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Theory of Crystal Distortion and Zeeman Effects in Rare-Earth Compounds with Zircon
Structure

T. Kambara, W. J. Haas, F. H. Spedding, and R. H. Good, Jr.
Ames I.aboratory-VSAEC and Departments of Chemistry and Physics, lovva State University, Ames, Iowa 50010

(Received 25 September 1972)

In some rare-earth crystals there is a second-order phase transition from orthorhombic structure at lower

temperatures to tetragonal at higher. A partial theoretical analysis of these materials is given in this paper.
The basic idea is to consider the rare-earth ion in a crystal field interacting with a strain mode of the
crystal. The temperature dependence of the interactions is assumed. The subjects discussed are the
ground-state levels and their g values, the effect of a magnetic field on the transition and on the direction of
crystal distortion, and the Zeeman effect for the optical-absorption spectrum.

I. INTRODUCTION

Some of the rare-earth arsenates, phosphates,
and vanadates have been found to have remarkable
properties, They have the tetragonal zircon struc-
ture' at high temperature and make a second-order
phase transition to an orthorhombic structure at
low temperature. ' It has been established ' that
the transition is due to a cooperative Jahn-Teller
effect as originally suggested by Cooke et al.
The dominant driving mechanism for the transition
is the coupling of the rare-earth ions to the static
elastic strain. ' The thermal, spectral, and
magnetic properties of the two structures are quite
different. ' An applied magnetic field may in-
crease the transition temperature' ' ' ' and may
even prevent the transition from occurring. '

The direction of the distortion (from tetragonal
to orthorhombic) in the basal plane may be mag-
netically controllable; application of a magnetic
field in the basal plane can cause the orthorhombic
axes to switch around through 90

Theoretical models have been proposed by
Stevens, 6 Elliott et al. ~s'2'28 and by Pytte and

Stevens. Stevens considers a system with a
crystal-field energy contribution, vibrational en-
ergy of neighboring ions, and a coupling between.
Elliott gt g$. ' 7' consider the ion to have just
four states having large quadrupole moments with
axes in the plane perpendicular to the tetragonal
axis and then they couple such ions to the lattice
phonons. Pytte and Stevens use the crystal fields
in a classical way to suggest the low-lying states
of the ion and then couple with a normal mode of
the lattice. While these models do not yet give a
complete understanding of the phenomena, they
agree with the observations as far as they go and

they suggest ways to make further progress.
The purpose of this paper is to give a somewhat

different model for the properties of the orthorhom-
bic phase especially. It is felt that the model is
reliable since it is based on symmetry properties

of the material and that it gives a more quantitative
understanding of some aspects of the problem.

The basic idea is as follows: (Here we will
treat, for example, a tripositive rare-earth ion
with an odd number of 4f electrons in a crystal
field with D~ symmetry. ) The deviation of the
crystal field from T„symmetry is regarded as
small so that the crystal field can be written as
V(T,)+ V(DI„), the second term being treated as a
perturbation on the first. The electron-lattice-
strain interaction is also put in as a perturbation
on the same levels. This interaction is proposed
to be of the form V&Q, where V~ acts on the elec-
tron coordinates and has the symmetry of (x -y )
and where Q is the coordinate for a lattice strain
of corresponding symmetry. The lattice vibration
energy is taken simply as —,'+ Q . It is assumed
that there is temperature dependence in V(D2, ) or
Vl, or both, as needed to fit the data.

These ideas are appropriate, for example, for
Dyv04, DyPO4, and DyAs04. Each rare-earth
ion is surrounded by eight oxygen ions which lie
at the corners of two distorted tetrahedrons, thus
producing the approximate T„symmetry. The dis-
tortion is along the crystallographic [100]or [010]
directions equivalently, indicating the electron-
lattice-strain symmetry to use.

The above model gives a natural understanding
of some of the properties of the material. The un-
perturbed crystal-field levels are classified ac-
cording to the irreducible representations of T„;
these are doublets I'8, I'7 and a quartet I'8. (We
use the notation of Koster et al. 3

) The perturba-
tions cannot remove the Kramers degeneracy, so
we understand that, to have a Jahn-Teller effect,
the unperturbed ground state must be the quartet.
The splitting of the quartet can be calculated as
a function of the lattice-vibration coordinate Q
treated classically, and the minimum of the energy
as a function of Q determines the ground state.
The g values of the states are obtained straight-
forwardly by introducing the magnetic field inter-
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II. DESCRIPTION OF THE MODEL

Let the Hamiltonian for the ion in the crystal-
field potential, interacting with one vibration mode
of its neighbors, be

3Ct=3Cio~+ U(Tu)+ V(Day)+ VrQ+ p(u , Q

where 5C„, is the Hamiltonian for the free rare-
earth ion with an odd number of 4f electrons.

For calculating energies in the 4f" configuration,
only the even part of the crystal field contributes.
Since T„&&C, is O„and D2„xC,. is D&„we write the
even parts of V(T„) and V(D2„) as V(O„) and V(D,„),
respectively, and consider

3CS=R„„+V(O„)+ V(D,„)+Vz Q+ —,(u Q (2)

for calculating the state functions within 4f". The
odd-parity parts are needed in the calculation of
electric dipole transition intensities (Sec. VII).
The Vz, since it has the symmetry of (x —y ), al-
ready makes an even-parity contribution.

The zero-order Hamiltonian is taken to be X„„
+ V(O„)+-,'uPQ . Also, as part of the model, we as-
sume that it is sensible to restrict the problem to
the quartet of zero-order states forming the I',
representation. Otherwise the above Hamiltonian
would give no Jahn-Teller effect. Let these states
be written as yp(r p, y), where y = + —,', + —,', and let
the corresponding unperturbed energy be Ep(r p)

+2' Q

III. ENERGIES AND STATE FUNCTIONS

Now consider the splitting of the I', level by the
V(D4„)+ VzQ perturbation. We follow the organiza-
tion and notation of Koster et a/. for handling the
matrix elements.

The matrix elements of the perturbation can be

action as a further perturbation and it is found that
they may have the property g„» g, , g, as observed
in the dysprosium salts. The switching of the dis-
tortion by a basal-plane magnetic field and the pre-
vention or promotion of the phase transition by a
c-axis magnetic field (as observed in the even-elec-
tron TmVO4, TmAs04 and TbPO4 crystals) are
well understood with this model.

A possible experiment which has not yet been
done is to observe the intensities of the optical
Zeeman lines as a function of the direction of the
magnetic field in the basal plane. In earlier anal-
yses of the Zeeman effect for ions in crystal
fields with C3„symmetry it was found that the en-
ergy levels could be classified as type A or type B
with the significance that A- A and 8- B transitions
have qualitatively different dependence on magnetic
field direction than A- B and B-A transitions. It
is shown below that a similar situation applies for
these zircon structures with the additional com-
plexity of the domain switching.

3
2
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2-1/2 G1

(3)
where G1 and G2 are the appropriate reduced ma-
trix elements of V(D,„) and V~.

As a result of this perturbation the I'8 level splits
into two Kramers doublets with perturbed energies
given by

E(~, Q) =Ep(r;)+,'~'Q'+ [p(Gf+ G', Q')]'" . (4)

We consider these E(+, Q) as adiabatic potentials
of the lattice for the ions in the two possible doublet
states. The shapes of the curves E(+, Q) are
shown in Fig. 1. The shape of the ground-state
curve E(-, Q) depends on the size of Ga relative
to 2(o G1. In case G2 is larger there are minima
at finite strains x Q„we suppose this applies in
the low-temperature orthorhombic phase. When

G2 is smaller there is only the minimum at @= 0;
we suppose this applies in the tetragonal phase.
Thus in our picture the transition occurs because
of temperature dependence in the V(D4„) crystal-
field component (so Gq varies with T) or in the
electron-lattice-strain interaction (so Gp varies
with T). We will discuss the possible origin of the
temperature dependence in Sec. VIII.

There are several remarks to make about the
eigenvalue problem in the orthorhombic case. The
equilibrium strains, where E( —,Q) is a minimum,
are at + Q, where

Qe = (Gp —2(d Gg )/2&d Gp . (5)

(One should minimize the free energy rather than
the total energy to get the equilibrium strain here.
This would lead to considerably more complicated
formulas, without much numerical change. In the
interest of simplicity, since this is a preliminary
treatment of the problem anyway, we minimize
the energy. ) The two possibilities + Q, correspond
to elongation in the [100]direction with contraction
in the [010]direction and the opposite. They are
equivalent, so we will often consider only the posi-
tive value + Q, . The energies at the minimum are

2'

taken from the last table on their page 91. The
V(D4„) is a u& function and the V~, which trans-
forms like x -y, is a gz. The perturbation ma-
trix

&pp(rp~ y') ~ [V(D4h)+ ~LQ] ~pp(r81 y))

is then
3
2
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Thus the energy separation of the two ground dou-
blets at equilibrium is

E(+, e,) -E(-,e.) =Gg~'

The Jahn-Teller energy of the ground level is

E(-, o) -E(-,e.) =(Ge/»)'I:1 —(»'Gt/G')'"1'.
(9)

The state functions are given by the eigenvectors
of the perturbation matrix at Q= Q, . They are

I/ortb+(+t e ) = cos84 9 p(Fet —e)+ sin84 'Pp(Fet 2) 7

(9a)

I/'ortb. (+ ~ e ) = —cos8 Pp(Fe ~ e) —sin8, q p (F8 q
—e),
(9b)

I/'o tb+( e) = sin8 Pp(Fe —e)+ cos8, Pp(Fe e)
(9c)

q&„tb, ( —,——,') = sin8, 9Ip(Fe, e) —cos8, I/Ip(Fe, ——') .
(9d)

The notation is that p„t„„(a,y) are the eigenfunc-
tions for the orthorhombic phase with strain + Q,
corresponding to the eigenvalues E(+, I4I,) with
y= + —,

' labelling the degenerate states at each en-
ergy. The angle 8, is given by

G -1 (21/e e G /Ge)
- 1/e

I Ge I 1+ (2' Id Gt/Ge)

with the understanding that m~ 8, ~ 0. Relative
signs of the functions were chosen here as sug-
gested by the time-reversal convention

T (q, m&=(-1)' Jq, -m& .
The angle 8, has different ranges, depending on
the signs of G& and G»

if G&
-. 0 and Gz& 0, then ~g& 8, & 0,

if G& & 0 and Gz & 0, then —,
'

m & 8, & —,
' g,

if G&&0 and Ga&0, then —,'w&8, &-,'w,

if Gg& 0 and Gp&0, then n. &8, & 4m.

The sign of Ge is not such an important property
of the material as the sign of Gz, because G only
comes into the problem multiplied by the strain-
coordinate Q which takes on both positive and nega-
tive values equivalently. The Hamiltonian X2 has
the Dz„symmetry when Q is not zero; since we
are considering an odd number of 4f electrons, all
the functions p,„t„,(a, a —,') belong to the 1'e irre-
ducible representation.

Later we will need the state functions for the ortho-
rhombic phase with strain —Q, . As seen from
Eq. (3), changing the sign of Q is the same as
changing the sign of Ge or, according to Eq. (10),
changing cos8, to —cos8, while leaving sin8, alone.
The ground-state functions are thus written down
directly by making this change in Eqs. (9c) and

(9d):

I/Io tb-( — ~e) = —sin8, Pp(Fs —e) —cos8 Pp(Fe e)
(11a)

y tb ( —,——,')=sin8, pIp(Fe, —,')+cos8 pp(Fe& e).
(11b)

The ground-state energies are the same for both
equilibrium strains.

Now consider the eigenvalue problem for the
tetragonal phase. The equilibrium strain is at
Q=O. As seen directly from the perturbation ma-
trix at Q = 0 the energies are

E(+, 0)=Ep(Fe)+2
~

Gt ~, (12)

and the eigenfunctions are

p„t(+, +-,')=+ ' pp(F„+-,') when G, &0,
2

=+Pe(Fe~ + e) when Gg&0;
(13a)

v„t(-, ~-,')=+ IG'I yp(F„+-,') when G, 0,

=+up(Fe, + e) when G, &0 .
(13b)
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FIG. 1. Adiabatic potentials for the two ground doublets
as given by Eq. (4). In case (a), the crystallographic
distortion occurs and the equilibrium is at Q= + Q,. In
(b) there is no distortion and the equilibrium is at Q = 0.
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The signs on the right were chosen to make the
functions y„,h, (+, y) and p„,(s, y) coincide at the
transition where G~= 2&d G&. The Hamiltonian $Cz

has D4„sy mmetry when @=0; the y8(I'8, +-,) states
belong to the I'~ representation and the p8(1 8, + —,')
states to the I'6 representation.

Observation of the energy separation of the two
ground doublets gives, according to E41. (7),
(GB/48) as a function of temperature in the ortho-
rhombic phase and, according to Eg. (12), gives
2 I G& I as a function of temperature in the tetrag-
onal phase.

IV. g-VALUES OF THE LOWER LEVELS

Once the state functions are establishea zn terms
of the unperturbed functions y8(I"8, y) the g factors
can be calculated in terms of properties of the un-
perturbed functions.

The g factors are defined by

g„(~ ) = 2 & q (+, —,')
l (r.„+as„)

I q (+, ——,')),
g, (+ ) = 2i&qr(+, —,')

I
(I., +2s, ) I

Ip(~, --,')),
g.(~)=

2&v (~, -')
I «.+2s.) I

~(~ -') &

Either @pugh or pt t is to be used on the right and
the + sign indicates the upper or lower level at
E(x). In terms of these g factors the magnetic
contribution to the Hamiltonian pBH (L+28) is,
effectively for each level,

'Rz i B(ASxH~+gy syHy+gsssHg) q

where H is the applied field, s are spin--,' matrices
acting on the y label in y(a, y), and pB is the Bohr
magneton.

The matrix elements of I +28 for the functions
y8(1'8, y) may be expressed in terms of just two
real parameters, say K& and K~, and matrix ele-
ments given by Koster et a/. " That is, one can let

&'Po(~8 r) I
(&+2s)

I po(I 8 r')&

= —iK &g„ I
u, v„.) —iK &q„ Iu' v,'.&, (l5)

where the subscript n indicates x, y, or g and the
complex conjugates of the matrix elements on the
right are given in the table on p. 93 of Ref. 31.

The g values in the orthorhombic phase with
strain + Q, are found to be

g„(+)= (+) (2K4+K8) sine, (sin8, + 0 3 cos8 )t

- (&)'"K (16a)

g„(+ ) = (~)'~'(2K, + KB) sine, (sine, —W3 cose, )

—(-,')'"K, , (16b)

g, (+)= —(T8-) ~ (2K, +K8) (sin 8, —3cos 8,)

—(-,')'"K, ; (16c)

g„(—) = (+)'~ (2K, +K8) cose, (cose, —W3 sing, )

—(—8')'~ KB, (17a)

g, ( —) = ( 48) {2Kl+KB) cose, (cose, + v 3 sine, )

—(-,')'"K:, (17b)

g ( —)= —($p) (2Kl+K8) (cos 84 —3 sill 88)

—(8 )' 'KB ~ (17c)

g. (+)=g, (+)= —(8)'"K8,

g,(+)=(+)'"(3K,-K,);
g„(—) = g, ( —) = (T8-)'~' (4K, —3KB),

g, (-)= -(4', )'"(K,+3K,) .

(iSa)

(18b)

(19a)

(19b)

Similar formulas apply for the tetragonal phase in
case G, & 0 but with g„(v) in place of g, (a ).

One consequence of these formulas is that g val-
ues of the upper doublet are simply related to
those of the lower doublet:

g„(+)=-,' I -g„(—)+2g, ( —)+2g, ( —) ],
g, (+)= 8 [2g„( —) -g, {—)+2g,( —)],
g,(+ ) = 8 [2g.( —)+ 2g, ( —) -g, ( —) ]

(2Oa)

(2ob)

(20c)

This applies in both phases and for either sign of
Gg.

It is interesting to consider these results in
case IK& I is large compared to IK& I because then
they imply a large anisotropy. Thus, if the K&

terms are discarded in Eqs. (17), one has

g„(—) = (48) 2Kl cose, (cose, —&3 sing, ), (2la)

g, ( —) = (+8)'~82K, cos8, (cose, +v 3 sine, ),
g, ( —) = —(l8) ~ 2Kl(cos 8, —3sin 8,) .

(21b)

(21c)

Therefore, at a temperature such that 8, = ~6m

[8w], g, (=) Ig„( —)] is large conlpared to g„( —)

[g, ( —)] and g, ( —). Evidently a similar extreme
anisotropy occurs for the upper level at 8,=+ —,'m

or —,'8. One sees from Eq. (10) that if G, &0 then

8, = 0 or n at the phase transition temperature so
the extreme anisotropy in the lower level occurs
at a higher temperature than the extreme anisot-
ropy in the higher level. On the other hand, if
Gf ~ 0 then 8, = —,

'
m at the transition and the extreme

anisotropy in the higher level occurs at the higher
temperature. If such anisotropies are observable,

The g values in the orthorhombic phase with
strain —Q, are found from these results by replac-
ing cos8, by —cos8, as discussed before. It is
seen that g„, g„and g, for the ortho+ states are
the same as g, , g„, and g, for the ortho —states.
As a convention we will use the symbol g to mean
the ortho+ values only. Thus the ortho+ g values
are g„, g, , g, and the ortho- values are g„g„,
g, . Formulas for the tetragonal phase in case
G&&0 are
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3Cz= I/, zH(L +2S ) (22)

present also. This gives field-dependent formulas
for the energy levels and field-dependent condi-
tions for the distortion to be stable.

The matrix to be considered now is that of Eq.
(3) with, in addition, the elements

(o o'o, r')
I
1sz

I o o(1'o, r)) .
These are given by Eq. (15); the nonzero entries
are

(oo(f'o ~ l) l~z I~o(f'o, +-')) =+(i's)'"(3K'-Kz)/ zH,

«o(1 o '-)110.
1
~o(f', ~-.)) =+(k) ' (Ki+3K)i.H

The degeneracy is now completely removed. The
matrix still reduces to two 2&& 2 components, but
they are no longer equivalent. The I'8 level is split
into four with energies

E(~, n, e, H) =Eo(1',)+z~'e'+n(k)'"(2K. K~) /. H-
+t (.' I:G& n(-k)'"-(2K K.) /.H]"'Gze'2"-.

(23)
Here, & and g may independently be plus or minus
one, giving the four energies.

The effect of the field is to shift the energies by
r/($) (2Kz-Kq) I/. zH and to replace Gq by
Gq -q(+)'/ (2K&+Kz) I/zH. Consequently, as ar-.

gued following Eq. (4), the lower levels,
E( —1, g, Q, H), have minima at finite strains in
case

Gz» I.G& —9 (ss) (2K&+Kz) //zH] (24)

and otherwise the minima are at @=0. When in-
equality (24) holds, the energies at the minima
are

E( —1, q, Q„H) =Eo(I'o) —Gz/4ar +q(+go ) (2Kz

-K,) p H-((o'/2Gz) [Gq —g(~)'/ (2Kg+K ) p H],
(25)

as may be inferred from Eq. (6).

the sign of Gj can be inferred from the data. The
sign of G& can also be inferred from the g factors
in the tetragonal phase. The point is that, if X2 is
small, then I g, ( —) I

= -,' I g„( —) I if Gq & 0, whereas
I g, ( —) I » I g„( —) I if Gq & 0. Special relations ap-
ply among the g values of one level at the tempera-
ture at which there is the extreme anisotropy in
the other level. For example, if g, ( —) is large
compared to g„(—) and g,( —), then Eqs. (20) imply
that Ig„(+) I =-21g~(+) I =- Ig,(+) I

=-
~ Ig, ( —) I.

' V. DEPENDENCE OF THE TRANSITION ON MAGNETIC

FIELD APPLIED ALONG THE e AXIS

The model shows how a c-axis magnetic field
may influence the transition. One reconsiders the
splitting of the 1"o level, Sec. III, in case there is
a Zeeman term

Many things can happen here depending on the
signs and sizes of the various parameters. Sup-
pose for example that G2&2& G& and that 2K& -E& & 0.
At zero field there is the Jahn- Teller distortion
and the crystal is orthorhombic. At finite field
values the q(2Kz —Kq) term in Eq. (25) probably
dominates the q(2K&+Kz) term because the latter
has an uPG~/Gz factor; consequently, we suppose
that g = —1 gives the ground state.

If, on the one hand, G~/(2K, +Kz)&0, Eq. (24)
implies that, as the field is increased at constant
temperature, the material makes the transition to
tetragonal at the value

( lg )1/2 1 1 G',

I 2Kg+Kz I i/, z 2 ccP

I Gg I 1
isa, +z, i

(28)

and then increases monotonically afterward. Con-
sequently, the effect of a magnetic field is at first
to stabilize the transition and increase the transi-
tion temperature but, for high enough field, the
transition temperature is lowered. In a field
greater than H,z(T = 0) the orthorhombic phase
does not exist.

This model also indicates that a substance with
no zero-field Jahn-Teller effect (Gz& 2o/ G~) but
with G~/(2K~+Kz) & 0 would. nevertheless have the
phase transition with c-axis magnetic fields in the
range

I
G~l- Gl/2'"~'& (k)'" 12K +Kzl~.H & IG~ I+ Gl/2'"~' ~

(29)
The extreme fieM values here are the limiting val-
ues for inequality (24) in case q = —1.

VI. SWITCHING OF DOMAINS BY A MAGNETIC FIELD
APPLIED IN THE BASAL PLANE

We consider now what the model implies about
the stability of the domains under an applied mag-
netic field.

If the lattice is distorted so that the strain is
+Q„ the ground-state energy and wave functions

(25)
The right side of Eq. (24) increases monotonically
with H so an applied field decreases the transition
temperature. In a field greater than H,~(T= 0) the
orthorhombic phase does not exist.

If on the other hand Gq/(2Kq+Kz) & 0, Eq. (24) im-
plies that, as the field is increased at constant tem-
perature, the material makes the transition to
tetragonal at the value

P. 1 1 G2.S=~s i2» ~ i
2vs a+1&iI).K~+E2 p, z

(2V)
The right side of Eq. (24) decreases as H increases
until the value



3950 KAMBARA, HAAS, SPEDDING, AND GOOD, JR.

are given by Eqs. (6) and (9c) and (Qd). If the mag-
netic field is applied in the basal plane at angle )t)

with the g axis, the effective contribution to the
Hamiltonian is

0 e-cx,

z, =-,'g, a(g', cos'y +g„'sin'y )'" (,.„),
(34)

where X, is defined by
Kz= p, pH{g„s„cosg„+g,s, sing„), (3o)

the g factors to be found from Eqs. (17a) and (17b).
The eigenvalues of this matrix give the perturba-
tions on the energy

-i,x +& cost nt ~as sine tn

(g„'cos p +g,'sin')t) )'~'

For the lower level the state function is then

(36)

2 2 1/2
r)E(+ Q, ) = + iJ pH

1/2
x ].+ ~~' ~~' cos2 . 3&

On the other hand, if the lattice is distorted so
that the strain is —Q„ the energy is still given by
Eq. (6) but the wave functions now by Eqs. (11).
The g factors are now different and the magnetic
contribution to the Hamiltonian is

Xz = pzH{g, s„cos)t)„+g„s,sing ) .
The eigenvalues of this matrix are

(32)

1/2
x j + z z cos2 . 33

Cx+ g'y

Suppose the system stays at minimum energy as
the field direction (t) is varied. Regardless of the
relative size of g, and g„, the minimum energy is
attained by switching from strain + Q, to the op-
posite strain wQ, at angles P =a —,'z, +4m, +~4,
etc. It is necessary that g, and g, be unequal or
else the energy difference between the two strains
would be zero.

VII. LINE INTENSITIES IN ZEEMAN PATTERNS

In this section we discuss optical-absorption in-
tensities for the rare-earth ion in the distorted lat-
tice and with magnetic field applied in the basal
plane.

The absorption intensity for an electric dipole
transition from an initial state g, to a final state
P& is proportional in the closure approximation to
1()))& I V'P I)));& I . Here V' is the odd-parity part
of V(T, )+ V(Dz, ) in Eq. (1) and P is the electric
dipole moment operator in the direction of polar-
ization of the incident radiation.

If g„&g, then, according to Eqs. (31) and (33),
strain+@, is stable when —,'m& p & —4m or 4m& y
& fz and strain —Q, is stable otherwise. If g, & g„
the opposite situation occurs. With strain + Q,
stable, the state functions are p„,„,( —,y) per-
turbed by the '$Cz of Eq. (30). As a convenient no-
tation we will write this Hamiltonian as

0 e-&&m

& I Bgn+ tefft 0e

and so the final states in the transition are

(41)

(42)
with energies

Ey= Ep(I' ) + (Gz —2(o Gf)/4p) Gz+g„—'p g„H . (43)

Here g„=+1 labels the two states. W"..ich state is
lower depends on the si.gn of g„.

The P dependence of the transition energy
comes only from the ground level so is of the form

6E(+Q,) =6E(H=O)+ ', i)sH[g„g„+{g„c-os, y

+g, sinzp ) +), (44a)

6E( —Q, ) = 6E(H = 0) + ,' i) p H[q„g„+ (g, cos 9)—

+g„sin y ) +] . (44b)

)ti 2 [e 9»th+( ) 2) e c»th+( ) z) ]
(36)

On the other hand, with strain —Q, stable, the
state functions are p,„(—,y) perturbed by the Zz
of Eq. (32). One defines X by

g, cosQ —ig sing
e

(g cos p +g„sin g )'~

and the state function for the lower level is

0;=2 "'[e'"-"y»tp ( ) 2) e'"—"y»-th ( I 2)] ~

(38)
The p dependence of the energies of these states
is given in Eqs. (31) and (33), the negative signs
to be used.

We will suppose that the final states in the absorp-
tion process came fromI"6 or I'7 representations of

R„,+ V(O„)+—,'&u Q„say pp(1' y), where y=a —,
' and

n is 6 or 7. The perturbation V(D4„)+ Vz, Q, does
not affect these states in the first order. They have
just one g factor defined by

g. (y
l

s
l
y'& =( op(1'„, y) I

(I +28)
I
c'p(i'. , y')&, (39)

so for them the, magnetic contribution to the Ham-
iltonian is

z= gag„s ~ H . (4o)

With the magnetic field at angle p in the basal
plane, this matrix can be written as
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,=&qo(1;, --.)
I

V" P. I(s...,(-, —.)),
P, =

&q o(I'. , —-')
I
v'P,

I q .. .(-, -') )

y, =
&q o(1"., a) I

V'P,
I q.,t~(-, a))

(45a)

(45b)

(45c)

For the intensities I „ofabsorption of light po-
larized in the n direction from states of strain
+Q, to states g„, one finds

Figure 2 shows how this transition energy looks,
as a function of P, allowing for the domain
switching.

To simplify the matrix elements &$/ I U'P, l p, ),
one regards po(I'„, y), V', P„P„P„and

y„,„(—,y) as bases of the I'„ I"~, I'4 Ia 13 r,
representations of Dz. The matrix elements are
then given by the tables on p. 37 of Koster et al.
in terms of a few parameters, say,

I I

II
I

I (I
I

I

-7r -7' p 0 7rjp 7r

Prn

Iy
/ I

n
\ \

I
r w 1 f r

-7r -7ryp 0 7rj p 7r

4m

I I I I

-vrj& p 7' 7r

4m

FIG. 3. Typical intensi-
ties I~ of absorption lines
as a function of the angle
Q~ at which a magnetic
field is applied in the basal
plane. The formulas for
the curves are Eqs. (46)
and (47). The case g„&g2
(so that strain + Q~ is stable
when g7t &Q &- @7t. Or ~47|.

&p~&4~ and strain —
Q~ is

stable otherwise}, g„and
g~ both positive (so that the
transition is type A to type
A), q„=+1 is considered.
The solid lines are for
transitions from the stable
distortion, the dotted for
transitions from the un-
stable distortion.

I„,~-,'[I -q„cos(y +x, )] I
ct, I',

I""l [1+~.cos(e-+x. )] Ip. I',
f„~—,'[I+q„cos(4 -x, ) ] I y, I

(46a)

(46b)

(46c)

g„cos @ +g& sin @«s(~ ~X.)
(g, cos P +g, sin P )'/

The formulas for X are the same except with g„
and g, interchanged.

Sketches of typical intensity patterns in some of
the possible cases are given in Figs. 3-6.

A remarkable feature of the intensity patterns is
that when the domain switching effect is disregard-

g„= IO, g&
=I

The right-hand sides here are just the absolute
squares of the matrix elements &gI I

V'P
I

I/I,.).
The dependence on p„can be written out explicitly
since Eqs. (35) and (37) give the sine and cosine of

That is,

ed, the continuous curves f„(I/I„) (partly solid and

partly dotted lines) either oscillate considerably
like I„and I, in Fig. 4 or oscillate only weakly like
I, in Fig. 3 and Fig. 4. These qualitatively differ-
ent behaviors are related to the types of levels in-
volved in the transition. As suggested by the
earlier work on C» symmetry, ' "we define the
level g, (g ) or pI(p ) to be type A if the level forms
the same representation of C» abogt the x axis
when the magnetic field is along the x axis as of C@,
about the y axis when the magnetic field is along
the y axis. We define the level to be type 8 if
these representations are different. In deciding
which representations occur, it is only necessary to
watch C~ or C@ since all the functions have the
same inversion property. It is straightforward to
find the Ca characters using

C,„p(+-, ) = t' q'(+ a ), Ca„p(+ -,') =+ 0 (+ a) .

Thus from Eq. (42) one finds

Ix 5
CL
I—
ca 4
CL
«x

(3
CL
LtJ

Ltj

O

CO
Z'.

I—

I )
/

I
I 'I

I

I
/

I

I ~

/

I
I

I
I

I

I
I

I

I

I
I

I
I

I
I

I
'I I

I
I

i I
I

~l

I
I

/

I
/

/
I

I

I I I I

vrj4
P I I I I

~ -z~~&-~i&-~i~ o
m

FIG. 2. Typical transition energy 5E as a function of
the angle (t)~ at which a magnetic field is applied in the
basal plane, measured from the x axis. The formulas
for the curves are Eqs. (44). The case g„)g~ is con-
sidered so that strain+ Q~ is stable when @7t. &ft)~&- @7t.

or ~ 7t & p~ &4'. and strain —Q~ is stable otherwise. The
solid line shows the energy of transition from the stable
distortion, the dotted from the unstable distortion.

h

I)j /L

I 1 I y

o
5-

Iz

I—
\

—v/. —7' 0 7Iy 7r

N

FIG. 4. Typical intensi-
ties of absorption lines, the
same as Fig. 3, except
for the case g„&g~, g„and
g~ both positive, q„= —1.
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The model presented here gives a satisfactory
account of many of the properties of DyVO4,
DyPO4, and DyAs04 crystals in the orthorhombic
and tetragonal phases. It allows for the phase
transition as long as V(D4„) or VL has the proper
temperature dependence. If Xz/K& is small and

there is enough temperature dependence, it re-
quires that g„( —} [g„(—}]be large compared to

g, ( —) [g„(—)] and g, ( —) at a certain temperature
in the orthorhombic phase. The model accounts
for the switching of domains by a basal-plane mag-
netic field. Also, it suggests that the phase tran-
sition temperature will be strongly influenced by a
magnetic field applied in the c-axis direction, as

Iz

'/ ~ /
-7T -7lj~ p 7T/~ 7r

4m

FIG. 5. Typical intensi-
ties of absorption lines, the
same as Fig. 3, except for

ase g2 )g2 g negative
and g~ positive (so that the
transition is type 8 to type
A), 74=+&.

I
\

-7r - 7T/p Q 7I/2 7T

C2„$/ (g„=0) = i r/„g/ (p = 0),
~/, 4/(4 =tv)=fn. P/(4 = 'v-),

so the final states g/ are type A. For P, with strain
+Q„using Eqs. (35) and (36), one calculates

Ca, |},(4 =-,'v)=- (g, /~g, ~)y, (y = ,"v)-.

These states are therefore type A if g„and g, are
the same sign, type 8 if g„and g, are of opposite
sign. The same result holds for P, with strain —Q, ,

In an A -A transition f„(g ) and f„(g ) must oscil-
late strongly because the C& selection rule on the
matrix element acts differently at P„=0 than at

=-,'v. Also I,(p ) must oscillate weakly be-
cause the selection rule acts the same at the two
angles. Qn the other hand, in a B-A transition
I„and I, must oscillate weakly and I, must oscillate
strongly. These are evident features of the in-
tensity patterns, Figs. 3-6. In addition to these
considerations, the domain switching gives addi-
tional complexity to the observed intensity patterns.

VIII. DISCUSSION

Y
II

- 7r -7I/p P 7' 7r

gm
I

/

'/ ll L l
Jg u ii

—7r —7r/& p aery&

FIG. 6. Typical intensities
of absorption lines, the same
as Fig. 3, except for the

se gg &gy y gg negative and

g positive, g„=-1.

has been observed for TmVO4, ' ' ' TmAs04, ' '
and TbPO„' but not reported so far for the
dysprosium crystals.

The model makes many definite predictions
which will be interesting to compare with experi-
mental results as new data become available.

As concluded at the end of Sec. III, the energy
separation of the two ground doublets is (Ga/&u)~ in
the orthorhombic phase, 2 I G& I in the tetragonal
phase. In all the crystals that have the orthorhom-
bic-tetragonal phase transition, the splittings of
the levels are temperature-dependent in the ortho-
rhombic phase. Thus the temperature dependence
is in the electron-lattice-strain interaction term,
G~ is temperature dependent, and G& is not. One
knows both I Gz/u& I and I G, I in the orthorhombic
phase from the energy separation of the ground
doublets; I Gz/~ I from the separation in the ortho-
rhombic phase and I Gq I from the separation in the
tetragonal phase. The sign of G& must be inferred
somehow, perhaps by one of the methods discussed
at the end of Sec. IV, but then e,(T) is known from
Eq. (10) and the relative sizes of all the g factors
are predicted, in case E2/E, is small, by Ecis. (21}.

One can start to make a numerical comparison
for DyVO~. The observed separations of the two
ground doublets in the distorted and undistorted
phases are about 27 and 5 cm, respectively. ~

The observed g values a.re I g„( —) I:—0,
Ig, ( —) I:-19, Ig, ( —)1=0.5. 0'60ne can find tan8,
independently from these two types of observation
and make a comparison. The level separations
give (Gz/~) = 27 cm ', 2'/

G& = + 5 cm and then
Eq. (10) implies (taking G2 positive) that tang,
is 0. 69 or 1.45. The g factors give the ratio
g, ( —)/g, ( —) = + 38. This ratio determines tang, by
way of Eqs. (21a) and (21c). The result here is
that tane, is 0. 61 or 0. 55. There is rough agree-
ment with the level-separation result for positive G&.
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Symmetry-Dependent Effective Force-Constant Changes around Impurities in Ionic
Crystals*

Mark Mostoller and R. F. Wood
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(Received 30 August 1972)

The lattice relaxation and effective force-constant changes for even symmetry modes around
substitutional impurities in ionic crystals are studied in terms of a simple classical ionic-crystal model

for the potential energy. It is shown that Coulomb and second-neighbor repulsive interactions can
make»rge contributions to the effective force-constant changes. These contributions are symmetry
dependent, and may even yield, for example, A, and E effective force-constant changes which have

opposite signs, contrary to what has been frequently assumed in the literature. Illustrative results are
presented for the Raman scattering of substitutional Ag' ions in sodium chloride.

I. INTRODUCTION

To obtain quantitative agreement with experi-
mental data on substitutional impurities in ionic
crystals, it is generally necessary to include
changes in force constants as well as in mass in
the theoretical treatment. Furthermore, although
the major force-constant changes are localized
around the defect, it is often not sufficient to re-
strict these changes to first neighbors only; the

work of several authors on the substitutional H

ion (U center) in the alkali halides' provides a
good illustration of this point. For example, the
model of Gethins, Timusk, and Moll for the U

center permits changes in the force constants be-
tween the impurity ion and its first neighbors, and
in those linking ions in the first and fourth shells,
since these should be most strongly affected by the
relaxation about the defect. Although perhaps sur-
prising at first, it is easy to show that small lattice


