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A theory of the residual electrical resistance of ferromagnetic disordered alloys is pre-
sented in the framework of the coherent-potential approximation. It generalizes a previous
calculation made for a two-band model Hamiltonian relevant for transition-metal-based alloys.
This formalism can be applied to calculate the concentration dependence of magnetization,
spin-up and spin-down resistivities, and spontaneous resistivity anisotropy of ferromagnetic
alloys. These quantities are computed for a simple model of NiCu and are found to be in
good agreement with observation.

I. INTRODUCTION

In a series of papers' a two-s-d —band model
Hamiltonian has been applied to discuss qualita-
tively the concentration dependence of some typical
electronic and transport properties of concentrated
transition- and noble-metal alloys.

This model Hamiltonian was first introduced by
Levin and Ehrenreich' (hereafter referred to as
LE). The purpose of LE's paper was twofold:
first, to discuss the general properties of this
model in the framework of the coherent-potential
approximation (CPA) introduced by Sovene'7 and
Velicky et al. , and second, to use it as a sim-
plified Hamiltonian relevant to investigate the con-
centration dependence of the charge transfer and
the optical-absorption edge of AgAu.

The LE model has been extended ' to take ac-
count of both s-d hybridization and d hopping
(LEBV model), With that model Hamiltonian two
of us have shown that it is possible to write down
within the CPA expressions for the residual re-
sistivity which explain the deviations from Nord-
heim's rule observed in some transition-metal-
based alloys.

Finally, in a paper reviewing the previous con-
tributions, a self-consistent calculation of the
charge transfer which improves the results ob-
tained in Ref. 1 was presented and the LEBV
model was extended in order to investigate the mag-
netic properties of concentrated disordered ferro-
magnetic transition- metal alloys.

It is the purpose of the present paper to show
that this generalized formalism is also able to de-
scribe semiquantitatively the concentration depen-
dence of typical magnetic properties, such as the

spontaneous resistivity anisotropy in nondilute
ferromagnetic alloys. This effect measures the
difference between the resistivities of currents
parallel and perpendicular to the magnetization in
ferromagnetic metals and alloys. There is strong
evidence that the spin-orbit coupling is respon-
sible for this effect. Smit proposed a simple the-
ory along these lines. The spin-orbit coupling
produces a mixing of spin-up and spin-down states
which is not isotropic because the magnetization
provides an axis for the spin-orbit coupling. As
shown by Campbell, Fert, and Jaoul' '" for small
concentrations, the two-current picture of Mott'~

substantiates this theory by convincingly relating
the spin-up and spin-down resistivity to the spon-
taneous anisotropy of the resistivity in some Ni-
based alloys for which data are available. For
nondilute alloys, it was interesting to test the
LEBV model and to see to what extent the CPA
theory of the dc conductivity discussed in Hefs.
13 and 3 is able to account for the concentration
dependence of the resistance anisotropy observed
in Ni-based alloys. '

We shall now give an outline of the paper. In
Sec. II the LEBV model for paramagnetic alloys
is characterized in the CPA. In Sec. III this mod-
el is generalized to ferromagnetic alloys and ex-
pressions for the majority- and minority-spin den-
sity of states are derived. The d disorder is
treated within the CPA, while the exchange inter-
action is treated in the Hartree-Fock approxima-
tion.

In Secs. IV and V a numerical calculation of the
concentration dependence of the magnetic prop-
erties of a model of concentrated NiCu alloy is
presented. The magnetization, ratio of spin-down
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and spin-up resistivities, total resistivity, and,
finally, spontaneous anisotropy of the resistivity
are found to be in good agreement with experi-
mental data.

II. MODEL

In the LEBV model the pure metals A and B
forming the substitutional disordered A„B, „al-
loys are assumed to have a broad s band and a
narrow d band centered at energy &„" '. The ef-
fect of the degeneracy is neglected. In the
A„B, „alloy, the d energy level at a given site
may be g~ or g„, corresponding to whether the
site n is occupied by an A or a B atom, respec-
tively, with probability x and 1 —x. The un-

hybridized s bands and the hybridization param-
eters are assumed to exhibit the virtual-crystal
behavior. By contrast, the disorder associated
with the d band is treated in the framework of the
multiple scattering theory.

For a given configuration of the alloy, the
Hamiltonian reads

a= Z E,(k)lk, &&k, l+ E z, (k)lk, &&k, l

ACBZ

+~ z~"'l~~&&~~I+ ~ ys(lk. &&k~1

The first two terms correspond to the kinetic en-
ergy of the s and d electrons. The third term
where the state (n~) represents the Wannier
states on site n,

ln„&=x-'Z s '"~" lk, &,
k~

contains the random d levels. The last term,
where the coupling constant y& is assumed to be
k independent, accounts for the s-d hybridization.
The value of the E,(k) dispersion relation at the
Brillouin-zone (BZ) boundaries determines the
width 28', of the unhybridized s band:

E,(k) = E,""'+z, (k)

with

Z, (k) =E+z,(k), z~(k)= o&z, (k), (4)

The parameter e specifies the relative width of the
s and d bands.

In the paramagnetic case' it was shown that in
the CPA the s and d density of states is obtained
from

n, (E)= v,—-ImF„(E+io),1

1
m~(E) = —v„ImF—«(E+ i0),

where v, and v„are the total number of states
available in the bands and F„(z)and F«(z) are,
respectively,

F„(z)=X-'Z &k, l G(z) lk,)

and are determined from the averaged Green's
function:

i z —E,(k) —ys
~ - e.&&'&-. z, &~&)

where the overbar indicates a configuration aver-
age. The self-energy Z~(z) is defined by the self-
consistent relation (see Ref. 3)

Zcv~(, )
— x(1 x)&za —zf)' —F(«,zZ~)

1+ (z + Z„)F„(z, Z, )

where z is the average energy z =xz~ + (1 —x)z~.
A simple expression for F«(z, Z„) can be derived
from (6) and (7) if we know the s density of states
of the pure metals po, (E):

F„,(z, Z„)=' dz z- Z„(z)- o.E-y„(z- E-Z)-—2 -1

and can easily be expressed (cf. Refs. 1-3) in
terms of Fo, (E), the Hilbert transform of po, (E).
This formalism can be generalized to ferromagnetic
alloys. We shall examine this extension of the the-
ory in Sec. III.

s, (k)=W, s(k), -l-s(k)-1. (3)
III. GENERALIZATION OF CPA TO FERROMAGNETIC

ALLOYS

As indicated before, the s-band and hybridization
parameters in the alloy satisfy

Eo E=xE&& + (1—x)E&&

YH ys= xy(zu ) + (1—x)y(zs ) .

We assume that the unhybridized s and d bands
have the same shape but differ in location and
width. We also assume, for convenience, a semi-
elliptic shape. If the energy origin is chosen mid-
way between the constituent d levels, we have

As for the one-band model, "this formalism can
be generalized to calculate the magnetic proper-
ties of transition-metal-based alloys. As a first
step, as in Ref. 15, we adopt in this paper the
Hartree-Fock approximation. The most impor-
tant contribution comes from the Coulomb repulsion
between two antiparallel d electrons on the same
orbital.

4-d V
decor, f =Up, ~ N~ I ~ N~ „

with
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=if4'„(r,) 4*„(rz)e „lr,—rzl 4„'(rz)4)a(r, )d r, d ra,

where the indices i, p, , 0 denote the site, the
(1O)

orbital, and the spin, respectively, and N'a ~,, is
the average number of electrons in that state.
In this paper we shall neglect the effect of the de-
generacy and consider the d band as awhole. Since
the model Hamiltonian (1) refers to the paramag-
netic alloy, we shall describe the ferromagnetic
alloy by adding to (1) the following term:

with

aa a= xt~ a+ (1 —x)&~ ~ .

(13)

(14)

The s and d densities of states are now given by

trons per atom N„'„' does not depend on the site
but depends on the atom occupying the site. The
CPA is easily generalized. The self-energy is
now spin dependent:

~ferro ~yama
cor cor

In the Hartree-Pock approximation, the ferro-
magnetic model Hamiltonian will have the same
form as (1) but with a spin dependence of the d-
resonance levels:

and

n„,(E) =
2
' ImF '„(z, z', (z)) l, B„()

n, ,(E) = — ' 1mF '„(z, z', (z) ) l a B,„,
7T

(15)

(12)~A(B) A(B) +A(B) (NA(B) NA(B)rara)=
&y~a — e« g, -e g, -e

The energy U,",', ' is an effective d-d exchange en-
ergy whose value will depend on the number of d
electrons considered in the model as well as con-
tributions other than (9). The number of elec-

while the partial d density of states on atoms A
and B are straightforward generalizations of the
expressions derived in the one-band model (Ref.
8) when one averages over random configurations
with an atom of type A. or B located at site n = 0:

n".,
' =- " lm( na=ol fz-H.'«(z)-IO)(~~(."-Za)&OI) 'ln. =» laB (0

™1-[e"„,(.') -Z'„(z)]F'„(z, Z', (z))
(17)

Here II,« is the single-site CPA effective Hamilto-
nian defined by G = (z H,«) and c-orresponding to
a d self-energy Z„on every atomic site.

In the Appendix, we show how a t approximation
can be used in the ferromagnetic case as the start-
ing point of the iteration procedure leading to the
self-consistent solution of Eq. (13).

Since e"„', ' is a function of the number of d elec-
trons N"„',', the ferromagnetic solution is obtained
by solving the five simultaneous equations with
five unknowns, the Fermi energy E~, and N~'„':

(18)

xNO + (1 —x) No =f dE[n, ,(E)+n, ,(E)+na, ,(E)

+ n, (E)], (19)

where No
' ' represents the total number of s and

d electrons of pure A(B) metal. When these five
equations are solved, the average magnetic mo-
ment per atom of the alloy is equal to

where p~ is the Bohr magneton. As we shall see
in the discussion of Sec. IV, this formulation can
account for the splitting of spin-up and spin-down
bands in pure metals as well as the concentration
dependence of this splitting in disordered alloys.

0 = Oss+ 20s~ + ~su (22)

IV. SPIN-DEPENDENT RESISTIVITY

In the same way, the formalism we have derived
in Ref. 3 to calculate the dc electrical conductivity
in the LEBV model can be generalized to deal with
ferromagnetic alloys. We have shown that pro-
vided the following approximations are made in the
model: (i) The random potentials are short ranged;
(ii) the coupling constant y„ is 0 independent; (iii)
the matrix elements (n, I R In~) of 8 (the site-posi-
tion operator between s and d Wannier states) are
identically zero, the CPA vertex corrections in
the expression of the dc conductivity vanish, and
the conductivity can be written as a sum of three
contributions:

p, = x )(,
"+ ( 1 -x ) )),

with

A(B) (NA(B ) NA(B))@e —
g, -e &a ~

(20)

(21)

represented by the diagrams of Fig. 1. In ferro-
magnetic alloys the self-energy due to d scattering
is spin dependent and, since the spin-up and spin-
down bands are split, the two quantities Za(EB) and
Z, '(E~) are different at the Fermi energy. There-



RESIDUA L RESISTIVITY OF CONCE NTRATED. . . 383

-H
Gss

-H
Gsd ,

-H
' Gds

"ss

Gss Gss

"ss

5 5

d 5
X

H
Gdd ~HGsd

s cl
X

H
Gss "H Gds

VCICI

FIG. 1. Diagrammatic represen-
tation of the various contributions
to the dc electrical conductivity.
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fore, at low temperature, where magnon interac-
tion giving rise to spin-flip mechanism is negli-
gible, the total conductivity can be viewed as the
sum of the conductivities of two currents:

(T= CT + 0' (23)

The contributions cr,',"', o,'„"', and o„'~"' are simple
generalizations of Eq. (57) of Ref. 3:

2

c „

we can use Eqs. (24a)-(24c) to compute the con-
centration dependence of the minority- and
majority-spin-band residual resistivities of alloys
in the ferromagnetic state at T= 0,

p 0 = 1/o~, o0 = 1jo (26)

as well as the concentration dependence of the total
resistivity,

p4 pk

p4+pk

x [imG„(k, Z„'&'&, 7i+ iO)]', (24a) V. SPONTANEOUS ANISOTROPY OF RESISTANCE

2

dq — Z '„(k)
c

x [Im G~~(k, Z~' ', q+ iO)]~, (24b)

f {4) 't ($)= Ous

8
=(v, v, )'@ 'dg —„ i

2 v, (k)v„(k)
gQ „dg]

x'[ImG, ~(k, Z~&'&, qpiO)], (24c)

where 0, is the volume of the unit cell and f (q) is
the Fermi-Dirac distribution function. Provided
we choose, as in Ref. 3, a simple expression for
the velocity function P(E),

P(E) =E Z v, (k) 6(E —E,(k))~(W, —E ) i,
(25)

At low temperature the ratio of minority- and
majority-band resistivities is a characteristic
quantity for a given alloy. Campbell, Fert and
Jaoul ' have used the two-current model to eval-
uate this quantity for various Ni-based alloys.
They suppose that transport at low temperature, in
the absence of spin-orbit coupling but in the pres-
ence of impurities, is by two parallel currents of
electrons, spin 0 and spink, each with its own re-
sidual resistivity pl and p 4, and they show that,
for temperatures well below the Curie temperature
and for concentrations such that the impurities do
not interact, this ratio is fixed for a given impurity
and is independent of concentration. The numerical
application of the CPA formalism which we present
in Sec. VI indicates that this statement is true in
that case, for concentrations lower than (6-7)%.
In the presence of spin-orbit coupling there is a
mixing of spin-up and spin-down states which is
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not isotropic and gives rise to an anisotropy of
the resistance. Experimentally, the spontaneous
anisotropy of the resistance is defined by

+ p 2 pjj —p~ (28)

4 K (so)

When these changes are put into the expression for
the total resistivity, one finds at low temperature

p~ p&
yso 1

p~~ p 0

In the dilute limit y„ is a quantity characteristic
of the host. For instance, the value which best
fits the experimental results is, for Ni-based al-
loy s,

y„= 0.0075

For small concentrations p 0/p0 is independent of
cencentration and one would expect the same prop-
erty for &p/p„ if 'Y is assumed to be constant.

Roughly, such behavior is observed indeed in
¹iCo, NiFe, NiMn, NiV, and NiCr at low concen-
trations (&5 at %). For. higher concentrations,
the quantities 'Y„and pk/pt will vary with concen-
tration, and the exact concentration dependence of
&p/p, „ is less easily predicted. In all Ni-based
alloys~ the anisotropy tends to decrease with con-
centration and the exact concentration dependence
of &p/p„ is less easily predicted. In some of
them, however, there is first an increase of the
anisotropy ( in ¹Co,for example) or a large
range of concentration where this quantity is con-
stant (in ¹Fe). To understand this varying be-
havior, it is necessary to know the concentration

where p„and p, are measured parallel and perpen-
dicular to the magnetization at saturation and ex-
trapolated to B=0. Smit's theory gives a simple
expression relating bp/p„ to p 0/p4.

Assuming a tight-binding model for the d states
and an exchange field X,„but no crystal field, Smit
has shown using a simple perturbation calculation
that the effect of mixing spin-up and spin-down,
states (and hence the resistivity change) is stronger
for an electron traveling along the magnetization
direction than for one traveling perpendicular to
it. At low temperature when the spin-mixing term
due to magnons is negligible, one has

II pt+ ysop~ )

(29)
jl

p, =p, —y„pk,
where p 0 is the resistance for spin-down electrons
in the absence of spin-orbit coupling and y„ is a
constant depending on the spin-orbit coefficient A
and the internal exchange field:

dependence of both factors y„and pk/p4. The
theory developed in Secs. II and IG provides a
method to give such information and hence to ex-
tend the theory of the spontaneous resistivity
anisotropy to nondilute alloys. In Sec. VI we re-
port the result of a numerical calculation made
for a LEBV-model alloy relevant to discuss the
magnetic properties of NiCu.

VI. NUMERICAL ILLUSTRATIONS

In this section a physical picture of the ferromag-
netic NiCu alloy system is developed which re-
produces some of its salient qualitative features.
In particular, we shall examine the concentration
dependence of the Bohr-magneton number, the
total resistivity, the ratio of the minority- and
majority-band resistivities p 0/p 0, and finally
the spontaneous resistivity anisotropy. The choice
of approximation and parameters for the pure
systems will be now justified and summarized.

A. Pure Metals

In the two-band model characterized in Secs. II
and III, one usually takes a simple shape for the
s and d unhybridized bands of pure metals to avoid
cumbersome analytical and numerical calculations.
We shall do the same here. A semielliptic band
is not, however, able to reproduce correctly the
behavior of Cu and Ni densities of states at the
top of the band. In ferromagnetic metals and
alloys, the position of the Fermi level and the
density of states at the Fermi level are of primary
importance when one is interested in finding the
ferromagnetic solution and calculating the trans-
port properties. For that reason, we shall make
a further approximation. We shall consider only
electrons of the upper peak of the d density of
states appearing in band-structure calculations
for Ni and Cu (for instance, Hodges et al. ~

) and
describe them with a LEBV model. The presence
of the lower part of the d density of states will be
ignored in our calculation. This is justified as
far as we suppose that, in ferromagnetic metals
like Ni, the net spin density is determined largely
by electrons near the top of the d band, rather
than by electrons throughout the entire band struc-
ture which must be considered rather in connection
with the total charge density. To characterize the
pure systems, we have to give numbers to the
following quantities: v, and v&, the total number
of s and d states in the band; the position of the
d potential &"„'„'; the hybridization constants y"„' ';
the exchange effective interaction energy U,«, the
width of the s band W, which will be taken as the
energy unit; and the factor a giving the ratio of
the s and d unhybridized bandwidths.

We did not try to find the optimum set of param-
eters but rather used reasonable values which
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give numerical results which are within the range
of theoretical and experimental estimations for
the density of states of Cu and Ni and the magnetic
properties of Ni.

According to the previous discussion, we con-
sider only d electrons in the peak at the top of the
d band, the volume of which is, for both Cu and
Ni, roughly 3 electrons per atom. Therefore, we
take v&=3 for the d band and v, =2 for the s band.
The position of the peak in the band-structure
calculation of Ref. 16 provides us with the values
E,",'„=7. V5 eV and &, ",= 5. 50 eV. The k-inde-
pendent hybridization constant for the two metals
is yH = 1 eV, in accordance with Heine's discussion
of hybridization in transition metals. To repro-
duce the upper peak obtained in the band-structure
calculation of paramagnetic Cu and Ni, we have
taken, moreover, the following values for n and
S',: &=0.02V5, which is large enough to eliminate
any structure reminiscent of the hybridization
gap appearing for n = 0; and W, = 7. 2 eV, which is
quite reasonable for transition and noble metals.
The unhybridized s bands are the same for Cu and
Ni. As we neglect the contribution of seven elec-
trons of the lower part of the d band, we consider
a population of three electrons for Ni and four
electrons for Cu.

Figure 2 reproduces the upper part of the
paramagnetic Ni density of states calculated with
these parameters. We get the correct value for
the maximum of the density of states (- 2 states
per eV per atom). Because of the sharp variation
of the density of states in that region, the density
of states at the Fermi energy n(Ez) is slightly
smaller than that calculated in Ref. 17. The num-
ber of d holes in Ni. is found to be 1.10. This is
larger than the 0. 6 usually assumed but in accord-

ance with the conclusions of Hodges et a/. ' We
get the same kind of agreement for Cu.

To determine the ferromagnetic solution for
Ni, an estimate of U,« is needed. We have taken
for the effective correlation interaction a value
such that n, (Ej,) U„,= 1.2, which is the value gen-
erally attributed to Ni in connection with the
Stoner criterion of ferromagnetism'~: n, (Ez) U«,
&1, where the quantity n, (Ez) is the density of
states at the Fermi energy for one spin. In our
model this gives U,«=0. 9 eV, a reasonable val-
ue which gives a splitting of U«, (Nf —N4)
= U„, (l. 25 —0. 65) = 0. 54 eV and a magnetic mo-
ment of 0.6p, ~ per atom.

Figure 3 shows the upper part of the Ni d den-
sity of states in the ferromagnetic phase calcu-
lated in our model. The position of the Fermi
level with respect to the splitting of the d band is
in agreement with band-structure calculations.
An interesting feature of this model is that hy-
bridization gives rise to a depletion of the s den-
sity of states where the d density of states is max-
imum. Because of the band splitting, at Fermi
energy this effect is more pronounced in the
minority s band than in the majority s band. As
a consequence n,'(E~) &n,'(E~), in contrast with the
total density of states nt(E~) &nk(E~). This could
be a possible partial explanation of the polariza-
tion effect observed in spin-dependent tunneling
experiments ' when the density of states of the
majority band appears to be larger than that of
the minority band, if one assumes that in such ex-
periments of the role of s electrons is more impor-
tant than that of d electrons. Here the difference
between n,'(Ez) and n,'(Ez) is about 50% compared
to about 10% reported in Ref. 21 and by BKnninger
et al. in photoemission experiments. This dif-
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ference could be due either to the crudeness or
overestimation of hybridization in our model or to
the influence of the d-electron contribution to the
tunneling. As these features are concentration
dependent in alloys, it would be interesting to in-
vestigate this effect in Ni-based alloys.

B. Alloy

Figures 4-11 illustrate the application of the
formalism developed in Secs. II-V to alloys of
the two artificial metals corresponding to Cu and
ferromagnetic Ni which we have characterized in
Sec. VI A. Since only one metal is ferromag-
netic, the calculation of the ferromagnetic solu-
tion can be done with precision up to 40 at. /g Cu
in Ni. The computed number of Bohr magnetons
decreases linearly (see Fig. 6) and agrees with
experimental data. For a concentration of Cu

higher than 40 at. %, the solution is less accurate,
experimental data are scarce, and the alloy can
no longer be considered as completely disordered.
For that reason, the results have been extrap-
olated for higher concentrations (broken line).
Figures 4 and 5 represent the density of states
for two concentrations, 6 and 30 at. /g Cu. It is
found that the Fermi level does not move as the
concentration of Cu increases, while the band
splitting decreases almost linearly with concen-
tration. Figure 7 shows the variation of the low-
T specific-heat coefficient y vs concentration
measured by Dixon et al. The dashed line rep-
resents the variation with concentration of the
density of states at the Fermi energy, which is
seen to be in reasonably good agreement. The
small feature at very small concentration may be
due to an overestimation of the effect of hybridiza-
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FIG. 3. s bands and the two upper peaks of the d bands used to represent ferromagnetic Ni.
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sistivity for concentrations smaller than 40 at. %
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FIG. 6. Variation of magnetization with concentration
for the NiCu model alloy. The crosses are experimental
data. The numerical results are extrapolated beyond
40% (broken line).

FIG. 7. Concentration dependence of the low-T spe-
cific-heat coefficient y of NiCu (Ref. 23). The broken
line represents the variation of the total density of states
at the Fermi energy calculated in the present model.
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For the minority band, the Fermi level is very
close to e~, & and the first factor is much larger in
the minority band than in the majority band. This

Cu in Ni. In the dilute limit the ratio pi/pi is
10. As a matter of fact, this order of magnitude
can be guessed by considering the approximate
expression obtained in Ref. 3 [Eq. (86)] for the
relaxation time in the dilute limit when the d hop-
ping is neglected. Here this relaxation time is
spin dependent:
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neous anisotropy of the resistivity. The crosses corre-
spond to experimental data compiled by Van Kist (Ref. 14).
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difference underlines the effect of hybridization
and its influence on the scattering in the minority
band. Roughly, one has (ez —ea"',) =4(ez —ea"',).
The second factor is slightly smaller in the mi-
nority band than in the majority band, while the
third factor can be considered as independent of
spin. If, moreover, we take account of the deple-
tion of the s density of states at the Fermi energy
in the minority band, one gets the calcul. ated order
of magnitude for pk/p4 in the dilute limit.

Because of the lack of experimental data, there
is not a concensusz on the magnitude of p4/p4 in
dilute NiCu. The value we get in our simplified
model is in agreement with Smit's theory of the
spontaneous anisotropy of resistance and is not
in contradiction with the calculation of the resis-
tance in pure Ni of Hasegawa et al. ' These authors
consider three Fermi surfaces in Ni. The first,
a s Fermi surface, corresponds to the majority
band, while the second and the third, s-d and d
Fermi surfaces, correspond to the minority band
where electrons at the Fermi level are strongly
hybridized. The calculation of the resistivity due
to phonon scattering in pure Ni indicates that in
the ferromagnetic state the current is mainly car-
ried by electrons on the s Fermi surface; in other
words, the resistivity is much higher for minority-
band electrons than for majority-band electrons.
The results obtained in this paper for the disor-
der-induced resistivity lead to the same conclu-
sion.

The extension of our calculations to a more
realistic model for NiCu alloys and to other Ni-
based alloys requires a development of the theory
of the density of states and transport properties of
ferromagnetic alloys. One should consider the
details of the Fermi surface, the degeneracy of
the d bands, and the k dependence of hybridization.
This would involve the calculation of vertex cor-
rections for the electrical conductivity. The dif-
ference of valence should be treated properly by
considering charge transfer self-consistently, as
is done in Ref. 4, and by investigating carefully
the dilute concentration limit.

Finally, we want to emphasize the need for more

experimental data in both dilute and nondilute con-
centration ranges.

APPENDIX: AVERAGE t APPROXIMATION (ATA) IN
FERROMAGNETIC ALLOYS

As demonstrated in Refs. 2 and 4, in the LEBV
paramagnetic model, the non-self-consistent ATA
is a good starting point for the self-consistent
iteration calculation leading to the CPA. This is
also the case in ferromagnetic alloys provided
the ATA formulas of Refs. 2 and 4 are slightly
modified to account for the dependence of &d"', '

+A(B &

d, fy

In general, we choose the energy origin such
that &", ,= —&„„and the ATA self-energy is given
by26

(A1)y
~a a +

1 y(t ( e IF)QIJ

where &a'=xca„+(1—x) &a„[Eg. (15)] and &a,', '
~A(B) UA(B)(gA(B) ~A(B) &ra) [Eq (12)]

A e
d. ~ 6d

1 —(ea,.&a)Faa(z, & a)

-a
Ed, —&d

+ (1 —x) (,, —.~. (
—.

)
(A2)

If .re substitute (A2) into (A1), we get fina11y

a -e (ea.n- ea)(za s ea)Faa(zi e a)
1+ (2c a

—ea, a ~a, a)Faa(z~ e a)
(AS)

which is the ATA expression for the self-energy
in the ferromagnetic LEBV model.
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Excitation Spectrum of Magnetic Domain Walls
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The eigenvalue equation for the norm. al modes of excitation of a moving infinite p1.anar mag-
netic domain wall in an infinite material having the most general second-rank tensor anisot-
ropy is presented. The eigenvalues and eigenfunctions of both the spin waves in the presence
of the moving wall and the excitation of the wall itself are given to first order in velocity.
Cylindrical-domain resonance experiments are proposed to test for the existence of the ex-
citation modes and their effect on domain propagation. The dispersion relation for the wall
excitation modes is found to imply a new material requirement for high mobility.

I. INTRODUCTION

The excitation spectrum of an infinite planar
180' domain wall in an infinite magnetic material
having a constant magnetization magnitude M, is
treated here in the continuum approximation. For
the description of this system, Cartesian tensors
in a right-handed coordinate system and Euler
angles will be used. The position in the material
is denoted by x&, and only the polar (8) and azi-
muthal (p) Euler angles are used. The polar axis
is the x3 direction, and y is zero in the x& direc-
tion. Vectors as well as their components will
be denoted by symbols of the form v,. and, simi-
larly, tensors will be denoted by symbols of the
form 7.'». Repeated indices are understood to be
summed from 1 to 3. The totally antisymmetric
unit tensor is denoted by e„~.

II. MAGNETIC ENERGY DENSITY

The material is taken to have the most general
second-rank tensor anisotropy. When the coordi-
nate system is properly oriented with respect to
the crystalline axes and when the arbitrary zero

of energy is chosen so that the lowest value of the
anisotropy energy is zero, the anisotropy energy
density may be written

pr = (ljM, ) K)~ Mg Mg,

where M~ is the magnetization vector and

(la)

0

Z,„-=0 Z„+Z, 0

0 0 0

Z„&0, Z, &0

p„= 2w(n, M, )'
= 2gn~nI, M~Mg .

(2a)

(2b)

(Kb)

(u for uniaxial and o for orthorhombic). The an-
isotropy energy is minimized when M& = [0, 0, + M, j.
In a bubble domain device, such a material would
be oriented with the plate normal along the polar (2)
axis and the domain-wall normals in the 1,2 plane.
Attention will subsequently be restricted to a plan-
ar domain wall whose wall normal lies in the 1, 2

plane, for which the local demagnetizing energy
density between two regions having M3= +M, is


