
4072 F. HOLUJ AND R. G. AVILSON

deformation. This permitted us to discuss the
following: (i) The coupling coefficient Cs of Eq.
(24). This is the Van Vleck's' '" coefficient V.
(ii) We pointed out that there was a pair of trigonal
deformations Q, and. Qe in Fig. 6, which seem to
behave like the corresponding cubic pair, ' and
therefore a selection of cubic coordinates for

analysis is an unnecessary simplification. (iii)
Besides the familiar energies of the excited levels
60, h~, and A~, it was possible to estimate the
energy of separation A~ of the ground 2E» doublet
and also the Jahn-Teller stabilization energy.
(iv) On this basis one could also account for some
other features such as the appearance of A„,.
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The spin-lattice coupling coefficients of Mn++ in C,„symmetry have been measured by a
uniaxial-stress method. The two axial sites studied experimentally correspond to an axial-field

parameter D = —130.9&(10 ' cm '. Since the structure of these sites is not yet known, we performed

theoretical calculations of the spin-lattice coupling coefficients for all the different sites which can exist

in ZnS. The coefficients were calculated in an ionic model, following a perturbation method proposed

by Blume and Orbach and generalized to any pressure-induced distortion. It appears clearly that the

components of rank four of the internal crystal field give the preponderant contribution of the

spin-lattice coupling coefficients, the influence of the components of rank two being two orders of
magnitude smaller. The major contribution to the spin-lattice coupling coefficients C,, is given by the

pressure-induced even fields. We show that the equivalent even fields arising from the composition of
the internal crystal fields of odd parity with the pressure-induced crystal fields of odd parity
contribute significantly to the values of the C,, 's. Several other mechanisms such as spin-spin

mechanism and higher-order effects have also been considered. We have shown that the C,, 's would

be roughly identical for the different axial sites existing in our samples.

I. INTRODUCTION

If the 3d ions in cubic and trigonal symmetry
have been extensively studied in EPR experimen-
tally as well as theoretically; there have been
fewer studies made on the variations of the param-
eters of the spin Hamiltonian and pressure-induced

terms of this Hamiltonian under the action of uni-
axial stresses. In fact, since the determination
of the spin-lattice coupling coefficients (SLCC) of
Mn" and Fe ' in MgG by Feher, the majority of
experiments of this type have been carried out on
ions other than 3d .

A theoretical study of the zero-field splitting of
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S-state ions was made by Sharma, Das, and Or-
bach. They studied in a very detailed manner
the influence of the spin-spin and spin-orbit inter-
actions in an ionic and a covalent model. In the
case of MnF2, Mn,"in ZnFz, 'and Mn" in dis-
torted MgO host lattice they showed the impor-
tance of these interactions in the determination of
the effect of axial and rhombic deformations on
the zero-field splitting. They also showed that for
Mn" in these compounds, covalency does not give
a very important contribution. However, for
other 3d ions and for other environments, cova-
lent effects may be predominant. Recently, Han,
Rettig, and Das' have found in hemin chloride a
very strong enhancement of the spin-orbit and
spin- spin interactions by covalency.

More specifically, Sharma showed that the spin-
spin interaction and the spin-orbit interaction
treated in the ionic case by a perturbation pro-
cedure proposed by Blume and Orbach give cor-
rect results for Mn in CdCl~. Our interpretation
of the SLCC's of Mn in ZnS is based primarily
on this perturbation procedure.

In Sec. II, the pressure-induced terms appear-
ing in the spin 'Hamiltonian are given for a C3„sym-
metry. General relations are derived which per-
mit us to relate the shifts of the absorption lines
with the SLCC's for any relative orientation of the
magnetic field and stresses with respect to the
crystallographic axes.

In Sec. III we give the results of the experiments
on Mn" in ZnS. We studied only the SLCC's of the
axial centers corresponding to an axial-field
parameter D = —130.9&&10 cm . ' Our samples
also contained two other axial centers with D =

+ 36. 1&&10 cm ' ~ and two cubic centers. ~

The theory of the SLCC's in the case of a Ce„
symmetry is presented in Sec. IV. The perturba-
tion procedure proposed by Blume and Orbache
is generalized in order to express the new terms
appearing in the spin Hamiltonian in terms of the
matrix elements of the spin-orbit interaction (re-
lating the fundamental state with the optical states
T,) and in terms of the matrix elements of the

internal-pressure-induced crystal field between
the relevant optical levels. Among all other mech-
anisms which can contribute to the SLCC's, we
studied particularly the influence of the pressure-
induced crystal field of odd parity.

The comparison of the experimental results with
theory is done in Sec. V, the structure of the axial
centers studied experimentally not being well de-
fined, we considered the simplest stacking fault to
explain the presence of all the different sites exist-
ing in our sample. We then performed theoretical
calculations for all the axial sites in ZnS (including
the case of Mn in wurtzite). We show that in the
Blume and Orbach scheme, the crystal fields of

rank four give the most important contribution to
the SLCC's and that higher-order effects such as
the Watanabe mechanism and Das —Orbach-Shar-
ma mechanism' are negligible. We also show that
the spin-spin interaction and the odd crystal fields
give non-negligible although non-preponderant
contributions.

II. SPIN HAMILTONIAN

For the experimental determination of the
SLCC's it is very convenient to express the shifts
of the absorption lines in terms of the stress ten-
sor, while the strain tensor will be more adapted
to the theoretical calculations. We will write the
new term ~ of the spin Hamiltonian in the following
manner:

hR=Z St 5DtiS)+Z St 5gt~H)
&sS

+ (higher-order terms in S and H).

In our case, we consider only the new terms qua-
dratic in S and linear with respect to the stresses
(or to the strains). The tensor 5Dt& is real, since
~Z is invariant under time-reversal symmetry
and is symmetric, since the antisymmetric part
of &K gives terms linear in S. We can relate the
symmetric tensor 6D~& to the symmetric stress
tensor X&& by a rank-four tensor C&»&, this last
tensor being symmetric only with respect to i and

j, and 4' and l, but not for a permutation of ij and
kl, as is the elasticity tensor. ' Thus, the tensor
C is analogous to the photoelastic tensor and to the
pressure-induced electrical- conductivity tensor.
This tensor possesses eight independent coefficients
for a symmetry C3„. Since a shift common to all
levels cannot be measured by EPR techniques, the
notations will be simplified by arbitrarily taking

Q 5Dtt = 0, i = l, 2, 3.

Two independent relations can be derived from this
identity, giving

Css 2Cts~ Cst (Ctt+ Ct2)

Thus, six independent coefficients can be mea-
sured. The C tensor will be determined in an axis
system (x, y, z) such that x is in a mirror plane
and z is along the c axis. ~X,t„» is given by the
contracted multiplication

++stxess (C X X S)oontssoted yi

where X is the stress tensor. Explicitly, in the
chosen axis system, we get



+strsss —(Ctt~tl+ Clsxss+ 2C15xls+ Cts+33)~t + (Clsxll+ C 11+22+Cts+88 2C&5+18)~2
2* 3

+ [Cst (+&1++22)+Css+33] 3 + (2C44X28 2Cst+ts) (~2~3+~8 2)
2

~ [C„(X„-X„)+2C„X„](S,S,+S,S,)+ [-2C„X„+(C„-C„)X„](S,S,+S,S,),

where indices 1, 2, 3 correspond, respectively, to
axes x, y, z. It must be noted that the tmo in-
dices of the C's are defined by the correspondence
1- 11, 2- 22, 3- 33, 4- 23, 5- 13, 6- 12; no

factor of 2 being introduced in this notation.
In the theoretical calculations of the SLCC's it

is more convenient to evaluate the coefficients of
the 6 tensor defined by

&&strsts = (G " ~ "S)snstr~tsn,

where & is the strain tensor. In that case, in the
same axis system as used previously, we get G46
= M» and G58= 2 (G«- Gts) instead of C45= C» and

C66=C&&-C&2, for the C tensor. The tensors 0
and C are related by the elasticity tensor

Gi)kl Ale —Cijrs ~

the contraction being done evidently on the in-
dices k and l. The theoretical determination of
the 6&»&'s necessitates the knowledge of the spin
Hamiltonian ln the same axis system as that used
for the determination of the wave functions inter-
vening in the theoretical calculations.

For the experimental determination of the C,», ,
it is necessary to know the relation between the
SLCC's and the shifts of the EPR lines in any axis
system. We mill give below the most general re-
lations permitting the proper choice of the direc-
tion of the applied pressure and of the magnetic
field with respect to the crystallographic axes.
The Hamiltonian can be expressed simply in terms
of the tensor operators 0' ' defined by Smith and

Thornley. ' If we use the iden, tity

»«~'=--'[D -l(D +D )l[~'- l(~l+~')]+ l(D -D )(~', -~',)+ l»;~,',
Q

with the additional convention QD«= 0, we get

0, l 3&2 (&)
+strsss D$3OO + ~6 (Dli D22) ~2 D12 Os

sv 2 I& &&2 . &2&
W2 . {2&+ ~6 ( 11 Dts)+

V 2 ts O-s — ( 18 iD28)01 + ~ (Dts+iD28)O-1 ~

V3

It is convenient to rotate the tensor D, the new terms of the rotated tensor D' being expressed in a compact
form by

(Cll+ 12) (+11+ 22)+ 13+88](~ 8 3)

+ ~2(Ctt-Cls) [(4&mt&st-ttms&sns) (+tt X22) + 2(4& 1&3.2+tsms&nt) Its]

+ 2 C44[(+ms +ns+ +msnns)+28+ (+mt+ns+ +ms+st)+ts] + 2 Cls[(+minn& nms+ns)+ts (+mt+ns+ +ms+st)+28]

+ 2Csi[- (&smstsns+&sms&sns)&12+ 2(4&mttsns+tsms&snt) (&ti-&22)] i

the a „'s are the elements of the matrix of rotation.
If we consider the terms in the spin Hamiltonian

proportional to the axial-field parameter D and

pressure, the second-order correction of the
energy levels is connected only to the nondiagonal
terms of the spin Hamiltonian corresponding to
4M 8 = + 1 and ~M 8= + 2, that is, only the tensor
operators 0,~&~ and O~+z' mill intervene in our ex-
pressions. In this section. me have neglected the
terms proportional to the fine-structure constant
~ and to pressure, since these terms are negligible
in our experiments. The perturbation procedure

used here mill be applicable to magnetic ions for
which D and a are small compared to g p, ~II, H

being the static magnetic field at the resonance.
We mill give here the general expression for the
shifts of the energy levels for any orientation of the
pressure in the case of a C3„symmetry. For a
transition Ms M~ —1, the terms linear in P and
bilinear in D and I' give the following shifts:

ZP&& + ~$8 +'D &3+13+33 + ( 11 22) 18 |
with

A = —', (l —Ms),
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FIG. 1. Axis system used in the experiments. Applied
pressure is located in the (x, y, z) axis system (only z is
represented); z corresponds to the c axis. The magnetic
field H and the c axis define an axis system (X, Y, Z); H

is along the Z axis and the c axis is in the plane ZOX.
The a~&'s defined in Sec. II are the elements of the matrix
of rotation associated to these two axes systems. ~ is
the measured angle, that is, the angle bebveen H and the
projection of the c axis on a plane perpendicular to the
applied pressure P.

B = [3$(S+ 1) —y(8M2 —SM2+ 3)] ~

3gpg H

C = [-3S(S+1)+4 (4Ms —4Ms+2)],
6g PsII

S being the spin. Expanding the D&&'s in terms of
the C&&'s, we get

2 Q 4

gl1shH =)1~A+B 2 + C3axs ass 3ass
3a»- 1 a»- 1

+ (g + g ) [A —Ba +C(1+a )]

+ ((3 + $3) [A+ 2B (a,s- ass) —C a 13],

with

$, = [2 (C11+C12) (X11+X22)+C1sXss](1—3ass),

~2 2 ( ll 12) l(asl 32) (X11 22)+ 4X12 31 32]

~ 3 4 44 ( 32X23+ 31X13) 33

$4 = 2C1, [X,s (a31- ass) —2Xssas, a32],

$3 = 2C31[ 12 33+ ( 11- 22) si]ass ~

The contribution of the terms bilinear in a and
P can be treated in an identical manner. Since
they are negligible in our experiments, we will
not give the corresponding general relations.

Of course, the angles intervening in the formu-
las given above must be carefully evaluated in or-
der to permit the determination of the signs of the
C]~'s.

III. EXPERIMENTS

The experimental apparatus allows us to apply
a static force up to 150 N on the samples in the

temperature range 77-300 K. Slits in the wall
of the cavity permit an irradiation of the sample.
The cooling is made by a gaseous flow of cold
nitrogen. The pressure is applied with a quartz
piston, sliding in a quartz tube. Teflon rings
avoid the breakdown of the quartz tube inserted in
the cavity and subjected to relatively high pres-
sures. Two holes in the tube permit a fast cooling
of the sample, if it is necessary.

Many preliminary experiments were made with

samples of different sizes and with various cushions
between the sample and the piston. For the applied
pressure used in our experiments, the best re-
sults are obtained with cushions in Teflon and com-
pressed cardboard. Even for very small samples,
with dimensions of the order of 1 && l. . 5x 2 min, we

can avoid the broadening of the .absorption lines
due to nonuniaxial stresses in the sample.

Experiments were made on Mn" in ZnS at room
temperature. The classical spin Hamiltonian was
determined by Schneider et al. ' In the axis sys-
tem defined in Sec. II, the spin Hamiltonian of the
two axial centers studied is

23e=gp,,H 5+-3DO,"'—
~43 (a-Z)O,"'

+ ~q (v 10/W7) a(031 ' —013')+A1 ~ S,
with g~l 2 0018' a + 7 35X10 CDl

&
D 13p 9

x10" cm, a —8=+7.68&&10 4cm ', and ~= —64. 9
~10'cm '.

The choice of the cuts of the samples was de-
termined from the general relations given in Sec.
II. In our case, the magnetic field was perpendic-
ular to the applied pressure P. The angle & be-
tween the magnetic field H and the projection of the
c axis on a plane perpendicular to the applied
pressure is very convenient because it can be de-
termined experimentally by the position of the ab-
sorption lines when P=0, the separation of the
hexagonal lines being extremum for co = 0 and ~

The elements aq& of the matrix of rotation
defined in Sec. II can be expressed in terms of &
and in terms of the cosines l„ l„ l, of the
angles between 5 2nd the crystallographic axes
(see Fig. 1),

a31= (- l1ls cosv —lssimu)(l, +ls) ' ',

ass = (- lsl3 cos&+ l1sin(d) (l1+ ls)

(ls+ ls)+1/2 cos~

with the additional relation giving the sign of &,

as1 l, —assi, = —(l1+ls) "'»» ~

All other a&&'s can be expressed in terms of the
coefficients as', ass, a».

For P parallel to the c axis, the shifts are re-
latedto C,s. In that case, is=1, ass=0, a13=1,
Xss=P, and the other X,&'s are zero. From $&



40V6 8 L A N C H A R D, P A R R O T, A N D BOULANGER

4 wH (G)

~ ~
~ ~ ~ 0

h, H

g) Ideg)

20 40 60 80 100 120 140

h, H '

k—3 —& a k

FIG. 2 . Angular variations of the stress effect on the
hexagonal lines M& (+ ~ + ~) and M& (- ~ —~) of Mn"
in ZnS. Al 1 measurements were made at room tem-
perature . Pressure was applied along the c axis (P

2 .8 && 10 dyn/cm ), the magnetic field was rotated in a
plane perpendicul ar to the c axis . The dimensions of the
s ample were 0 ~ 88 && 4.00 && 5 .00 mm, the cross -sectional
area perpendicul ar to the c axis was (0.88 + 0 ~ 01) (4 ~ 00

0 ~ 01) mm ~

C&zP, $ &
= 0 for i 1, we get

gi 26 H= C,3P(A —3 C).

The experimental curves are given in Fig. 2. It

is convenient to deduce C» from the diff erence
4H - 4H, 4H and 4H being, respectively, the
displace ments of the lines corresponding to
M3 (- —, ——,) and M2(+ —', + 2) (for H J. c, the two
axial sites give superimposed absorption lines) ~

With this procedure, the systematic error due to
a slight var iation of the re sonance frevue ncy of
the cavity is eliminated; the experimental value
of C» is

C»= —1.Sx10 '3 cm/dyn.

It must be pointed out that the di spl ace ments of the
lines are almost constant (Fig. 2), the deviations
being due to a slight m is orie ntation of H with re-
spect to P. The terms linear in a and P are neg-
ligible in this experiment, the contribution due to
these terms being less than fQQ th of the contribution
of the terms in DP.

For P perpendicular to the c axi s and for any
orientation of 5 with respect to a mirror plane, we
can measure C», C», and C» . In that case, l 3

0 X33= 33= 3g = g3= 3g = 0 and Xgg+ gp
= P

thus, $3= $2= 0 and

&, = 2 P (C„+C,2) (1 —3 cos2(u),

$ 2
= —2 P (C„—,2) sin ~,

$ 3= 2 P C31 (4 l2- 3) l2 sinu& costs

For /, = 1, the shifts of the absorption lines are

gpss H= 2P (C11+C,2) [(1—3 cos &u)A —(3 sin + cos (u) B—3C sin &u]

2P (C„-C») sin'~ [A —B cos'&u+ C(1 + cos ~)] + 2 PC» sin&a cos& [& + 2B (sin &u —cos'~) —C sin'~] .

The signs + and —correspond to the two axial sites .
Figure 3 shows the displacements 4H, and ~II& for
the two sites and for the lines M 2(2 2) [hH', and
&H'2 correspond to the lines M2 (- 2 ——2)]. The val-
ue of C»+ C,2 is deduced from the value of 2 (&H,
+ 2H2) --,(4H', + d'H2) for &u= 0 (see Fig. 4),

C„~C,2 = 1.84x 10 '3 cm/dyn

for = ~ m we get

C,2
-—8 x 10 "cm/dyn,

thus

C11 ——1.9x 10 cm/dyn

The difference (&H, —d H2) —(&H', —4Hz') re-
ported in Fig. 4 is related to C 5, ~ By taking this
diff erence, we eliminate the spurious shift of the
resonance freguency and we eliminate the first-

order contribution of C» and C» . The second-
order contribution of C» is negligible with respect
to the second- order contribution of C», which is
also negligible, being less than 2 ~ 10 G for any
point in

Fig�.

4. The measured value of C 5& is

. 97 x 10 "cm/dyn .
The remaining coefficients C 44 and C» are mea-
sured by applying a pressure in a mirrorglane at
54' 44' of the c axis. In this case / f ~3 Ep 0,
and f 3 + 1/~3 ~33 +23 +32 ~12 +21 0 +12++33

j= P, and X&3——X3&= —3 v 2

& 1 = 'P[(S11+S12)+S13],

&2 + &2 = 'Pl(S11- S12)+ ~»131 ( 3 cos'&- 1)

$3+ (3 = 2 P(-S4&+v 2 S31cos ra) .
The shifts are given by:

I

Zl1s&H = $, [A(l —2 cos'u1) —', B(3—2 cos'&o—)cos ~- 3C(1 —3 cos (0) ]
+ ($2 + $4) [A 3 B cos &d+ C(1 + 3 cos ~)] + ($3 + $3) [A + ,B (1—

3 cos a&) —C(l——
3 cos &d)]
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kH(G)
&& hH (G)

1.5-

H2
0.

0
~E' ~

rw~ I .0 I I'45
0 4) {deg)

90
0.

CU {deg)

0

—0.

-3
FIG. 3. ZnS: Mn . Angular variation of the

values of the displacements of the lines corresponding to
the transitions Mq(- 2 ——&) and Mq {+g + 2) ~ ~f
and ref' are the shifts corresponding to one hexagonal
site. ~2 and ~2 are the shifts corresponding to the
other hexagonal site. The dimensions of the sample
were 8.25 x 2.85 x 1.55 mm, the cross-sectional area
perpendicular to the applied pressure was (2.85 + 0.01}
x(1.55+ 0.01) mm; pressure was applied perpendicular
to the c axis and H was rotated in a mirror plane (P
= 2 x 10 dyn/cm ). ~ is defined in Fig. 1.

FIG. 5. Angular variation of the shifts ~f and 6&2 of
the absorption lines M&(- 2 —2) ~f corresponds to
one hexagonal center and ~2 corresponds to the other
hexagonal center). The shifts ~f' and ddI2' of the lines
Mg(+ +2 + ~) are also reported in this figure. Pressure
was applied in a mirror plane at 54' 44' of the c axis
(P=0.9x 10 dyn/cm ). The dimensions of the sample
were 6.1 x 2.96 x 1.89 mm. The cross-sectional area
perpendicular to the applied pressure was (2.96+ 0.01)
x(1.89~ 0.01) mm .

Figure 5 shows the angular variations of the shifts
4II& and ~H& for the two sites corresponding to the
absorption lines M~(- &

—2) and the shifts ~Hz
corresponding to the absorption lines M~(+-', —+ —,').
The experimental values of 044 and C» are deduced

from the angular variations of the quantities
——', (bH,'+LkFI') (Fig. 6). ['H~ and ~Hz correspond
to the transition M, (+ —', +-',).] We obtain
the transition M~(+ —,

'
+ a). ] We obtain

C«= 1.4&&10 '' cm/dyn

„aH (G l

5-
~H', -~H;1 2.0-

aH(G)

1.5

1.0

05

2 .- ~o

~o U3 {deg)

15 30 45 60 75 90

FIG. 4. Angular variations of the quantities 2(~f
+~,) —y(~f' + ddI2') and (baf —ddt, ) —(~f' - Lur,'). The
shifts ~f, ~q, ~f, and ~& are given in Fig. 3.
The curve corresponding to (~f —rhHz} —(ddSf —~~) is
related to C&f, the other to Cff and Cf2.

U3 {deg)

0 30 60 90 120 150 180
FIG. 6. Angular variation of the quantities p(chtIf'

—m2 }—y{bRf —~g) and y(dLPf + Lhag} —2 (dkHf' + ~g'}.
The shifts ~f, Lh&2, ~f', and ~2 are given in Fig. 5.
The theoretical curve corresponding to 2 (duff' —~2')

4QRHf ~2) gives )C&f ) =0.97x 10 cm/dyn and )Cfg)
=1.9 x 10" cm/dyn. The other theoretical curve gives
C44=1.4x 10 cm/dyn (the coefficients Cf3 Cf f and

Cf2 previously determined also intervene in the determi-
nation of the theoretical curve).
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C» = 1. 9X 10 " cm/dyn .

IV. THEORY

The evaluation of the SLCC's in the case of
cubic symmetry has been undertaken for a long

,
time; however, it was only recently that a
detailed treatment by Sharma" appeared for the
3d" ions in trigonal symmetry. Great emphasis
was given to the Blume-Orbach (BO) mechanism,
the other mechanisms like spin-spin interaction,
higher-order effects proposed by Das, Orbach,
and Sharma (SDO mechanism), and the Watanabe

process, all being less important. However, we

will evaluate the contribution of these mechanisms,
also taking the pressure-induced odd crystal fields
into account.

The Hamiltonian governing the 3d' ions will be
written

—0 + Ve + So+ Vodd+ + Veven+ +Vodd p

Xo being the free-ion Hamiltonian, V, and X„being,
respectively, the even part of the cubic crystal
field and the spin-orbit interaction. 4Ve„and
&V,«are, respectively, the even and odd parts of
the pressure-induced crystal field. V,« is the odd

cubic part of the crystal field.
Our first aim will be to evaluate the contribution

of 4V„,„to the SLCC's in the case of a Ce„sym-
metry. The most important contribution of 4V„„
is due to the BO mecha, nism, coupling the funda-
mental state to the optical multiplets

& T~ by the
spin-orbit interaction and by the pressure-induced
even crystal field. In our case it is convenient to
calculate the contribution of the most general form
of ~V„„, thus we, will write

4V„„= Z B2Dq+&,
0 even

D,' "s being tensor operators as defined by Judd. '
Linear combinations of the spectroscopic terms
spanning the A2 and E representations of the C„
symmetry will be used here. The only advantage
of this choice is to simplify the theoretical ex-
pressions obtained for the diagonal elements of
the spin Hamiltonian. Several basis functions used
in this paper are different from those of Sharma
because the phase conventions of Racah and Slater
were chosen in order to apply general relations
giving matrix elements of the spin-orbit interac-
tion and crystal field. The general expression for
the I SM8& state, perturbed by R and bV,»2
(BO process), is

3

l'sM, &'= l'sM, &+ Z '
&(p) 'E'M, ilZ- p,', s—', , l'SM, &l,'E'M, —i&8 8 'g S

o ((+) aa Ms" &Ir ' sja&l sasl sss&al™+ s&(&(s') &orna l&soasos) sMs&)la&ossa&)

In this expression, X„is expressed in terms of
the components of tensor operators whose matrix
elements can be calculated from the V of Racah.
The states lqE'&, 11E &, and I4A2& span the E and

A2 representations of the group C» . aq's are the
parameters describing the mixing of the I4T)
levels by the cubic crystal field. && is the energy
difference E(5A,)-E(4T,). g is the spin-orbit con-

I

stant. Following our conventions, the signs of the
basis functions l(F) E'&, I(F) E ), and I(F) A2)
as given by Sharma, must be changed.

The Gq~»'s can be calculated by comparing the
matrix elements of the spin Hamiltonian R,t,&,
with the matrix elements (( SM2)' I rlV„„I ( SM8)'&.
The spin Hamiltonian will be written

+str21n — (G lleli + G12e28 + 2G15 13 + G18e33)Sl + (G 12ell + G lle22 + G13e83 2G15e13) S22 3

+ ~ (G li + G12) (ell + e22) —2G»e88]S8 + 2 (G44e28 G5iei8) (S2S8+ S8S2)

+ [G51(&11—e22)+2G44 13](sls8+ S8sl) + [- 2G15e23+ (Gll —G»)e12](sls2+ S2sl),

no factor of 2 or 4 being introduced in the definition
of the G~»&'s nor in the E&&'s.

We mill evaluate the G's by taking into account
only one element of the strain tensor and then
evaluating the pressure-induced crystal field op-
erators corresponding to the chosen strain (all

other strains being taken as zero). Thus, G»+G»
and G» can be determined from the difference be-
tween two diagonal matrix elements.

For &&& & 0, me get

(Gll+ G12)41183 = 5 f&(2 ')'I &v (ell & 0) I(', ')'&
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and

—&(l, l)'~«....( „«)l(l, l)'&)

( is)6ssso = - *t.&(.. .) I
«--(e «)I(s, —.) &

—&(-', -')'
I «--(ess «)

I
(-', s)'&l .

&(-,', —,')'
~
«,„., ~

(-,', —,')'& =+ ,', W—SB,' X+ ~&aoB,' i

—
+is &20Bsv —si &3Bs X —ss 9 20 B4 p, + is &20B4v

+ s 4140 B sv —Tso &140B4p, (2)

The coefficients G» and G«can be deduced from
the nondiagonal elements 4M& + 1. Taking as non-
zero strains 6» and 6,3, we get

(G ).„.=*~5&(l, l) I&V....( «)~(l, l)'&

and

po'n = ~ o's/+i ~

Polyp

= + «Pi/&» ~

pcsy = + csiri/&;,

o. i, Pi, y, being the coefficients governing the mix-

ing of the multiplets. It is important to note that

D ' and D' ' are the only crystal field operators
which intervene in the calculation of the diagonal
matrix elements.

Other crystal field operators appear in the non-
diagonal terms. Using the following reduced ma-
trix elements of the tensor operators D', ' and D,' '

acting between spectroscopic terms lL, M~& and
II.', M„),

&4IID "'ll 3& = —&3 IID"'ll 4& = 30/7~4v,

(4 IID"'113)= —(3 IID"'ll 4) = —3v'110/7M4&,

(4 IID"'ll 1)= —(1 IID"'ll 4) = 3v'140/7v 4v,

we get

(G44). .o= k~~ &(s, s)'l«even(&is & o)I(s, s)'&.

The other G coefficients can be deduced from non-
diagonal terms dM~=+ 2,

(G'is)6isso = (I/v 40) &(s~ s) I
«,»n(eis & 0)

l (ss s)'»

(Gii- Gis).„so = (4/~40)

x ((-,', -', )'
~
«„„(e„v0)

~

(-'„-,')').

The next task is to calculate the matrix elements
((&~s)' I &V„„l(3'~'s)'&. It is easy to verify that
the difference of matrix elements giving G»- G&z

and G» is analogous to an expression given by
Sharma, thus by choosingthe relevant strains, we
get

~» G» =,'~ ~~(Bso).„"&"&~'p.p p~r
—+s~&(Bs)' „so(s"&C'fxsr(7pcio+ 4WP),

~is = ~i' V 5 (Bs).ssso&i'& L' pc'P par
—k- ~~(Bs)'.„so&&'&&'P~r (7P«+ 4P~P),

with (B4)' = B4 (v 7/&10-)B4 and (s' ) = (3d' Is'"13d ),

((-,', —.')'~«.„,~(s, s)'& =- &v5B,'v+ s&SB',~

— s ~5B4 v —ss 75B4 V—(1, 0/7&3)Bs X

—(5&2/7v 3)B,'X+ (5v 5/Qv' 7)Bs4ii, (3)

with

X = (s & g pc.p pay,
v= &~'&&'P~PP~r,

v = &~'&C'P~v P«.
In each case, it is necessary to calculate the

crystal field amplitude corresponding to the chosen
nonzero strain and then to apply the above formu-
las in order to calculate the G~&'s. The amplitude
of the crystal fields must be calculated in a trig-
onal axis system (x, y, s). In order to relate
directly the matrix elements of &V„„with the
matrix elements of the spin Hamiltonians of Sec.
D, x must be in a mirror plane and z must be
along the 4 axis.

The higher-order effects such as the %atanabe
mechanism, SDO mechanism, and spin-spin mech-
anism will be considered in Sec. V. The con-
tribution of the first two effects is negligible in
our case, and the contribution due to the spin-spin
mechanism does not exceed 10% of the value ob-
tained from the BO mechanism. Therefore, we
will consider a new mechanism which was not
studied in previous papers, that is, the internal-
odd-fields contribution by intermediary of opposite-
parity excited-configuration 3d 4P and M 4f. The
method of equivalent even field operators will be
used here. First developed by Kiel following a
perturbation procedure given by Judd ' and Ofelt, 3'

this method was applied in a preceding paper in
which we also demonstrated the importance of the
mixing of the quadruplets T, by the even cubic
part of the crystal field. The same procedure can
be generalized to the case treated here. The pres-
sure-induced crystal field is written in the form

V Q Bsg)(t&
tsP

giving the general expression for the equivalent
even field

where E„is the energy of an excited configuration
3d~4P or 3d 4f, assumed well separated from the
fundamental configuration. Ig„&'s are states is-



sued from the excited configurations of odd parity.
The equivalent even operator obtained by sum-

ming on. all relevant quantum numbers defining the
states Igg is given in a preceding paper '. The
explicit form of the equivalent even crystal field is

(np )Y"(n'p') (np [x' In'p') B&B'q

&npir'[np& E(„p,&-Z(„p)

(the notations are those of Judd ').
In the chosen axis system, the internal cxystal

field of odd parity is given in terms of B~ D~o',

BSD'~', and BGD3'; thus, the excited configuration
3d 4P act on the SI CC's by intermediary of the
pressure-induced odd fields in 8;D,"' and 83D,"'.
In order to study the influence of the 3d 4f con-
figuration, it is also necessary to take into account
the odd fields B~D~~ '. VYe shall neglect here this
configuration because the mean value (np (x [n'p')
(A' given) is much smaller for excited configurations
3d 4f than for excited configurations 3d 4P, at
least for Mn".

The contribution of the 3d 4P configuration to the
SLCC's can be easily deduced from the general
formulas given in this section and from the ampli-
tudes of the equivalent crystal field given in the
appendix.

V. RESULTS AND DISCUSSION

A. Stacking Faults in ZnS

Since the structure of the two sites studied is
not defined exactly, we will perform the calcula-
tions for all the probable sitesii and compaxe the
theoretical results with the experiments. Our
samples presented, simulta, neously, two cubic
centers related by a rotation of 180 around the
[111]crystallographic axis and four axial sites,
two of them being those studied experimentally and
the two others corresponding to an axial-field
parameter D = + 36. 1 && 10" cm ~. "Two axial centers
having the same parameter D are related by a ro-
tation of 180' around the [111]crystallographic
axis. Since our samples were predominantly cubic,
we will consider the axial sites as being in the
neighborhood of a stacking fault which could also
explain the presence of the two cubic centers.

We wil. l. make the hypothesis that the axial, sites
existing in our samples are due to the sequence of
Zn8 layers~7 ABCACB, -this being the simplest
stacking fault to explain the presence of al.l the
sites in our sample. The different sites appearing
in this sequence can be conveniently described by

the position of the first, second, and third neigh-
bors. " Two sites denoted AS possess six second
neighbors forming a trigonal antiprism and one
third neighbor on the [ill] axis. Two other sites
possess six second neighbors forming a trigonal
prism without a third neighbor on the [ill] axis.
These sites are denoted P¹Two sites showing
the same structure as in the cubic phase up to
the third neighbors will be not considered here.

%'e wiB also consider the case of Mn" in wurtz-
ite although this structure does not appear in our
EPH spectra. (D= —98. 8&&10 4 cm '2').

S= 730 cm C = 2880 cm', Dq= —420 cm '.
These values give p~~ = 44. 09&10 6 cm, pep=
-0.3607&&10 6 cm, and pay= —7. 463&10 6 cm.
Other values intex'vening in the calculation are
g = 300 cm ', (3d I t t M) = l. 548 g, (3d I x'

l 3d')
= 5, 5128 go49 (uo being the first Bohr radius), and
8=2. 35 A.

The pressure-induced crystal fieM was calcu-
lated in a point-charge model. . The values of the
components of the pressure-induced even crystal
field and tneir contribution to the G;», 's for wurtz-
ite and for the sites AS and PN are given in Tables
I and II. It clearly appears that the components
of rank four of the crystal potential give the pre-
ponderant contribution to the 6's. This fact can
be simply related to the very high value of the
parameter v compared to X and i], [see formula (4)],

v=-16, 325. V&&10' ao4,

p, =133.56X10 go, 3V. 50&10 a, .
Thus, an examination of the relations (l)-(4)

given in See. IV shows that the important contribu-
tions are due to B4 for G„+G,z, B~, B', , and

Bg fox' G5g and +44,' +4 and B4 for Ggg- Ggg and
Q,~. The contribution of the crystal yotentials in
B~SD~@' is at most ~00th of the experimental values
of the G's, therefore, in the BQ scheme, these
potential. s do not intervene significantly in the cal.-
culation of the t"'s of Mn" in wurtzite and in sites
A$ and P¹

In order to compare the experimental and theo-
retical values, it is necessary to cal.culate the ten-
sox' C from the tensor 6 and the elasticity tensor
s. From the following eontraeted tensor multipli-
cation

~f jA'l ~Airs Cf p 8

B. Blume and Orbach Mechanism

The parameters a;, P;, y; were calculated from
the energy levels of Mn in sphalexite but, instead
of taking the best fit for the 47, l.evel al.one, we de-
duced the Hacah. parameters and the cubic fieM
parameter from the best fitting for all levels T, ,
473, and 4E, 'The values are



SPIN-LATTICE COUPLING COEFFICIENTS OF A Sd~ ION. . . 4081

TABLE I. Amplitudes of the components of the pres-
sure-induced crystal fields in a point-charge approxima-
tion. The indices ij of the e's mean that z;& is the only
strain responsible for the amplitude, other strains being
zero. The values given permit the calculation of the G's
as given in the left column. The 8&'s are in units of e /
2u~o (ao is the first Bohr radius).

Wurtzite

611+012 (B2), = +0.13104

(B40),' = + 0.106 84

(B20), = —0.390 89

(B4),' = —0.21061

(B22)e = —0.026 74

(B12)q
——+ O. 255 02

(B41) = —0, 044 04

(B42) e
= —0.01177

(B4), = —0.082 31

AS and PN
(values for PN are given in parentheses)

G11+612 (B2)e = +0.13104

(B4),' = + 0.106 84

(B',),„=—O. 39O 89
(- O. 262 11)

(B46)e = —0.196 12
(- o.2oo1v)

(B22), = —0.026 74

(B',),„=+ O. 18914

(B4'), = —0.050 44

(B42), = —0.01177

(B44)e
= —0.082 31

(B-,'),„=—o.5o9 v9

(B2), =-0.26679

(B41), = —0.127 49

(B4')„,= +0.062 29

(B4), = —0.047 08

(B-') — o 3v8o9

(B2)ei = —0.266 79
(- 0.214 163)

(B41), = —0.127 49
(- O. 122 83)

(Bg2), = + 0.086 43

(B4) = —0.048 22

Cii + Cia = (Gii + Gia) (sii + sia) + 2 Gia sia

Cii Cia (Gli Gia) (sii sia) + 2 Gis ssi
1

C44 = 2644844+ Gg 851 y

C„=G„(„-„)+G„„,
Cia (Gii + Gia) sia + Gia saa

1
Cis = a Gis s«+ (Gii —Gia) sis ~

The notations of the tensors C and G are defined
in Sec. II and IV. The s;, 's are the same as those
defined by Nye13 and Bhagavantam. '4 In the above
relations the s&&'s are the elastic compliance con-
stants of cubic ZnS. They are expressed in the
axis system defined in Sec. II. The above relations
will be used in the calcul. ation of the deformations
of the sites PN and AS. The elastic compliance
constants for cubic ZnS were measured by Berlin-
court et gl. 39 In our axis system we get

s,a
= —0.463x10 'a cma/dyn,

s« =+ 1.108x10 'a cma/dyn,

s« =+ 4. 117x 10 ia cma/dyn,

s, a
= —0. 219x 10 'a cma/dyn,

s» = + 0. 864 x 10 "cm'/dyn,

s„=—0.689x 10 "cm'/dyn .
These values were taken at 25'C, the average
temperature coefficients are less than 10 s/'C.

The elastic compliance consta. nts of wurtzite
were recently measured in terms of temperature
by Kobyakov and Pado. 30 At room temperatures,
they are

sia ——Q. 434 x 1Q ia cm /dyn,

s„=y 1, 113x 10"ia cma/dyn,

s« = + 3.428 x10 'a cm /dyn,

s, a
= —0. 148xlQ 'a cma/dyn,

s» =+ 0.863x10" cm'/dyn.

As in cubic ZnS these values vary slightly with the
tempexature between 1.5 and 300 'K. The relative
variation of the s, &

is roughly 3/q for s,a, 2% for
s,s, s», and saa; and 1/q for s,a. Therefore, the
temperature dependence of the C coefficients shouM
hardly be observed by experiments (the variation
of the crystal field by thermal. dilatation being
neglected).

The experimental. and theoretical values of the
C; s are given in Tables III and IV. It appears
that for the sites AS and PN the theoretical values
are roughly identical. %hen compared to the ex-
perimental. results the values of C», C», C»,
and C„are of correct magnitude but the coefficients
C,2 and C«are in disagreement. From the formu-
as giving C11+C13 and C11 —C12 jt j.

theoretical, results should be more px'ecise than the
results we were able to obtain from our model to
get the correct sign for C». Therefore, the wrong
sign for C,2 is not suxprising. It is not yet under-
stood however, why there is a wrong sign for C44.
There being no significant differences in the theo-
retical C;&'s, we cannot attribute the axial centers
studied experimentally to Mn in eithex PN or
A.S sites.

C. Other Mechanisms

The %atanabe process3' can be general. ized to
our case by remarking that the fol.lowing terms
l,inear in P,

( SIX„t P)( Pl V„„ID)( Dt(hV, „,)i t P)( P[3(a, t S)+c.c.
(Z sS Z'P)a (Z'S -Z 'D)-

contribute to the G's. It can be easily seen that
only crystal potentials in B2D,' ' will intervene

in the above expression. In the ca,se of Mn" in
wurtzite, the amplitude of the crystal. potentials of



TABLE II. Contribution of the crystal fields y~+ to the coefficients G;;. Numerical values are given in units of cm per
unit strain.

Crystal field

y(2)
0

Wurtzite
Gii+Gi2

+ 0.001 76

Gis

—0.002 57

AS and PN
(values for PN are given in parentheses)

~i i + G12 t"i3

+O. 00176 —0.002 57
(-O.OO172)

y(4) i
0 +0.31544 -0.28949

{-0.295 47)

y (4)
'k2

y(4)

+ O. 00020

+0.001 37

+0.058 83

+0.433 83

+0.00193
—0.000 72

-0.15565

+0.12408

+0.00020

+0.00102

+0.05883

+0.433 83

+0.00143

—0.000 72
(-o.ooo 58)

—0.064 56
(-0.06216)

—0.215 97

+0.12708

y(4)

y(4)

y(&)

y(4)

y(2)

—0.099 67

+ 0.371 49

+ 0.000 57

—0.003 58

+0.00367

+0.13164

+0.26726

+0.002 73

-0.00051

-0.00099

—0.099 6V

+0.42546

+0.00057

—0.003 58

+0.002 72

+0.26726
(+0.257 49)

+0,002 02

—0.000 52

—0.000 99
{-o.ooo So)

rank two is small, thus, in the axis system chosen
in this paper, the only term different from zero
18 B2 ———0.00073 e /2 IIa. Tile conti'iblltlon of thle
mechanism to the Q's is less than 10 4 cm" per
unit strain and therefore negligible in our case.

Given the small value of Boa, the influence of the
general. ized Das, Orbach, and Sharma mechanism
describing the influence of configurationally ad-
mixed even wave functions can also be neglected;
the contribution to the 6's being of the order of
10"~ cm i per unit strain.

Therefore in the CRse of Mn ln wurtzlte Rnd

in the sites PN and AS, the mechanisms bilinear
in (B~z)„„,~ and (B;);,. can be neg1ected; this fact
being due primarily to the smal. lness of the

(Ba)crIBtal ~

In our case, the spin-spin mechanism gives a
non-negligible contribution. Its contribution to the
diagonal terms of the spin Hamiltonian has been
studied by Sharma. Using the results of Sharma
it can be easily found that for Mn" in wurtzite its
contribution to C,i+ &,3 and to ~,3 ~s

Csi
Cis

Cis

Sites PN

+1.20
+1~ 20
+7.98
—3.26
-6.14
+6.83

+1.09
+2.18
+8.02
—3.22
—6.17
+7.03

Experimental value

+1.9 (10'7&)

-0.06
+0.97
—1.8
+1.4
+1.9

0.o%)
{10%)
(10%)

(5%)

TABLE III. Experimental and theoretical values (BO
mechanism) of the coefficients C,, All values are given
in units of 10" s cm jdyn. Precision of the experimental
values is given in parentheses. The sites AS and PN are
defined in Sec. VA.

Cis

Cis

Contribution of
the even fields

(BO mechanism)

+3.65
—0.57
+6.96

30 14
—1.63
+6.86

Contribution of the
equivalent even

fields of rank four

—0.91
—0.11
+ l.20
+0.30
+O. 84
+0.89

Theoretical
value

+2, 74
-0.68
+8.16
-2.84
—0.79
+7.75

TABLE IV. Theoretical values of the coefficients C;
of Mn in wurtzite. All values are given in units of
10 is cm/dyn.
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(("» + G,a)„„„„=—0.01932 cm ' per unit strain,

(("(~)„„.„„=+ Q. Q25853 cm ' per unit strain.

Therefore, this effect is not negl. igible although
it does not modify strongly the values obtained by
using the BQ mechanism.

To our knowledge, the influence of the pressure-
induced fields of odd parity has not been studied
previously. It clearly appears, for the same rea-
sons given in the study of the influence of the even
fields, that the contribution of the equivalent even
fields of rank two is negligible compared to the
influence of the equivalent fields of rank four.
These fields have been cal.culated in a point-charge
model for Mn" in wurtzite. The results given in
Tabl.e IV were calculated from formulas given in
Sec. IV with F(3, 3, 4) =+ V. 55 in units of 2ao~/ea
and F(3, 1, 4) =+ l. 81 in units of 2a0/e~.

D. Discussion

It must be noted that for Mn" in sites PN or AS,
we have neglected any local. deformation not de-
scribed by the strain tensor of cubic Zns. This
is a useful approximation which gives good results
for simple crystal structures. "'6 Qf course, the
validity of theoretical results depends on the validi-
ty of this approximation. Moreover, in Sec. IIIB,

we made the additional assumption that the nearest
neighbors have the same position as in cubic Zr8.
This is a very crude and possibly erroneous hypoth-
esis, but we must underscore that this hypothesis
is not as essential in the calculation of the C,&'s as
in the calculation of the axial, -fieM parameter, at
least for the BQ mechanism. In any case, the
theoretical model is not sufficiently accurate to
permit a definite identification of the axial sites
studied experimentally, but suggests that the C&z's
should be roughly identical fox the sites AS and
PN.
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%'e indicate bel.ow the ampl. itude of the equival. ent
even fields due to the composition of internal crys-
tal fields and pressure-induced odd fiel.ds. Qnly
equival. ent even fiel.ds due to the interaction of the
fundamental configuration sd with the excited con-
figuration Sd 4p are considered. The indices i and

j mean that the B~'s given in brackets are related
to the component ij of the strain tensor c:

( 4)eau(4p) 35 88 (8()(J +(3p t )+ 245 s ( 3 )(g +(3& & ) pAS 8 ( 3)(p +(» ) Ne & ( &)(p +(Ss 1t 4)s

(84)„„(~„=—~ss V ]0 83 (8()o 5'(3, 1, 4) —
~ss M158s (Bs) g 3'(3, 3, 4)+ ~p45 v 30 Bs(8s )(; F(3, 3, 4)

—~iss 80(8',)„s(s, 1, 4),
(84)~a~((p& =++2(SWSBS(Bq)(p P(3~ 3~ 4)+ q4s&28~(Bs')()F(3~ 3~ 4) 358s(8& )(&5(3, 1, 4)

—Q-v s 8', (8',)„.s(s, 1, 4),

(84p)„„((p) =+ ~p45v 7 803(8~p)(~F(3, 3, 4)+~3(5&783(83)(gP(3, 3, 4) —~ss V 7 Bs(B,)(gs'(3, 1, 4),
(84() „„(4p) = —

~~~ V V Bs(8,')(I F(3, 1, 4) +~(4~ M428~(83)(g 3'(3, 3, 4),
with

ss s 4 = (&Sd~' )4p))
(3d I p'i 4P) E(Sd) —E(4P)

» &Sd) ~'(4P)&Sdi ~i4p)
&Sdlp" l4p) E(sd) —E(4p)

'

We also give the contribution of the Sd 4p excited configurations to the equivalent even terms in 83:

(fC)e,„((p) =+ ~p45v 5 8~(83)(pF(Sp 3, 2)+~(agml5 Bg(8( )g 5'(3, 1, 2) —
((45 41083(83 )(p 3'(3, 3, 2)

—~&58', (8',)„Q.(s, 1, 2),

(8')„„, , =+ /W38, (B,'), P(s, 1, 2) —gpr 2 B',(8',), P(3, 3, 2) -y-B', (8 ), 5'(3, 3, 2)

—~(5 V 38((8,');ps'(1, 1, 2) —~5W28((83)(qP(3, 1, 2),
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(Ba)„„(4p) —
35 B3(Bf)($%(3p l~ 2) g4$B3(B3);yF(3, 3, 2) —

49 Bz(BB);gF(3, 3, 2) —
gg WVBj(Bg)~yF(l, l, 2)

—
~qs B~(B~),~ &(3, 1, 2),

where F(k, p, 2) are similar to the P(k, p, 4) but replacing (3dl r'
t 3d) by (3d l

&~
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It is shown that fruitful information can be obtained about dynamic correlations of exchange-coupled

spin operators by considering both the linewidth AH and area A of a spin-resonance absorption curve.

The product A AH is more directly related to the zero-frequency component of a dynamic correlation
than is hH itself. The technique is applied to the linear-chain salt Cu(NH3)4SO, H~O(CTS).
Measurements of A and h, H are reported and the temperature variation of A AH coth{h 0)p/2kB T) is

compared with the calculations of Carboni and Richards for finite chains. Below T =77 K,
A hH coth{A cop/2k B T) decreases as temperature is lowered. Good agreement is obtained for the

applied field along the a and b axes, but results are less satisfactory along the chain c axis. The
effective exchange frequency co,, is also deduced as a function of T from A, h, H, and Carboni and
Richards's calculations of static correlation functions.

I. INTRODUCTION

The width ~H of an exchange-narrowed elec-
tron-spin-resonance (ESH) line is related both to
the static and dynamic (time-dependent) correla-
tions of spin operators. Although many experi-

mental studies of hII in strongly exchange-coupled
systems have appeared in the literature, in most
instances' no attempt has been made to sort out
the static from the dynamic part. Since the dy-
namics of spin fluctuations often are of primary
concern in ESR investigations, it is desirable to


