = 1.
It is not associated with ferromagnetism or asym-
metric scattering, and can be easily simulated by

three or more bands of different mobilities in any
compensated metal. 'We have used a four-band
model. Assuming S,'„=—5. 963 T, 8„„=3.105 T,

x102 electrons/ms, n, =n4=2. 07x10oo electrons/
m, eq=-ez=e3=-e4= —1.6&&10 C, we obtain1.9

the middle curve of Fig. V. It should be em-
phasized that this is an intermediate-field be-
havior; at still higher fields, the Kohler curve
would curve back to give a vanishing intercept.
This was not stressed enough in Ref. 8.

These large apparent intercepts, and the curva-
ture of Kohler curve, are the real and simple ex-
planation of the "giant" values of the spontaneous
Hall coefficient A, , claimedby Fivaz tobepresent

0 ~ 2
(~2 5

X~
JC g

KOHLER PLOT FOR

HALL RFSISTIYITY
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FIG. 6. Kohler plot for the
Hall resistivity pH of pure iron
and Fe- Co dilute alloys at 4.2 K.
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in the Dheer pure-iron data' at low temperature
and explained by him in terms of an orbital de-
generacy of the band structure of ixon. These in-
tercepts can be understood best by drawing a
Kohler plot. Since they may exist even in nonmag-
netic metals, they should not be described by a
coefficient R, [Eq. (1)j, but rather by a new coef-
ficient ~ and the rough relation"7

valid at intermediate fields.
The Hall data for our sample I' are not included

in Fig. 7 because they correspond to higher (d,7

values, making the intercept determination too un-
certain. Actually, the curve for sample I' is
slightly concave downwards (Fig. 6). Since this
curvature seems to persist up to the highest ~,v

values, it may not be caused by intermediate-field
multiband effects but rather by the M,B2/c as-
sociated with asymmetric scattering at &,~ » l.
These high-field effects [Eqs. (9)-(11)j are treated
in more detail in Sec. IX.

The Kohler plot for the tangent of the Hall angle
is shown for the pure-iron samples and the Fe-Co
alloys in Fig. 8. From Figs. 4, 6, and 8 it is ob-
vious that Kohler's rules hold only roughly for pure
materials, where it is very difficult to identify
and control the nature of impurities. In part for
the same reason, we thinkthat Ehrlich etal. (¹i)
and Wagenblast and Arajs' ' ' (Fe) found a dis-
agreement in the case of pure metals.

The effect of asymmetric scattering on the
Kohler curve for the Hall resistivity can be de-
tected by a closer look at the low-field region.
The data for the three dilute alloys are magnified

in the Kohler plot for the Hall resistivity in Fig.
9 where the curve does not go through the origin,
and Kohler's rule is very well satisfied. Extra-
polation to B/po = 0 gives the low-field asymptotic
value tan/0 = pz/po = 1.4 x 10

We have discussed in Sec. II the fact that
Kohler's rule for the Hall resistivity holds for
asymmetric scattering but not for the nonclassical
transport. So, in plotting Fig. 9, we have sub-
tracted from our data the nonclassical Kohn-
Luttinger contribution (or side-jump contribution).
Equation (23) gives R, =Ap, and we have used~a ~'

A = 6x 10 m/A as discussed in Sec. IV. Combin-
ing this with Eq. (1) and taking p = po the correc-
tions to pg//po amount to approximately 0. 03&&10

0.06x10, and 0. 12&&10 3 for the samples II, III,
and V, respectively. Obviously, this correction
should be negligible for the pure iron. The cor-
rection here is assumed to be field independent.
It is quite possible that the deviation of the curve
for the sample II from those of III and V may be ex-
plained in terms of a field-dependent correction.
It should be emphasized here that even the largest
correction is much smaller than the asymptotic
value of tan&frz obtained by low-field extrapolation.
This implies that we know the asymptotic value
with a fairly good accuracy and so we take it as
tang„= (1.4 a 0. 2) x 10 . This is the same order
of magnitude mentioned in Sec, III for Ni alloys.

The Hall constants Ro, R, [Eq. (1)j, and x [Eq. {28)j
are obtained graphically four our samples and
given in Table I, together with those of Dheer'
for iron whiskers. B, refers to the low-field limit
for the alloys, to the high-field limit for pure
metals. R, always refers to the low-field limit,

0.4 i
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FIG. 7. Theoretical Kohler plot
for the Hall resistivity pz of a com-
pensated metal with four bands of
different mobilities, without asym-
metric scattering. Also shown are
the data for two pure-iron samples.
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and x to some intermediate-field range. The tem-
perature is 4. 2 K unless mentioned otherwise.
The resistivity values in zero external field and
in zero internal field (or an approximation of it),
and the resistivity ratio pgpp/pp are also included.

We note from Table I that, for Fe-Co dilute al-
loys, the low-field R, is roughly (within 20%) in-

dependent of impurity concentration, and R, is ap-
proximately proportional to the zero-field resis-
tivity, in agreement with Eqs. (5) and (8), respec-
tively. From the values of R, and Eg. (7), and
from the value n, = 2. 6 x5l 02electrons/m2 derived
by us from a rough analysis of existing de Haas-
van Alphen periods and band-structure calculations
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for iron, "we get 5 =0.89 for Fe-Co sample V
(low field) and = 0. 32 for pure-iron sample I' (high
field). Thus the electrons are more conducting
than holes in pure iron at 4. 2 K, while the conduc-
tivities are not too different for the Fe-Co alloys.

IX, FAILURE OF THE LIFSHITZ-AZBEL KAGANOV HIGH-
FIELD THEORY IN IRON AND LEAD

In order to study in more detail the Hall angle
of pure iron at high fields, we plot in Fig. 10
tang„=p„/p vs po/B for the samples I and I' using
different horizontal scales. This we call an "in-
verse" Kohler plot. The solid lines are the best-
fitted curves obtained by fitting the data to the
two-band model with asymmetric scattering de-
veloped in Sec. II.

In the first fitting procedure (Fig. 10), we use
n, (=n„) as an adjustable parameter. The other
parameters are S'„„, S"„„, S'„, and S"„,. A function-
minimization program using the Fletcher and
Powell method is used to minimize the least-
squares function with respect to the parameters.
From the best-fitted parameters the a.symptotic
value of tang„ is calculated by Eg. (9), and also
the best-fitted curve extending to po/B= 0. One
run is shown for each sample.

In another fitting procedure, the fixed value e,
=n„= 2. 65x10 ' electrons/m, mentioned above,
is assumed.

The experimental data for the sample I' are al-
most on a straight line. The intercept (point B)
gives the asymptotic value of tanft)~= —2. 5&&10 ~

for this particular run and procedure (Fig. 10).
The asymptotic value of tang„ for sample I' aver-
aged over different runs and the two methods of
extrapolation is ( —2. 2+0. 5)x10 ~. The value for
the less-pure sample I (point A) is —2. 7x 10 '.
However, the extrapolation here is longer, the
asymptotic value is less accurate, and the agree-
ment is rather fortuitous. Also, we know that iron
has more than two bands ' and so the fitting is only
approximate. Since the impurity nature is dif-
ficult to control in pureImaterials, thehigh-field Hall
angle P~ might differ in various samples.

Anyway, we are able to show that there exists a
nonzero asymptotic value of tang„ for ironinthe
high-field limit, in agreement with Eg. (9). Also,
the magnitude of the high-field tanPH is, within a
factor of 2, equal and opposite to the low-field
tangs of dilute Fe-Co, as predicted by the simplest
two-band model with —S'„„=S"„„.

A similar investigation was done on our lead
sample. Like iron, lead is a compensated metal
with some open orbits, as found by Alekseevskii
and Gaidukov from a study of the galvanomagnetic
properties of single crystals.

Extrapolating our transverse magnetoresistance
data below the superconducting critical field

P0/B (10 m /C)
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0

20 40
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FIG. 10, "Inverse" Kohler plot
for the Hall angle fII)H of pure iron
at 4.2 K. Extrapolation to Bjpp=~
is done by fitting the data to a two-
band model with asymmetric scat-
tering. At point A, tanfIji&= —0.027.
At point J3, tan ft)H= —0.025.
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H, =0.08 T gives the zero-field resistivity =20
x10 '2 Am at 4. 18 K (resistivity ratio = 10000},
and 8. 2x10 '~ 0 m at 1.5 K (resistivity ratio
= 84 300). The resistivities at l. 5 and l.96 K dif-
fer from each other by at most 8%. This shows

FIG. 11. Hall resistivity pz of pure lead against magnetic
field at 4.18 and 1.5 K.

that we are definitely in the residual resistance
range at 1.5 K.

A double logarithmic plot of the transverse mag-
netoresistivity vs B gives 2 p = p —pa~ B' ~ at
4. 18 K and o-B ' at 1.5 K. For both pure-iron
samples we found ~p~B ' at 4. 2 K. These facts
imply that the number of grains which are affected
by open orbits is rather small for both lead and
iron.

The Hall resistivity of lead is plotted in Fig. 11
as a function of field at 4. 18 and 1.5 K. Our data
show a lot of curvature up to the highest field for
both temperatures. The value of R, at 0.4 T and
4. 18 K from our data (17x 10 ~' m~/C) agrees well
with those of Borovik~' (16x10 ' m /C) and Taylor
et al. (15x 10 m /C). Borovik also noticed
that R, depends on the field.

To find the asymptotic value of tang„ in the high-
field limit, tangs is plotted vs 1/8 at 4. 18 and
1.5 K in Fig. 12, where we have used different
scales for the two temperatures. A graphical ex-
trapolation to 8= ~ gives a finite value tang„= 0. 06
at 4. 18 K and =0.02 at 1.5 K.

One possible explanation of the nonzero asymp-
totic tangs and of the curvature of the pe data of
lead is the following: The impurities present in
the lead sample are Si, Cu, Mg, and Fe, each
about 1 ppm. The iron impurities, if magnetized
by the comparatively large external field, might
give rise to asymmetric scattering which in the
high-field limit gives pe ~ M+,/c and a finite
asymptotic tang„ tsee Eqs. (11) and (9)]. How-
ever, the magnetization in this case is somewhat
field dependent. Collings and Hedgcock showed
from susceptibility and ESR experiments that it
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FIG. 12. Hell angle ft)~ of pure
lead plotted vs 1/8 at 4.18 and 1.5 K.
Extrapolation to I3= ~ is done graphi-
cally.
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is possible to magnetize iron in magnesium and
aluminum, although we do not know of any such
measurements with lead as a matrix.

It is not clear why the presence of phonons at
4. 18 K should lead to a tangs value larger than
at 1.5 K.

Asymmetric scattering by paramagnetic im-
purities such as Fe in a Au matrix, etc. , has al-
ready been observed in the low-field limit, with

tang„= 10, the same order of magnitude we find
for the high-field limit in Pb.

The large spin-orbit parameter ( of s conduction
electrons in a heavy-metal matrix such as Pb and
Au () =1 eV for Pb' ) leads to (/bZ „)0. 1, where~ „is an interband energy difference. This is
at least as large as the ratio found for 3d electrons
in a Fe or Ni matrix and may explain why similar
tang„are found in both classes of materials. An

effective spin-orbit Hamiltonian, enhanced by a
factor of = 3&&10', is probably present around mag-
netic impurities in lead just as well as in iron or
n.ickel.

X. IRON-CHROMIUM ALLOYS

Rough values of po are obtained by extrapolating
the longitudinal magnetoresistance back to B= 0
(see Sec. VIII). Better values are obtained by ad-
justing p, so that Kohler's rule is obeyed (Fig. 13)
for the longitudinal magnetoresistance of the three
samples. Actually only sample I needs to be ad-
justed, by 4/p. The plot of residual resistance
against impurity percentage is a straight line hav-
ing a slope of 25. 8x10 Qm/wt% compared to the
average slope of 23. 3x10 9 Qm/wt%, obtained by
Arajs et al. ' and Schwerer and Cuddy. A fairly
large intercept shows that there are some un-

wanted impurities which contribute about 20% of
the residual resistivity of the most dilute Fe-Cr
alloy (i.e. , sample 1), and much less of the
others.

The Kohler plot for the transverse magnetore-
sistance is shown in Fig. 14 where Kohler's rule
barely holds. One should note here that the mag-
netoresistance plot is fairly sensitive to the choice
of pp even in a Kohler plot (where both B and p
are divided by pp) because the origin of the vertical
axis is way down from the graph. The discrepancy
between samples land 2 is about 20/p of Ap/pp

=(p —pp)/pp. The sample lis affected most by the
unwanted impurities.

The Kohler plot for the uncorrected ps (Fig. 15)
shows clearly that Kohler's rule does not hold
here. If we use the same value of A as we did for
Fe-Co alloys in Sec. VIII, the Kohn-Luttinger cor-
rections in ps/pp are approximately 0. 1x 10
0.2x10, and 0. 3&&10 for the alloys 1, 2, and

3, respectively. Obviously, applying these small
corrections will not make the Kohler's rule work.
It should be mentioned here that the uncorrected
extrapolated value p„/pp of tang„ for sample 3 in
the low-field limit, obtained from Fig. 15, is
= 0. 032. The magnitude is quite large compared
to the corresponding magnitudes of 0. 014 (our
Fe-Co), 0. 011, 0. 011, and 0. 022 (Huguenin and
Rivier's Ni-Fe, Ni-Co, and Ni-Cu, respectively).
The reproducibility (= 2%) of the data is checked
by annealing a new piece of sample 1 in dry-Hz
atmosphere and repeating all measurements and
also by taking at least two runs for each sample.
To check whether the phonons have anything to do
with the fai]ure of Kohler's rule all measurements
have been taken at 1.35 K for sample 2 for the
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whole range of magnetic fields, and these data
agree very well with those at 4. 2 K.

Now we propose a few possible ways of inter-
preting the Hall data in iron-chromium dilute al-
loys.

(i )f/nzoanted impurities. On the basis of asym-
metric scattering theory (Sec. II) and of our data,
we are able to show that, in order to explain the
discrepancy in terms of asymmetric scattering by
the unwanted impurities (= 20% of total scattering
in our most dilute Fe-Gr alloy), the characteristic
low-field asymptotic tangs of the unwanted im-
purities should be larger than 2&&10 . This is an
order of magnitude larger than any experimental
value that we know for iron and nickel dilute

Bs=apo+Apo (29)

If we plot Rgpo against po we should get a straight

alloys, and is rather unlikely.
(ii) Impurity overlap It ma. y be possible to ex-

plain the failure of Kohler's rule for the Hall ef-
fect in terms of overlap and interaction of impurity
wave functions. Since the residual resistance pp
is found to be proportional to the impurity concen-
tration, the overlap, if any, does not seem to af-
fect the residual resistance. Nevertheless, we
can not rule out the possibility that it affect the
Hall effect.

(iii) Nonclassical transport. Combining Eqs.
(&) and (2&) we obtain (taking p = po),
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line with a slope A (Kohn-Luttinger or side jump)
and an intercept a (asymmetric scattering).
Figure 16 shows such a plot for Fe-Cr and Fe-Co
alloys. 8, is obtained from the uncorrected Hall
data of Table I. While asymmetric scattering
dominates over nonclassical transport in the dilute
Fe-Co, the contrary is true in the Fe-Cr. We
find a = 0, A = 5 x 10 m/A C for Fe-Cr.

It is rather puzzling that this value of A. is about
eight times a,s large as that given by high-tempera-
ture data for iron and many dilute iron alloys
(Sec. IV). This large A value implies a large side
jump by, by Eq. (24). Instead of the usual
Ay = 0. 1 nm, one may have hy = 0.8 nm. This
might be related to the large range (= 1.6 nm) of
the zero-point spin disturbance around Cr, as
mentioned in Sec. V. However, Lyo and Holstein'
have shown that hy is completely independent of
the potential range, if the 3~10 enhancement fac-
tor is itself assumed independent of range. There-
fore, one would have to assume here that the en-
hancement factor is larger for long-range poten-
tials, in order to explain our Cr results. Alter-
natively, the large 4y value might indicate the-

inadequacy of Born approximation '" in the presence
of the Cr electron scattering resonance.

Only because of that giant side jump is it possible
for the nonclassical transport to dominate over
asymmetric scattering in a dilute alloy. If it
does, Kohler's rule is expected to fail for ps (Fig.
15) and to be replaced by Eq. (I). If the side
jump and po are large enough, one can even neglect
normal Hall-effect term in Eq. (26):

ps/po = M.pofi(&./po)

In Fig. IV, we show a plot of Eq. (30) in arbi-
trary units, the even function f, being taken from
the two-band model '":ofside-jumptheory for a
compensated metal, assuming arbitrarily T'„„

T'„, = —T„„for simplicity. The values of

po are chosen in the same ratio as our experi-
mental values for the three Fe-Cr alloys. The ex-
yerimental range of fields is indicated by a solid
line for each curve. Comparing Figs. 15 and 17,
we observe that the curves of the various samples
are arranged in the same pattern in the theoretical
and experimental graphs. The negative intercepts
in Fig. 17 (not present in Fig. 15) could easily be
removed by a more judicious choice of parameter
values. Note that the relatively large slopes in
Figs. 15 and 1V should not be described by an
ordinary Hall coefficient 8, in terms of the I orentz
force alone as done in Table I. They correspond
to an interplay of the Lorentz force and of the
side-jump effect [Eq. (30)]. If we were to use Eq.
(7), Table I, andn, =n„=2.65x10oo electrons/mo
as before, we would obtain h =4.7 for the most
concentrated Fe-C r. But this mobility ratio
probably would be spurious.

In Table I, we give also the results of Carter
and Pugh ' for a 0. 'I-wt%%uo-Cr sample at 4. 2 K.
They do not agree well with ours.

XI. RESONANCES AND ASYMMETRIC SCATTERING IN
F~cr ANo F~eo

From Fig. 16 and Eq. (29), we concluded that
the asymmetric scattering coefficient a was van-
ishingly small in Fe-Cr. This implies that the
resonance present in S„„orthe resistivity of Fe-
Cr (Sec. III) is not present in the asymmetric
scattering tang» =aM, . This is rather in agree-
ment with Sec. ID, which predicts a. shift between
the two resonances. We may be on the dotted line
close to point C in Fig. 1.

Since the Cr nuclear charge is smaller than the
Fe nuclear charge, the Cr impurity creates a
virtually bound state at the top of the M band. The
energy scale of the free-electron model of Sec.
III has to be set upside down to apply to that situa-
tion. The iron majority-spin carriers have their
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Fermilevelclosetothe topof the I band, andsense
the virtually bound state as a scattering resonance.

The fact that no scattering resonance is detected
with Co, Ni solutes ~ at 4. 2 K in Fe is also con-
sistent with the idea of the majority-spin band
dominating the conduction, since any virtually
bound state on Co, Ni, etc. , would be close to
band bottom. Such solutes correspond to the right
side of Fig. 1.

Note that only the relative sign and magnitude of
tanPH for Fe-Cr and Fe-Co can be compared,

since the absolute sign of the = 1Q4 spin-orbit en-
hancement factor cannot be predicted.
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The directions of the easy magnetization in the Ho„Tb, „Fe2, Ho„Er, „Fe„Dy„Tb, „Fe„
Dy„Er, „Fe2, and Ho„Tm, „Fe2 systems have been determined, as a function of x and temperature by
means of the Mossbauer effect in "Fe. If the direction of magnetization of each system is described by
a (x,T) spin-orientation diagram, it is found that the (x,T) plane is divided into two or three regions,
in each of which the direction of magnetization is along a different major crystal axis. Theoretical
calculations based on the assumption that the magnetic crystalline anisotropy is due to the anisotropy

of the interaction between the 4f electrons of the rare-earth ions with the crystal fields reproduced the

general features of the experimental results though small discrepancies remained. Taking into account an

additional contribution to the anisotropy attributed to the Fe-Fe interaction improved the agreement

between the theoretical and experimental spin-orientation diagrams. From the theoretical fits to the i

experimental results a value of (—0.038+0.003)ao ' is derived for the ratio of the crystal field

parameters A6/A4. The transitions between the regions of the spin-orientation diagrams are not sharp.
Possible reasons for the existence of the transition regions are discussed.

I. INTRODUCTION

Cubic Laves phases (type MgCu2) are found in
most rare-earth-iron binary systems. The mag-
netic properties of these compounds have been ex-
tensively investigated in recent years by neutron-
diffraction, magnetic-susceptibility, and Moss-
bauer-effect measurements. All RFez (R is a
rare earth) compounds order magnetically and
their magnetic ordering temperatures are around
600 K. Mossbauer studies on "Fe have shown that
even though these compounds have an identical
crystallographic structure, they present several

types of spectra. ' The appearance of the different
spectra was accounted for in terms of the direction
of the easy magnetization axis relative to the
crystallographic axes of the unit cell in the re-
spective compounds. With the direction of easy
magnetization n along the [100j axis, all iron atoms
are equivalent and a simple six-line spectrum is
obtained, as was observed for HoFe2 and DyFe~.
If n is along the [111]direction, two magnetically
inequivalent iron sites with relative population 3: 1
exist, giving rise to a spectrum which is a super-
position of two six-line patterns, as observed for
YFe~, TbFe3, ErFe~, and TmFe3. With n parallel


