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Wave functions have been calculated for the F center in sodium azide (NaN3) in both the
high-temperature (rhombohedral) and low-temperature (monoclinic) phases, by the point-ion method,
The point symmetry at the anion site is D,„ in the rhombohedral phase and C,„ in the monoclinic
phase. A predicted A 1+ F. optical transition at 2.06 eV in D3„symmetry corresponds to two
transitions, A+ A at 1.82 eV and A+-8 at 1.96 eV, in C» symmetry. The latter transitions are
too close to resolve, and correlate well with the observed F band at 1.70 eV. An A+, A, infrared
transition at 0.82 eV in D,„symmetry, which corresponds to an A+ 8 transition at 0.94 eV in C»,
symmetry, is polarized parallel to the hexagonal c axis, and could not be observed with the crystal
orientations used in prior measurements. The calculated isotropic hyperfine interactions are larger by a
factor of three than those inferred from ESR spectra, a common defect of point-ion calculations.
However, it is shown that, as a consequence of wave-function anisotropy, the hyperfine constants
remain nearly equal in spite of monoclinic distortion, thus explaining the resolved 19-line hyperfine

pattern even in the monoclinic phase.

I. INTRODUCTION

Color centers i.n the alkali azides {NaN„KN3,
RbN„and CsN~), which can be produced by ioniz-
ing radiation at low temperatures, ' have been of
interest for some time, since the corresponding
defects are thought tobe involved in photolysis and
thermal decomposition at higher temperatures. '
In the earlier studies, purely speculative identi-
fications of optical-absorption bands with I' cen-
ters, V centers, and E-aggregate centers were
made by analogy with the alkali halides. In par-
ticular the most prominent visible absorption in
each case was attributed to the E center, one-elec-
tron trapped at an azide ion (N, ) vacancy. More
recently the E center in uv-irradiated sodium
azide INaN, ) was detected at 90 'K by electron-
spin resonance and identified, apparently unambig-
uously, by its resolved 19-line hyperfine structure.
Its ESR spectrum was subsequently correlated with
an optical-absorption band at 730 nm, ' rather than
with the much more prominent absorption band at
610 nm; the latter was attributed instead to an E2'
center. Miller has made a thorough study of the
formation and bleaching of color centers in NaN3.
In particular he was able to produce the I" band in
isolation by a combination of heat treatment and
illumination. It appears to be a single band about
0.4 eV wide, peaking at 730 nm, but with a long
tail on the short-wavelength side extending to near-
ly 400 nm. The only theoretical treatment of color
centers in alkali azides to date is a continuum-
model calculation by King et al. of I' and E2' cen-
ters. Their E-center calculation is not particular-
ly illuminating, however, since it obscures the

point symmetry of the defect and incorporates an
effective dielectric constant adjusted to match the
energy of the single predicted transition to that of
the observed I" band.

The crystal structure of NaN, was established by
Hendricks and Pauling' in 1925 to be rhombohedral,
with space group D3„; the rhombohedral unit cell
is shown in Fig. 1. More recently (1963), it was
discovered by Miller and King, ~ and independent-
ly by Pringle and Noakes, ~2 that NaN3 undergoes
a second-order phase transition at room temper-
ature (-19 'C) and that the structure is monoclinic
at lower temperatures. The nature of the dis-
tortion of the pseudorhombohedral unit cell is
shown in Fig. 2. The monoclinic phase has been
investigated in detail by Parsons and Yoffe, ' and
by Pringle and Noakes. The latter authors desig-
nated the monoclinic phase n-NaN3, and the rhom-
bohedral phase p-NaN3. The discovery of the phase
transition was subsequent to the identification of the
+ center in NaN3, and has contrary implications
for that identification. It can be seen from Fig. 2
that the six Na' ions nearest the anion site are no
longer equivalent in the monoclinic phase; rather,
four of the Na' ions are closer to the anion site
than are the other two. Consequently, one would
no longer expect equal hyperfine interactions with
all six cations, and the origin of the resolved 19-
line hyperfine structure of the ESR spectrum at
90 'K is no longer evident.

The object of the present investigation is to de-
termine whether the &-center model could account
quantitatively for both the optical and ESR spectra,
and in particular to resolve the dilemma posed by
the 19-line hyperfine structure observed in the
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construct a multipole lattice.
The point-ion potential expansion can be ex-

pressed in the form (in Slater atomic units)

V„(r)=-Z Z I",(8, y)
I =P N=-I

+~ ~vs I,+S
— I'i ~ (1

s& + +s

Ro(r) = (v4)')'~' (1+r„~)e '",
Rr(r)=[(2$) '/(2L+2)!]'~ r e ", L &0 .

I.=O; (4)

(5)
The trial functions $„(l', r) are then related to the
basis functions Z (I'; r) by

P„(I",r)=EX (I';r)C „(I'), (6)

where

8vg~ u~
&su=,~ (2L 1) r+a I, 'z, (en, ka)

and

SmQ~ u
fLNs . ~ (2L 1)

yL (ea y 4a)
N, ra=rs

(3)

where I' denotes the irreducible representation.
The expansion coefficients C „(I') and orbital expo-
nents g were varied to minimize the ground-state
energy. The calculated energies of low-lying
states E„(I') are listed in Table I, and the optimum
values of wave-function parameters in Table II.

Here, Q is the charge on ion a whose polar co-
ordinates with respect to the vacancy center are
r, 8, and Q„and Ff(e, P) is a spherical har-
monic. The sum g,& in Eq. (1) is only over spheri-
cal shells of ions whose radius x, is less than x.
The sum in Eq. (3) is over ions on a single spheri-
cal shell, As noted above, only a finite set of
terms in Eq. (1) needs to be evaluated, Each term
in Eq. (1) is a solution of the Laplace equation, ex-
cept at a shell of ions x=r„where the radial func-
tion suffers a discontinuous change in slope. The
required terms in the potential expansion were
evaluated out to 50 shells of ions; that is, within a
spherical volume of radius 8 = ~&p. The infinite-
lattice sums in Eq. (2) were evaluated by the meth-
od of Nijboer and de Wette. ' '

Point-ion calculations for the E center in NaN3

have been performed for both the rhombohedral and
monoclinic phases, in order to display the effects
of the monoclinic distortion on wave functions and

energy levels. The description of the electronic
structure is simpler inthe rhombohedral phase,
because of the higher site symmetry, so calcula-
tions for this phase will be presented first. How-
ever, it should be emphasized that the I" center is
never stable above room temperature, where this
phase occurs.

A. Rhombohedral Phase

The rhombohedral unit cell is shown in Fig. 1.
Its dimensions are a = 5.488 A and n= 38'43'.
The N nuclei are located at (2, —,', —,') and + (u, u, u),
where u=0. 425; the resulting N-N distance is 1.1V

A. The point symmetry at the azide site is D3g.
Coordinate axes were chosen as shown in Fig. 1,
with the z axis coincident with the triad axis.

Trial functions were expressed as single-center
expansions about the vacant azide site. Symme-
try-adapted combinations of spherical harmonics
up to L = 3 were combined with the following nor-
malized radial functions to construct the basis
functions listed in Appendix A:

B. Monoclinic Phase

The pseudorhombohedral unit cell for the mono-
clinic phase is shown in Fig. 2. Its relation to the
conventional base-centered monoclinic unit cel1 is
also illustrated in Fig. 2. The dimensions of the
monoclinic cell were established by Pringle and
Noakes' at a temperature between —90 and —100
'C; they are A. = 6.21 A, 8= 3.66 A, C= 5.32 A,
and P = 108.O'. The N nuclei are located at (0, 2, —,')
and (+0.1016, —,', ~+0.2258). The axes of the
pseudorhombohedral cell are related to those of the
monoclinic cell by

a. = ~(A —8)+C,
b= —,'(A+ B)+C,
c=C,

(7)

(8)

(8)

TABLE I. Calculated energies for low-lying states
of the I' center in P-NaN3 {rhombohedral phase). The
parameter 1" denotes irreducible representations of point
group DM, and energies &„{I')are in rydbergs.

A2

E,{r)
—0.3760

—0.3154

—0.1864

—0.2242

From these relations, one obtains the following
dimensions of the pseudorhombohedral cell: a = 5
= 5. 56 A, c = 5. 32 A, u = P = 38' 38', y= 38' 28', the N

nuclei areat (-,', —,', -', ) and+(v, v, co), where u=0. 3984
and gy= 0.4774, and the N-N distance is still 1.17 A.
Thus it can be seen that the distortion is relatively
small, and consists primarily in shearing the
planes of cations through 4.8' and tilting the azide
ion through 12.3', as shown in Fig. 2. However,
the phase transition is by no means complete at
this temperature, "so one can expect a somewhat
greater distortion at 90 'K, where the ESR mea-
surements were made.
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TABLE II. Wave function parameters for low-lying
states of the I' center in P-NaN& (rhombohedral phase),
defined by Eqs. (4)-(6) in the text. The index ng refers
to basis functions listed in Appendix A. Expansions coef-
ficients C (r) are dimensionless, where 1 denotes irre-
ducible representations of point group DM, and orbital
exponents K~ are in reciprocal Bohr radii.

C g(r)

0, 9490
0.3154

0.9883
0.0717

0.1350

0.9835
0.1807

0.9093
0.4161
0.0035

0.45
0, 59

0.41
0. 85

0.71
0.62
0.71

0.36
0.65
0.65

The point symmetry at the azide site is reduced
to C» in the monoclinic phase, since only one of
the three diad axes and the inversion symmetry
survive. It is expedient to choose a new coordi-
nate system as shown in Fig. 2, this time with the
z axis coincident with the diad axis. Basis func-
tions were again constructed by combining the radi-
al functions of Eqs. (4) and (5) with symmetry-
adapted combinations of spherical harmonics, and
are listed in Appendix B. The calculated energies
of low-lying states E„(I")are listed in Table III,
and the optimum values of expansion coefficients
C „(I') and of orbital exponents g are listed in Ta-
ble IV.

III. OPTICAL-ABSORPTION BANDS

The low-lying energy levels of the I'" center in
NaN3 are compared for the rhombohedral and mono-
clinic phases in Fig. 3. The A2 and E levels in
D3(f symmetry, which go over to one A and two 8
levels in C» symmetry, correspond to the triply
degenerate 2p level in the continuum model; in
view of the very large splitting of this level by the
anisotropic part of the crystal potential, it is
clear that one cannot simply interpret the observed
I" band as a 1s -2P transition. The allowed tran-
sitions are also indicated in Fig. 3. The observed
& band at 730 nm (l. 70 eV) is well accounted for
bythe A&' —E transition at 2. 06 eV in D3& symme-
try which goes over to the A.'-A and A -8 tran-
sitions at 1.82 and 1.96 eV, respectively; the lat-
ter are too close to be resolved. In D3& symmetry
the A&'- E transition is polarized perpendicular
to the hexagonal c axis, while the A&'-A2 transi-
tion at 0.82 eV is polarized parallel to the c axis.
The NaN, crystals grow as thin hexagonal plates,
and the reported optical-absorption measurements

A'
A"
B+
B"

—0.3760
-0, 2420
—0.1757
—0.3063

E,(F)

-0.1310

—0.2309

were made with light propagating parallel to the
hexagonal c axis. ' With this experimental ar-
rangement the A,

' -A2 transition could not be ob-
served. The situation is more complicated in the
monoclinic phase, but the qualitative conclusions
are the same. Transition moments &r ) —= (Qz, rp;)
for the three allowed transitions were calculated
from the wave functions given by Eq. (6), Table
IV, and Appendix B, and are listed in Table V.
Also listed are oscillator strengths appropriate
to unpolarized light propagating perpendicular to
the crystal face (parallel to x in Fig. 2), given in
atomic units by

(10)

It can be seen that the oscillator strengths for the
higher energy transitions are comparable and are
two orders of magnitude larger than that for the
A'- B transition at 0.94 eV. Thus although it is
no longer strictly forbidden in the monoclinic

TABLE IV. Wave-function parameters for low-lying
states of the I center in n-NaN& (monoclinic phase), de-
fined by Eqs. (4)-(6) in the text. The index ~ refers to
basis functions listed in Appendix B. Expansion coef-
ficients C~(r) are dimensionless, where F denotes ir-
reducible representations of C2I„and orbital exponents
f~ are in reciprocal Bohr radii.

B"

Cm&(F)

0.9427
—0.1787

0, 2735
0.0671

0. 8651
—0.2594

0, 3942
-0.1702

0.9973
-0.0732

0.9861
0.1225

—0, 0300
-0.0851
+0.0585
+0.0322

0.0851
0, 3531
0.1628

—0.9174

0, 1202
—0. 8375

0.2216
0. 1180
0.2368

—0.4063

0.45
0. 57
0.57
0.60

0.37
0.66
0. 84
0.66

0, 46
0.44

0.41
0, 41
0, 60
0.62
0, 67
0. 65

TABLE III. Calculated energies for low-lying states
of the F center in n-NaN3 (monoclinic phase). The param-
eter r denotes irreducible representations of points group
C2&, and energies E„(r) are in rydbergs.
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A+

B+

where $~(r„) is the ground-state &-center wave
function, obtained by orthogonalizing the ground-
state envelope function P&(r) to the ion-core orbit-
als, evaluated at the nucleus of ion y. With refer-
ence to Eq. (5), the function Q~(r) is just Qq(A&', r)
in D,& symmetry and &f&z(A, r) in C~z symmetry
We can express the orthogonalized wave function
4~(r) by

$p(r) = N(1 —P)gz(r), (12)
C9
K
UJ

UJ -P—
2

CQ

+O

CO
O
oJ

(a) Dse

A
cu u)

tb~ Cm~

If one neglects the variation of the envelope func-
tion over ion cores, i.e. , one assumes

&0 lt..&=At(.)ft..( )d (14)

where N is a normalization constant and P projects
on occupied core orbitals,

FIG. 3. Comparison of the low-lying energy levels
of the I" center in NaN3 (a) in the rhombohedral phase
and (b) in the monoclinic phase. The photon energies for
allowed transitions are also indicated.

phase, one would not expect to observe the latter
transition in the reported spectra; however, it
should be very apparent in the absorption of light
propagating perpendicular to the hexagonal c axis,
a feasible measurement with sufficiently thick
crystals.

IV. ELECTRON-SPIN-RESONANCE SPECTRUM

The ESR spectrum of the E center in NaN„re-
ported by Carlson, King and Miller, has a central
g value of 2. 003 + 0.001, and has 19 resolved hy-
perfine lines separated by 9.1+0.1 G. The nearly-
free-electron g value is consistent with the I" cen-
ter model; the expected small negative g shift was
not calculated.

The isotropic hyperfine interaction arises from
the unpaired spin density at neighboring nuclei,
and is given by pa„S ~ I, where

a„= 3'm(pap, ,/I) lt('g(r„) l', (ii)

A+ ~g A B"

TABLE V. Transition energies and transition moments
for the allowed transitions in C2& symmetry, defined with
reference to the coordinate axes shown in Fig. 2. Oscil-
lator strengths for light propagating parallel to the x axis
are also listed.

one obtains an approximate form for the hyperfine
constant in terms of Q~,

"
a„= s w(pay, z/I)N A„lp„(r„)

l

(15)

Here, A„ is an amplification factor given by

A„= 1 —2 Z P„,(r„)Jy„,(r ') d r'+ Z Z tP), (r))~P,„;(r, „)
C C C

x fy„,(r')dv' J' g„;(r")d7" . (15)

The amplification factor for Na' was evaluated with
analytic wave functions due to Clementi, and has
the value A = 176.4. Hyperfine constants for the
six Na ions nearest to the & center in NaN, were
evaluated from Eq. (15), with the further approxi-
mation N =1, and are listed in Table VI. These
six Na' ions are equidistant from the center of the
azide site in the rhombohedral phase, but it is evi-
dent from Fig. 2 that the monoclinic distortion
displaces two of them further from the center than
the other four. It is a consequence of the anisot-
ropy of the ground-state wave function in C» sym-
metry, manifest in the substantial admixture of s
and d orbitals, that the contact hyperfine interac-
tions are still nearly equal on these two types of
ions, with that for the more remote ions actually
larger.

The calculated hyperfine constants are larger by
a factor of 3 than the measured hyperfine constant

TABLE VI. Isotropic hyperfine constants a~/gp~ for the
six Na' ions nearest the E center in NaN3. The number
of ions of each type and their distance from the center
of the vacancy are also listed.

~ (eV)

&g&

f

0, 94
3, 903
0.520
0. 0
0. 009

1.82
0. 0
0. 0
2.377
0.379

1.96
0.246

—2. 405
0. 0
0, 420

Symmetry

DM

C2

Number

3.29
3.22
3.39

27.4
27. 6
29, 7
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9. 1 G. This discrepancy is a common failing of
point-ion calculations, which tend to overestimate
the hyperfine interactions with near neighbors,
and may not be serious.

The near equality of hyperfine constants in the
monoclinic phase wouM appear to explain the re-
solved hyperfine structure. To first order, the
magnetic field required for resonance is given by

2

&= &&/gpB —z (&g/gu B)MIIJ —+ (+2/gv B)MI

(1V)
where the M» can independently take on the values
—,', 2, —~, and ——,'. In the rhombohedral phase, a,
=az= a, and Eq. (16) predicts lines with the intensi, -
ty ratios 1:6:21:56:120:216:336:456: 546: 580:
546:456: 336:216:120:56:21:6:1. In the mono-
clinic phase, a& and a2 are different and the pattern
breaks up into 13x'7 = 91 distinct lines. However,
as a consequence of the near equality of a& and a&,
these lines occur in groups corresponding to each
of the original 19 lines. The groups correspond-
ing to the three central lines of the 19-line pattern
are shown in Fig. 4. It is clear that the 19-line
pattern should remain very well resolved in spite
of the splitting due to monoclinic distortion. Fail-
ure to resolve the lines within each group is pre-
sumably attributable to broadening produced by hy-
perfine interactions with more remote ions.

V. DISCUSSION

In summary, we have performed point-ion cal-
culations for the E center in NaN3 in both the rhom-
bohedral and monoclinic phases. A predicted op-
tical transition with two unresolved components
corresponds well with the measured E band; these
components have nearly perpendicular polarizations
lying in the plane of the large crystal face, and it
may be feasible to distinguish them with polarized
light. An infrared band polarized perpendicular to
the crystal face is also predicted and could be ob-
served with a sufficiently thick crystal. The pre-
dicted hyperfine splitting of the ESR spectrum is
exaggerated, a common failing of point-ion calcu-
lations. However, as a consequence of the anisot-
ropy of the ground-state wave function, a resolved
19-line hyperfine pattern is predicted.

Thus the calculation was successful in resolving
the dilemma of a 19-line hyperfine structure in the
monoclinic phase, and the predicted optical transi-
tions provide quantitative support for the E-center
model, as well as suggestions for further observa-
tions.

The discrepancy in the magnitude of the hyper-
fine interaction is presumably attributable to the
neglect of extended-ion effects '; present meth-
ods must be extended to include the molecular
anion. Static distortion and polarization were also
neglected, as was the dynamic electron-lattice

200

+ 150—
V)

LLjI-
I

LIJ

I-
50—

LLI
K

II

-20 0
11

20 40

interaction, which determines the optical-absorp-
tion line shape '; these must await a detailed
characterization of the sodium-azide lattice dy-
namics.
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APPENDIX A

Basis functions for the rhombohedral phase (P-
NaNs) are defined with respect to the coordinate
axes shown in Fig. 1, and are classified according
to the irreducible representations of point group
D3g. The following functions were constructed
from s, P, d, and f orbitals, using the radial func-
tions defined by Eqs. (4) and (5):

X, (A, '; r) = (l /Vw)' (1+Kr)e

X,(Ag", r) = (g'/18m)'" (2z'-x'-y')e '",
X, (A, ; r) = (f /72w)'i (x)(x —3y )e

xi(Az; r) = (0'/z)'"(z)e '",
X,(A, ; r) = (l /180m)' '(z)(5z' —3r ')e '",
Xs(Az,'r) = (K'/72~)'"(y) (3x'-y')e '",
Xi(&'; r) = (R'/3z)'"(yz)e '",
Xz(E'; r) = (K'/sz)'"(x'-y')e '",
X|(~'; r) = (K'/z)'"(y)e '",
Xz; r) = (l'/120m)'"(y)(5z' —r')e '",
X,(E; r) = (L'/12m)' '(z)(x'-y')e '" .

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(AV)

(AS)

(A9)

(A10)

(A11)

H —he/g p.s (gauss)

FIG. 4, Three central lines of the 19-line hyperfine
structure, further split into components by the monoclinic
distortion,



No basis function for the Aa' representation could
be constructed from these orbitals; accordingly,
it is presumed that a state of this symmetry would
have too high a kinetic energy to be strongly bound.
In the ease of the two-dimensional E' and E repre-
sentations, only functions belonging to the first
rom of each representation ax e listed.

APPENDIX 8

Basis functions for the monoclinic phase (o.-.
NaN~) are defined with respect to the coordinate
axes shown in Fig. 2, and are classified according
to the irreducible representations of point group
C». The following functions were constructed
from e, P, d, and f orbitals, using the radial func-
tions defined by Eqs. (4) and (5}:

X~(4'; r) = (&'/»)'" (1+K~)e '",

X2(A. ; r) = (L'/ 1«)'"( Se' »'--y') e'",

X&(&'; r) = R'/«)'"(»'-y')e '",
X4(A'; r) = (g' /Sm}' ~ (»y)e ~",

g~(A; r) = (L'/m)' (z)e

y (A; r) = (g /180m)' ~ (z)(5z —Sr )e

X N; }=(0'/1S )'"(-)( '-y')
X4(4; r) = (0'/S~)' "(»ye)e '",
X, (&'; r) = (@'/Sa)'~'(»z)e ",
y, (&'; r) = (Q'/Sw)'~'(yz)e t",

x (&; )=(t'/ )'"( )

X2(&; r) = (g'/~)'"(y)e '",
q, (a; r) = (g'/1S0~)'"(») (5e'- ~')e'",
y (B;r) = (f /120m)' ~ (y)(5z —r )e

~,(a; r) = g'/V Z~)'"(»)(»' Sy')-e '",
X (&; )=(0'/7S )'"(y)(S '-y')

(BS)

(84)

(85)

(86)

(BV)

(86)

(89)

(810)

(811)

(81S)

(81S)

(814)

(815)

(816)
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