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tion theory that, if f is bound to the wall or reflec-
tionless,

f fsL, fsds, +0, J fso, fsds, =0. (83)

Now in the bound case, (13b) for 8 = 0, f, is even
in s& and Lg is odd in sz, so that Q, =O. In the
spin-wave case, f, =f, e'"&'~, the form of the en-
velope function is such that only the term which re-

suits from differentiation of e'"&'& contributes, and
therefore
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Qiven the eigenvalues the eigenfunctions may be
verified by direct substitution.
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We present results of a self-consistent band calculation of the ground-state energy and

charge orderings based on a tight-binding scheme in magnetite. The calculation is greatly
simplified by making use of the large intra-atomic Coulomb interactions between electrons
on the Fe ions, previous estimates of the crystal field splittings, and the magnetic ordering.
We find that below a critical value ( 2. 2) of the ratio of interatomic Coulomb energy U to
bandwidth m the lowest-energy state has no order. Between this critical value and 2.5, the

preferred state is multiply ordered (three nonzero order parameters). For larger values
of this ratio, the Verwey-symmetry state (one order parameter) is stable, but the value of
the order parameter approaches 1 (ionic Verwey order) only in the limit of U/m

INTRODUCTION

For many years, the accepted description of
the metal-insulator transition in magnetite was
that proposed by Verwey, i.e. , that below the
transition temperature the Fe ' and Fe ' ions on

the 8 sites are ordered, the likely order being
alternate (001) planes of Fe ' and Fe ' ions.

Recently, we introduced an itinerant-electron
one-dimensional model of the extra 8-site elec-
trons interacting with each other via interatomic
Coulomb repulsions. The model exhibited a phase
transition from a "disordered" metallic state
above a critical temperature to an ordered in-
sulator below. The charge ordering allowed frac-
tional occupation of sites even at T= O'K. This
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ordering was calculated by self-consistently
breaking the symmetry of the high-temperature
phase, in which all sites have the same occupancy.
The order parameter, or charge difference on
alternate sites in the one-dimensional array,
which could be likened to a [110]line in the real
three-dimensional lattice, was proportional to
the energy gap. Thus insulation and ordering
were simply related.

Hall-effect, conductivity, and thermopower'
measurements all suggest that the band model is
more appropriate to magnetite than the ionic-hop-
ping scheme (although the conductivity is inter-
pretable in either way), but a one-dimensional
description is so simple as to miss many of the
interesting features of magnetite, and of con-
ductivity transitions in general. Neutron diffrac-
tion, electron diffraction, ' and Mossbauer spec-
troscopy all suggest a more complex three-
dimensional charge ordering. We consequently
extended consideration to the actual magnetite
structure. In studies preliminary to the present
work we showed that three-dimensional ordering
can assist in formation of an energy gap, that
the high density of states in the conduction band
can explain the apparent semiconductorlike be-
havior of the conductivity~ in the disordered high-
condMctivity phase above the Verwey transition
temperature T~, and that multiple orderings —that
is, fractional charges within the tetrahedra of 8-
site ions —led, within the Landau theory of phase
transitions, to a first-order phase transition at
Tp' ~

11

In those preliminary studies the interlocked in-
tegral equations for the order parameters were
not solved self-consistently; this cannot be
achieved analytically. Sokoloff ~2 has challenged
our assumption of three order parameters,
asserting that computer calculations lead only to
Verwey c-axis ordering. In this paper we de-
scribe the 0'K behavior of magnetite. We do not
allow for all the possible symmetry breaking that
can occur, but restrict ourselves to a manageable
three-order-parameter theory. We show that for
certain ranges of the ratio of interatomic Coulomb
energy U to bandwidth zv, only metallic band struc-
ture results; as U/so is increased, multiple-
ordering states, with a semiconducting energy
gap, lie lowest in energy, and at high U/w a single-
order-parameter structure lies lowest. It was
only this region of extraordinarily high Coulomb
energy that Sokoloff investigated.

MODEL

The intra-atomic interactions between electrons
on B-site ions is assumed to be large enough that
Hund's rule is satisfied; i. e. , the state of maxi-
mum total spin is realized. For ions with five

electrons, all of them are in a closed shell with
spin —', . The "extra" electron present in half the
ions (using localized-electron terminology) then
resides in a fivefold-degenerate d band of spin
opposite to that of the closed shell. Next, crystal
fields split the d levels. In the spinel structure
the field at a I3 site is trigonal; the levels split
into two doublets and a singlet lying lowest.
Finite overlap of the wave functions of these d elec-
trons broadens these singlet levels into bands,
while interatomic Coulomb repulsion merely splits
the levels. The Hamiltonian, then, for the d
electrons in singlet states is

II —~ ~ jO ggO)01 Ogg+ U)ot gg8$01 fE)g o

t, ot

Here f and j refer to fcc lattice sites; o. and P
refer to positions within a cell. For magnetite,
there are four 8-site ions in the unit cell. We
treat the second term in (1) in the Hartree approx-
imation,

n, n„n) -(n, ~)

the angular brackets referring to the quantum and
thermal average of the enclosed operator. We can
now diagonalize (1) using (2), find the eigenvalues
and eigenfunctions, and then go back and calculate
(n~~). In the one-dimensional calculation, with
one atom per unit cell, n and P indices were
dropped. (n~) was assumed to depend on whether
i was even or odd. The self-consistency con-
dition on the difference (n&, ) —(n&; ~), or order
parameter, can then be expressed in terms of an
integral equation

U g 1 —2f(Z, )
2N A, E~

withe, = [e, +(-,' Um) ]~~ . This was written for
the special case of identical electron and hole
spectra. Thus e, represents either type of ex-
citation in the case m = 0. E, is the excitation en-
ergy for either carrier when mt 0. Note this
about Eq. (3): For any U, no matter how small,
there exists a solution m 0 0. This solution is
also the one for which the free energy is lowest.
This characteristic of (3) makes the one-dimen-
sional model highly suspect. It is known that
such behavior is expected in three dimensions
only for simple cubic or bcc lattices in the ex-
treme tight-binding approximation.

As in Refs. 9 and 11 we now allow all four
charge densities within the primitive cell to be
different. However, we constrain the total charge
(outside of the closed Fes' shells) to be that of
two electrons (corresponding to the ionic de-
scription of two Fe ' and two Fe ' ions on I3 sites
in each molecular unit). This leaves three order
parameters to be determined„we choose to work
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with the linear combinations

m, = —,'(n, —n, + n, —n4),
1/

mp 2 (nf +np n3 n4)

1/m, =-, (n, -n~-n, +n4),

1+ 2+ Pl3+ S4 = 2

where, e.g. , n~= (n, n = 1).
The ordering chosen is the same in each cell.

Electron and neutron diffraction experiments
indicate that the actual ordering involves doubling
of the unit cell along a cube edge. In terms of
our theory, this means that the order varies from
cell to cell and there exist at least two sets of
m values. Calculation of such a large set of
parameters self-consistently becomes unwieldy,
even numerically. We introduce here just enough
symmetry breaking to indicate how multiple
ordering can arise, and under what conditions it
defines a stable ground state.

We use the tight-binding approximation, so
that the operators at (a) create (annihilate) atomic
states. The hopping energies are calculated in
the near-neighbor approximation. There are six
of these to any 8 site: three in the same cell,
three outside. Then

Z, &~=a for in, jP near neighbors

the eigenvalue equation becomes

P(Z. -~„)b.„+ F k.,b.„. (10)

A. Disordered Phase

In this case, all m=O, E =Ep, the atomic
potential corrected for interatomic Coulomb re-
pulsion. Equation (10) can then be handled alge-
braically, because the "potential" k„~ in (10) is
separable. Writing v ~= v —v~, and

h~g= —K cosk ~ 7'~g

= —w(cosk ~ v, cosk ~ f~+ sink ~ v', sink ~ f~)

= —1$(u~ up+ v~ vg)

Eq. (10) becomes
4

(E —X —K)bN —CAN g Z ugbg —'N V~ E Vg by= 0
8=i 8=i

(11)
Multiply (11)first by u„and sum on o.. Then do
the same using v . The resulting two equations
are

(E —X —w)B —~(Z, u~ )B —w(Z, v, u, )B ' = 0

(Z —X —zu)B' —so(Z v~)B' —w(Z v u )B=O

with

= 0 otherwise B=Z, u, b„, —B'=E,v b,
Equation (1) becomes, using (2),

B= u Z aJ.a„+Q E.Z a,'.a.. .
ke, g8 e

where

E =Ep+- Un —Un

Diagonalization of H can now be reduced to
solving a 4&&4 equation by Fourier-transforming
the a' s:

Y
w

ftf'. ~ R~ of
kfM ~1/2 ~ a&~M 8

The sum is over the B-site lattice. In the new
representation

H=Z 2 k q(k)C„(k)Cq(k) (8)

0,„=+b...(k)C'. (k),

Q~g =Ql cosk ' 7'Ofg q holy = E0f

The six vectors v ~ connecting lattice points
(o., P) are parallel to the primitive lattice vectors
of the fcc lattice and one-half their magnitude.
Writing

& 4a = ~an &an ~

with

Solving these two simultaneous equations yields

1 Z/2

~~ =Ep —%k 'w 1+ cos2k ' T~g

The other two degenerate solutions are ob-
tained by setting B,B' equal to zero:

The band structure in the nonordered state is
characterized by two flat bands at X=Ep+ lmj and
two bands of width ~ symmetric about Ep-
At T=0'K, these latter are full and the maximum
of the full bands is at k=0. (See Fig. 1.) At
finite T, there are mobile holes in the valence
band, whose number increases with T. Though
there is, strictly speaking, no gap, the conduc-
tivity increases with 1"because the number of holes
increases, ~ in agreement with experiment for
magnetite above the Verwey temperature. ~4

The ground-state energy in this case is just

(12)

B. One Order Parameter

If m2= m3 = 0, but m& 0, the energy bands can
be obtained analytically in certain symmetry
directions. Since this order corresponds to a
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10-

action term which must be subtracted from the
sum of the solutions of the Hartrpe-Fock equa-
tions (the first term), which includes the inter-
action twice. The plus sign occurs because the
interaction energy is negative. f is the usual
Fermi factor. Having obtained X„„from (10) for
a given (m~, mz, ms), we do the sum indicated in
(13) numerically, repeating the calculation for
new (m~, ma, m~) until a minimum of F in (m~,

l2 -—

I

2&

FIG. 1. Energy vs wave vector along [001], in the dis-
ordered phase. The lower two bands are full for pure
magnetite. The upper two levels are independent of wave
vector in any direction. All energies are in units such
that 8'=l.

10-

layered structure along the Z axis, say, the
[001]bands will differ from those along [100] and
[010]. Along [001],

&=8 —w+ [(2mcos-,'x) +(-,' mU, ) ]'~

—2m~ x~ 2m

X=E+I)+ —U

The two levels at E+ zo have been split by
+ —,

'
Um~; the wide bands have had their degeneracy

at X (x=+2m) removed (Fig. 2). Unless —,'Um, &w,
the bands overlap. Along [100]or [010],

X=E+mcos-,'x+[(-,'Um, ) +w (1 —cos-,'x) ]'~

x = E —m cos-,' x + [(-,' Um, )'+ m'(1+ cos-,' x)' ]'
In these directions there is a gap between valence
and conduction bands [see Fig. 2(b)].

l2

X,

10-

I

2Tr

C. Multiple Ordering

Allowing ms and mz to be nonzero produces a
coupling of the flat band E+m ——,'Um& with the
upper wide band along [001]. This coupling tends
to push the two bands apart, opening an insulating
gap. Numerical calculation indicates that this
gap is very small, an order of magnitude smaller
than either —,'Um2 or —,'Um3. Whether or not this
further symmetry lowering actually happens
depends of course, on whether such a system
lowers its free energy. For T= O'K the free en-
ergy is

E= ~ Z X„,„f(&,„)+-,' U(ma, +mq+m33) . (13)
Apn

The second term is the average of the inter-

I

21T

FIG. 2. (a) Energy vs wave vector along [001]for
(U/N)Bzf = 1.5, m2 =m3 = 0 ~ The Fermi energy equals
10.25; two bands are each partly full. (b) Energy vs
wave number along [100] or [010] (U/zo)m~ =1.5, m2=nz3
=0. Inthese directions, an insulating gap proportional to
m& appears.
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ma, m3) space is determined. We then change the
value of the ratio of V to u and repeat the pro-
cess.

D. Simple Modek for One Order Parameter

Along the m, axis (or, equivalently, the ma or
m3 axes) we have noticed that the following simple
formula holds remarkably well (to the fourth
decimal) for small Um, and fairly well (1% ac-
curate) at Um-1:

F„=—[(3 Um, )'+w'~" 3+-,'Umat+Za . (14)

Equation (14) predicts that, for U/w & 2, the
stable solution is m~ = 0, i. e. , no order. For
larger U/w, the stable order is

m, =~ [1 —(2w/U)3]"3 . (15)

mt increases as w/U decreases, reaching the
ionic limit (m = 1) only for w/U= 0. The energy
in the ground state is

lll1

FIG. 3. Free energy (in units W=1) vs one order
parameter, the other two held fixed. The full line is for
yn2=0. 05, m3=0. 05. The dashed line is for mp 023 0.
The free energy is measured relative to that of the dis-
ordered phase. U/M) = 2.4.

is stable. Even above this value, however,
there are multiply ordered states locally stable
in (m) space, with energy very close to that of
the one-order-parameter state. 3' As U/w is
made larger, the difference in energy between the
one-order-parameter state and the multiply
ordered state becomes larger. The stable m,
value is, of. course, also getting larger. Figure
4 shows how the stable m, value varies with U/w,
and indicates the multiple-ordering region.

It is not hard to see why multiple ordering wins
out in the region near the critical value of U/w.
In this region, we know the stable values of m are
small, and we assume that E may be expanded~6

in powers of m&, m2, m3. E is, in any case, in-
variant under operations of the space group of
Fe304 (0„), and so the general form of the en-
ergy. is

F FQ +24(mt + ma + m3) + B
m 3 m am 3

2 2 2

3

+c ~&my+ ''' . (1'7)

Eo is the energy in the state of no order. The
third term on the right-band side of (17) is al-
lowed because the (mj transform as the off-diago-
nal elements of a rank-2 tensor. " Now in the
"critical" region, A is close to zero, being posi-
tive for U/w close to 4; and negative for U/w

somewhat greater than this (A. need not change
sign precisely at 4;) Then t.he B term dominates,
and this term is nega, tive in some region of (m)
space, independent of the sign of I3, since the
m's can be of either sign. E will be less than Eo
in this region. The idea simply is that, wherever
the stable m, is expected to be small, as calcu-
lated, for instance, using (15), multiple ordering

F„=E——,'U —wa/U, U& 2w (16)

If we had adopted the ionic picture, arranged
the wave functions in the Verwey order, and in-
cluded the hopping energy as a perturbation, Eq.
(16) would result, up to third order in the band-
width. The last term in (16) is, on this picture,
a measure of the zero-point fluctuations about
the Verwey order.

In fact, however, numerical calculation of Eq.
(13) shows that for U/w ~ 2. 2=- 4; the lowest en-

ergy state is that for which all m = 0. Between
U/w = 2. 2 and 2. 5, multiply ordered states have
lower energy. For example, at U/w = 2. 4, the
stable state corresponds to mz ——0. 08, m2=ms
=0. 05. Figure 3 shows F vs m& both for m2

=0.05, ma=0. 05, and for ma=m3=0. For U/w

greater than 2. 5, the one-order-parameter state

/
/

I
I
l

0.5—
I
I
I

0.25 —
I

0 I

0 1

0.75-

Ute

FIG. 4. Self-consistent order parameter mt vs U/zv.

Below U/gy = 2.2, there is no order. In the shaded re-
gions, there is multiple ordering. The dashed curve
shows the order parameter vs U/m for the one-dimen-
sional model . .
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is either a more stable arrangement or at least
very close in energy to the one-order-parameter
state. ~

As we pointed out in the discussion preceding
Eq. (13), we expected the one-order-parameter
state to be unstable for (U/to) m, &2, This is only
partly borne out by the calculations. At U/ts =2. 7,
for example, the stable state is the one-order-pa-
rameter state m, = 0. 7; so (U/to) m, = 1.89. The
ground state for this value of ~ is thus semimetal-
lic. In this respect our results are similar to
the Hartree-Fock calculations of the Hubbard
Hamiltonian, "which indicate a region of U/to
where there is order (antiferromagnetism) but no
insulation.

CONCLUSION

We have been able to show that there is a region
of U/w where multiple-ordering states can be
stable, which pins down the possible values that
this ratio can take. Taking more orderings into
account might widen this region slightly, but
nonetheless the following picture emerges:
Starting from small U/to, we have a disordered
state, followed by multiply ordered states with a
narrow band gap, followed by an ordered metallic
state and, finally, for U/w & 3, an ordered insula-
tor. Multiple ordering explains the extra lines

seen in the Mossbauer results of Hargrove and
Kiindigs and the NMR results of Rubinsteinss (see
also Rubinstein and Forester '). It also partly ex-
plains the neutron and electron' diffraction pat-
terns, i. e. , the appearance of extra structure.
c-axis doubling, which we have not included here,
is of course necessary to obtain the observed h,
k, 1+ —,

' lines.
The actual values of the order parameters vary

with U/w in the shaded region of Fig. 4. The
ground-state order is determined once U/w is
given. These values will of course vary with
temperature. They probably vary in such a way
as to change the symmetry of the crystal below
the Verwey temperature. This change could occur
suddenly, that is, giving rise to an extra phase
change before the disordered phase is reached at
T~. Such a phase change would be accompanied
by the usual signs-for instance, a peak in the
specific heat. A sharp peak in the specific heat
of a synthetic crystal of magnetite at 114 'K has
been reported. '3 In the light of the preceding dis-
cussion, we interpret this as a phase change
brought about by a rotation of the order-param-
eter tensor, just as in many magnetic systems,
where the direction of spontaneous magnetization
will undergo a shift at a temperature less than the
Neel temperature.
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