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The eigenvalue equation for the norm. al modes of excitation of a moving infinite p1.anar mag-
netic domain wall in an infinite material having the most general second-rank tensor anisot-
ropy is presented. The eigenvalues and eigenfunctions of both the spin waves in the presence
of the moving wall and the excitation of the wall itself are given to first order in velocity.
Cylindrical-domain resonance experiments are proposed to test for the existence of the ex-
citation modes and their effect on domain propagation. The dispersion relation for the wall
excitation modes is found to imply a new material requirement for high mobility.

I. INTRODUCTION

The excitation spectrum of an infinite planar
180' domain wall in an infinite magnetic material
having a constant magnetization magnitude M, is
treated here in the continuum approximation. For
the description of this system, Cartesian tensors
in a right-handed coordinate system and Euler
angles will be used. The position in the material
is denoted by x&, and only the polar (8) and azi-
muthal (p) Euler angles are used. The polar axis
is the x3 direction, and y is zero in the x& direc-
tion. Vectors as well as their components will
be denoted by symbols of the form v,. and, simi-
larly, tensors will be denoted by symbols of the
form 7.'». Repeated indices are understood to be
summed from 1 to 3. The totally antisymmetric
unit tensor is denoted by e„~.

II. MAGNETIC ENERGY DENSITY

The material is taken to have the most general
second-rank tensor anisotropy. When the coordi-
nate system is properly oriented with respect to
the crystalline axes and when the arbitrary zero

of energy is chosen so that the lowest value of the
anisotropy energy is zero, the anisotropy energy
density may be written

pr = (ljM, ) K)~ Mg Mg,

where M~ is the magnetization vector and

(la)

0

Z,„-=0 Z„+Z, 0

0 0 0

Z„&0, Z, &0

p„= 2w(n, M, )'
= 2gn~nI, M~Mg .

(2a)

(2b)

(Kb)

(u for uniaxial and o for orthorhombic). The an-
isotropy energy is minimized when M& = [0, 0, + M, j.
In a bubble domain device, such a material would
be oriented with the plate normal along the polar (2)
axis and the domain-wall normals in the 1,2 plane.
Attention will subsequently be restricted to a plan-
ar domain wall whose wall normal lies in the 1, 2

plane, for which the local demagnetizing energy
density between two regions having M3= +M, is
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, / sin2y„w~„=-,'tan ~- +N —,
li 29, q 2

(Sa)

where N is an appropriate integer, cp„ is the ori-
entation angle of the wall normal with respect to
the original coordinate system, and

q, =K,/2', . (Sb)

When this composite anisotropy-demagnetizing
tensor is normalized by dividing by 2'�„the an-
isotropy energy density becomes 2'» M~ M„
where

qa

K~q= 0 qa+qp 0 (Sc)

In (2) n& is the unit wall normal (n~ = 0).
Since 2nn&n„ is a tensor of the same rank as (1b),

it may be added to the anisotropy tensor. The re-
sulting tensor is diagonalized by a rotation of the
coordinate system used in (1b) about the polar axis

cos8 = tanh[(m/I ) n,. (x, —v,. t)], (5b)

where the orientation angle yo, the wal.' width l,
and the velocity v are constants. (Since only mo-
tion normal to the wall has significance here, the
velocity will henceforth be written as a scalar
u= n; n;. ) When the solution (5a), (5b) is substi-
tuted into the equation of motion (4), the resulting
consistency equations are the azimuthal-angle
torque equation.

the equivalent field H& is the negative of the func-
tional derivative of (3g), —5'/6M, , as usual.
The exact solution for the steady-state domain-
wall motion obtained by Walker (originally ob-
tained for the case of K, =O, nonzero damping, and
nonzero applied field) applies here with little more
than a change of notation. In terms of the orienta-
tion angles, this solution, when oriented so that
the wall normal is along the xa axis, is

(5a)

in which

0 0 0 5 1T

lyl l„
—= —2@M, qz sin2yo (5c)

q~=q„+ ~ (I+qo —qa) ~

q, = [(1+q,)' -4q, cos'q „P", (3e)

and wall-width equation

A(n/I„) = 2'wM, q~ .
In (M)

~ 2
qu =qa+ qasin 9"o (5e)

q„=K„/2', . (3f)

Finally, after adding an isotropic exchange term,
the total energy density becomes

A BM; BM; r
pg = ~ — -' ' + 2wK~q M~ Mp,

Xp XQ
(Sg)

BMOC = —I& e;~&Ma&s (4)

where t is time, y is the gyromagnetic ratio, and

where A is the isotropic exchange constant. From
this point onward, as well as in (Sg), the compo-
nents of all vectors and tensors and the angles 8
and y are assumed to be specified with respect to
the coordinate system in which K,z is diagonal.
Note that when K, =O, qua=1 and q~= q„=K„/2nM„
so that q, then reduces to the q defined in Sec. IV
of Ref. 1. The q& and q~ used by Hagedorn do not
depend on p„since he chose a particular y„ in or-
der to simplify his presentation. Equation (3e) is
equivalent to Eq. (6. 5) of Ref. 3. In (Sg) there is
no applied-field term and all global (from the sur-
face of the infinite magnetic medium) demagnetiz-
ing effects have been neglected.

III. EIGENVALUE EQUATION

In the absence of damping, the equation of motion
of the magnetization is

o =4 (A 2@'M, qz) (5f)

When (5c) is solvable there are generally four sol-
utions, 0 ~ go& 2m. The stable solutions, which
are the only ones of interest here, are the ones
nearest cpo= 0 or go= m. Note that in order for
wall-motion solution of the Walker form to exist
qa and q~ must be nonzero.

The next step in obtaining the eigenvalue equa-
tion is to transform the components of M, (but not
the position coordinates) so that the moving-wall
solution becomes M,. = (0, 0, M, ). This is a gen-
eralization of the procedure used previously' in
the special case, g= 0. The time- and space-de-
pendent orthogonal transformation which accom-
plishes this is

and is defined as the dynamic q value. Any set of
parameters for which these equations are simul-
taneously solved represents a possible moving-
wall state of the system. The velocity correspond-
ing to the yo value for which the azimuthal-angle
torque magnitude is maximized, go= ,'w+N( ,'w), —-
will be termed the Walker breakdown velocity.
Note that q„sining is the normalized anisotropy en-
ergy density of the system when qr is constrained
to yo. Thus (5d) is the usual wall-width expres-
sion with q replaced with q„. The energy of the
moving wall is similarly
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where

(Ga)

(Gb)

—Siny cosy 0, (Gc)

sing cosy sing siny cosg

cosg cosy cosg siny —sing

it can be shown that the linearized equation for the
excitations is (see Appendix A)

I —i s g, —(2tanh s~ —1+ v)I
fe a, s 2

I, 8s& Bs& Bs&

8
+5 0„+stanhs& 0, —i —0, m=0, 10a

where 0„, o„and g, are the Pauli spin matrices,
I is the 2&&2 unit matrix,

M,'= [m„, m„(M,' —m'„m,'—)"'],
so that the excitations of the system may be writ-
ten in terms of the two-component object

m„+ im,
rn =

v2 m„—im,

where i = v'- 1. Finally, the excitation equation is
written in terms of a normalized time and nor-
malized coordinates attached to the wall. These
coordinates are defined by

(8)

in which the angles are those given by (5a) and

(5b). Again it must be emphasized that W» is to
be applied to M~ only and not to x, . The problem
is now formally reduced to the usual spin-wave
problem, except that the wave equation has time-
and space-dependent coefficients. The magnetiza-
tion may be written

$ = ——sln2y
1 q2
2 qq

(10b)

—cos2y
9'a (loc)

Note again that (10a) is valid only in the approxi-
mation that the demagnetizing field is represented
by (2), as discussed by Winter. 5

IV. EIGENVALUES AND EIGENFUNCTIONS

The eigenvalues and eigenfunction for the trans-
lation and spin-wave modess' to first order in the
velocity parameter 3 are now presented. The wall
excitation modes are normalized according to

1'" m'o, mds, = ~ 1 (1la)

~=4mM,
~
y

~ q, t,

s, = (m/1„) (n, x, —vt),.

s, = (w/t„) e,„,g, n, x, ,

s, = (v/t„) ~, x, ,

(ea)

(eb)

(ec)

(ed)

and the spin-wave states are normalized according
to

(11b)

where the dagger superscript denotes complex con-
jugate transpose.

The normalized angular frequency 0 and wave
vector z& in a coordinate system parallel to the s&

coordinate system are defined by

5,. = [0, 0, 1] . (ee)

where $, is a unit polar vector having the compo-
nents

and
&u = 4',

~
y ~ q& 0

k, =(7t/l„) K, .

(12a)

(12b)

Here s, is the normalized distance from an arbi-
trary point to the plane at the center of the domain
wall; s, and s3 are normalized transverse dis-
tances.

From (3), (4), and the definitions given above,

n, =+[K'(K'+2g))"', K, =0

and the translation eigenfunction

(13a)

With the notation g =
I g& ~, the translation-mode

eigenvalues are (see Appendix B)

sechs, f' . [K (K +26)] +K+(K +26)'
2[4K'(K'+ 2 e)]"' (

' 2(K'+ e) ' + K+ (K'+2&)"'

K K —(K2 ~ 2 P)1/ 2

+i s 4. q ( 1, [t nahsqF, (x +1, sq)+ xF, (x+1 sf)]i( 2 2+)|/2 exp[i(K/s/+Q~)], Kg=0 .
4(K +'8 t(%+1)'' +z+(x +2

The spin-wave eigenvalues are (see Appendix B)
(13b)

0, = a [(1+K') (1+K'+ 2 6)]'/' —s K~ (13c)
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and the spin-wave eigenfunctions are

(I + K2)1/2 (I + K2+ 2 P)l/2 -1/2
m = -', [((+~') (( + ~'+ Ra)] ' ' (1+~]+ & 1 ~g s21+K +8

(1+K')'/' (1+K'+ 28)'/' "+ (1+K')'/'+ (1+K'+ 28)'/'
2(I+ K'+(:) '

~2 (I+ K')"'+ (I +K'+2('-)"'J

2 2

+$2 I 2, iK, tanhs1-1+
1

—iK, tanhs1 —R+2 1 ([(R +iK1(R —1)tanhs1-Rtanh s,]F,(R+iK1) s1)
1 K —Kg 1 2 2

2 I+K2+(: ' R R+1 2R —1

+ (1+K')'/' -(1+K'+ 2 ('.)' ' '

—[iK1R+R(R —1) tanhs1 —iK1tanh s1]F, (R+iK1, s1)),I 2,1/2, 1 2 2,1/2 exp[ i( K; s/+ IIr)] ~ (1M)

In (13b) and (13d)

r= [1+2 (K +('.)], K, = 0 (13e)

f

dependences of the modes do not appear in separate
factors.

V. EXPERIMENTAL IMPLICATIONS
R -=[2(1+K'+(.) —K1]

F,(x, y) =-F(K, y)+F+(x, -y),

F.(x, y) -=F(K, y) -F*(K, -y),

(13g)

(13h)

1
F(x, 1)=-E(1,1;1+-,'x; „) (13i)

8
[e '"1'1 m(K, )]= 0,

~
s,

~

=
Bsg

(14a)

m(s, = ~) = —m*(s, = —~) . (14b)

where F(a, f); c; z) denotes the hypergeometric func-
tion and the asterisk denotes complex conjugate.
In the S =0 (1)=0) case these functions are seen to
reduce to the functions of Refs. 5-7. Note that 0,
=0 at K,. = 0 since this mode is associated with uni-
form translation of the domain wall. Note also that
in first order the moving domain wall remains re-
flectionless to propagating spin waves since /2„= N~ /r()

k2 = KN2//1

(16a)

(16b)

where xo and A are the domain radius and plate
thickness, respectively; N„and N3 are integers.
Of these modes the one most easily treated is that
for which

If it is assumed that the translation-mode dis-
persion relation (13a), although derived for an in-
finite planar wall, remains approximately true for
a curved wall of finite extent, then the vibrational
modes of this two-dimensional membrane may be
computed and checked against experiment. A par-
ticularly simple example is a right-circular cy-
lindrical domain in a thin plate of magnetic ma-
terial. In this case k, clearly obeys cyclic bound-
ary conditions. The situation at the surface of the
plate is complicated but will be approximated here
by a zero-derivative boundary condition on k3. The
components of the wave vector of a wave bound to
the domain wall thus may be specified as

In the general case it may be shown from sym-
metry that Q, is an even function of S. Also, since
(10a) becomes a constant-coefficient equation at
points far removed from the wall, the exact spin-
wave eigenvalues are easily computed. They are

N, =1,

N3=0,

(17a)

(17b)

(IVc)
n„= + [(I+K2) (I+K'+2(:) -3']'/' -SK, . (16)

Checking back through the many changes of variable
shows that this expression is identical to the nor-
mal spin-wave dispersion relation for the material
considered here. By using these modes (upper
signs only) and transforming back to the original
coordinate system (or at least a, stationary one), it
should be possible to form an occupation-number
representation in the usual way. The major dif-
ference between this representation and the usual
spin-wave representation is that the time and space

Condition (IVc) is imposed to ensure that the mode
considered is the one with the smallest nonzero 4
vector. This mode has the advantage of being re-
lated to the translation of the domain in such a, way
that wall stretching and magnetostatic interactions
are minimized (Ref. 10, Sec. IV. 2. 4). In materials
where the damping is sufficiently small that the
mode is not critically damped this mode might be
observed in one of two ways. A test in which static
stability effects are minimized is the observation
of translation amplitude resonances at the mode
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d= 8l, (18a)

h=4l, (18b)

I = o~/4mM, , (18c)

the mode with N„= 1, Ns= 0 has the lowest frequen-
cy. For these conditions the domain velocity at
which the principal spin-flipping frequency within
the wall becomes equal to the frequency of the low-
est excitation frequency from (5e), (5f), (12b),
(13a), and (16a) is

frequency when a static (on the average) domain is
driven by a spatially uniform field gradient varying
sinusoidally in time. Another test would be to look
for an irregularity in the velocity-drive curve at
the velocity for which the principal spin-flipping
frequency within the wall (f~= v/2l„) is equal to the
N, =1, N3=0 frequency. In order for this test to
be valid, this frequency must occur at a sufficient-
ly small velocity so that the quadratic and higher
correction terms to the domain-wall excitation fre-
quency are unimportant.

VI. DEVICE IMPLICATIONS

The wall excitation dispersion relation has sev-
eral implications affecting the choice of materials
applicable for high-speed-device applications. One
effect which is evident from (13a) is that increas-
ing q~ decreases the density of low-lying wall ex-
citation states available to act as intermediaries
in the dissipation of energy. If the Gilbert damping
is very high, the excitation states surely have no
great importance since the wall motion and excita-
tions are both well damped by direct processes.
However, in materials with small damping (an es-
sential recluirement for a high-mobility material),
decreasing the density of the wall excitation states
will decrease the amount of. power coupled into the
spin waves (the wake") by material inhomogeneities
such as phonons, so that increasing q& will increase
the domain mobility. The effect of increasing q~

may be considered from another point of view by
noting that the stiffness of the domain wall with re-
spect to a perturbation at some point on the domain
wall generally increases with increasing q&.

Another related effect is that, when the spin-
flipping rate within the domain wall enters the wall
excitation spectrum, the opportunity for strong in-
teractions between the domain-wall motion and the
excitations exists. If the coupling were sufficiently
strong, this could take the form of a limiting-ve-
locity behavior. In a cylindrical domain having the
preferred values of diameter and plate thickness
defined in Egs. (6), (31), and (32) of Ref. 1,

where the dynamic wall energy has been computed
from (5) by using the domain velocity for the wall
velocity. The ratio of this velocity to Walker's
breakdown velocity, defined previously, is

(~w/~m) 4(ql qp)

when

q~» q&sin yo .

(2Oa)

(2ob)

Since under condition (20b) s is small, the wall ex-
citation dispersion relation on which (20a) is based
should be valid. For devices in which the domain
spacing is 24/ (three times the preferred diameter),
the operating frequency consistent with the velocity
[(19)]is

f =4&M. IxI+384 qi" qa

when

qz» q~sin yo .

(2la)

(21b)

Although definitive experimental evidence for
these modes has not been reported, some compari-
sons with experiment can be made. The measured
static parameters for PbA14FeaO» are A= 1.1x10
erg cm ~, q&=110, and qz

——1 (K, =o). 2'~~ By using
these values, the Walker breakdown velocity is
-1400 cm/sec and v„ is - 30 cm/sec. These values
bracket the observed limiting velocity of 100 cm/
sec. '3 The measured static parameters for YFeO3
are A = 4. 7 & 10 erg cm, q, = 630, q~ = 320. 3'
(Since K, » 2wM,' here q, need not be specified as
a function of angle. ) In this case the Walker break-
down velocity is 3.5xlo' cm/sec, and v„ is 2. 2
&& 10~ cm/sec. The observed velocity-drive relation
for this material is linear up to the maximum ob-
served value of 9x104 (Ref. 14). The attainment of
such high velocities (and mobilities) in YFeO~ is
probably attributable to the high value of q2 in this
material, reducing the density of low-lying transla-
tion states.

The preceding indicates that the high-speed-de-
vice-material requirements of low damping (o, « I)
and the widest possible wall width (Ref. 1, Sec. IV)
remain valid, but that an additional requirement is
that q~ be as high as possible. Consider now a
material in which q, = 1 arising only from the local
demagnetizing field. In such a material the entire
domain wall is nearly a Bloch wall at low velocity.
If 0 & K, «2aM, then the domain wall remains a
Bloch wall, but now q& and q~ vary around the perim-
eter of the domain in accordance with (3). This
has two detrimental effects: The value of q~ is re-
duced below 1 at some locations on the domain
perimeter, reducing the Walker breakdown veloci-
ty; the variation in q, causes the wall energy to
vary, which reduces device margins by producing
elliptical domains as discussed in Ref. 1, Sec. II.4.
The situation is most complex and most damaging
at K, = 2mM~, in which case planar wall motion
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breaks down immediately in some directions.
When K, » 2aM,', the Bloch-to-Neel wall alter-

nation around the domain perimeter, which is char-
acteristic of orthoferrites, is obtained. In this
case, the q1 variation again induces a wall energy
variation which in turn induces elliptical domains
and reduces device margins. In order to offset this
effect, K„must be increased so that q1 is substan-
tially greater than 1. The consequent reduction in
mobility produced by the decreased wall width then
tends to offset the advantage of having q2 greater
than one. Consequently, the preferred material
would have q1 be several times greater than 1 and

q2 very much greater than 1. The material must,
of course, meet the usual requirements of a Curie
temperature above room temperature, the proper
M, for the desired domain diameter, and low damp-
ing (n«1). Such a material could possibly be pro-
duced starting out with a material which instead of
the usual easy axis has intrinsically a strong hard
axis. (K„=0, K, » 2', in the present notation. )
The material would be grown epitaxially on a sub-
strate in such a way that the intrinsic hard axis lies
in the plane and the required additional anisotropy
E„would be induced by the growth as it is in epi-
taxially grown garnet films. ~
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APPENDIX A

This appendix is an outline of the derivation of
the excitation equation (10a) from the equation of
motion (4) and the transformations (5)-(9).

The equivalent field is obtained from the varia-
tional derivative of the energy density [(3g)]:

where appropriate, we have

BM~ 8 W„q W„p MpW;„W,.+ 3W.
1

—1
W, e „p W„„W„„M„W„pW„„H„,4', qq

(A3)
I I

BM) BM g BW~ I
+gW,.„""M„-„e,,„M,H„,

Bs1 A@M, qg

where

I
H) =— W)q HI, , (A4)

I
BM, BM, —1

+ g +g sechs1 e2gy M y=
487' BS1 4gMs qd

x e,7„Mg&, ~ (A6)

BM; BMg 1 I' +g ~ = — e,,„M,' " +6 sechs, A„I

where

A„=(O, M, , O) . (Av)

When the process is carried through on H,. it is
found that for Walker' s solution, M,. = [0, 0, M, ],

H„
— -" +g sechs1A„=O,

4nq„
(A6)

In this appendix the derivation of the first-order
perturbation

(in%�)

eigenvalues of the eigenvalue
equation in f'(s~) and f (s~), which results when

so that (A6) is solved. When (7) is approximated by
M, = (m„, m, , M, ) it is found that Eq. (A6) is again
solved to zero order in I, and m, , and that in first
order in rn„and m, there are two coupled equations
which may be arranged in the form (10a), There
is a one-to-one correspondence between the left-
hand terms in (A6) and the o, terms in (10a).

APPENDIX 8

Ops 2A. 8 Mg
H; = —-- — = -2 —4';„M~ .

j s B&k
(Al)

m = exp[i(K~ sg+QT)] ) g
= 2) 3f

S
The effect of the transformations on the equation

of motion will now be shown. The procedure used
on H,. is exactly the same. The space and time
variables in (4) are transformed according to (9)
so that the equation becomes

BM, BM, 1
8

'+& — =4 M eginMI Hn ~

Bs1 m s qq

is substituted into (10a), is discussed.
The eigenvalue equation is

(L + SL& + Qo,) m = 0,
where

2

Lo = ~ —(2 tanh s~ —1 g& +8)I+6 +o8 2 2

BS1 x

(S2a)

(S2b)

The transformation should be regarded as a trans-
formation of the independent variables of a partial
differential equation since the components of M& are
not transformed. Next, the components of M& (the
dependent variables) are transformed according to
(6). Multiplying by W,, and inserting W„,. W„, = 6,„

and
8

L, = —i — -- o, +tanhs, o»
BS1

(B2c)

where Lo, L1, and Oo, are all self-adjoint. Now
if Q=Q, +SQ, + ~ ~ ~, f=f, + 6 f~+ ~ ~ ~, and (L,+Q,o,)
xf, =0, then it is a result of first-order perturba-
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tion theory that, if f is bound to the wall or reflec-
tionless,

f fsL, fsds, +0, J fso, fsds, =0. (83)

Now in the bound case, (13b) for 8 = 0, f, is even
in s& and Lg is odd in sz, so that Q, =O. In the
spin-wave case, f, =f, e'"&'~, the form of the en-
velope function is such that only the term which re-

suits from differentiation of e'"&'& contributes, and
therefore

. I"„fo (~/as') ogfods~
f--f o o~fo dsi

Qiven the eigenvalues the eigenfunctions may be
verified by direct substitution.
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We present results of a self-consistent band calculation of the ground-state energy and

charge orderings based on a tight-binding scheme in magnetite. The calculation is greatly
simplified by making use of the large intra-atomic Coulomb interactions between electrons
on the Fe ions, previous estimates of the crystal field splittings, and the magnetic ordering.
We find that below a critical value ( 2. 2) of the ratio of interatomic Coulomb energy U to
bandwidth m the lowest-energy state has no order. Between this critical value and 2.5, the

preferred state is multiply ordered (three nonzero order parameters). For larger values
of this ratio, the Verwey-symmetry state (one order parameter) is stable, but the value of
the order parameter approaches 1 (ionic Verwey order) only in the limit of U/m

INTRODUCTION

For many years, the accepted description of
the metal-insulator transition in magnetite was
that proposed by Verwey, i.e. , that below the
transition temperature the Fe ' and Fe ' ions on

the 8 sites are ordered, the likely order being
alternate (001) planes of Fe ' and Fe ' ions.

Recently, we introduced an itinerant-electron
one-dimensional model of the extra 8-site elec-
trons interacting with each other via interatomic
Coulomb repulsions. The model exhibited a phase
transition from a "disordered" metallic state
above a critical temperature to an ordered in-
sulator below. The charge ordering allowed frac-
tional occupation of sites even at T= O'K. This


