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For T & T, 68' C, VO, is a metal with the rutile structure. For T &T„VO, is a semiconductor
with a monoclinic structure. We have found semiconducting energy bands for the low-temperature
structure from a parametrized tight-binding linear-combination-of-atomic-orbitals calculation. The
semiconducting gap results not only from the reduced symmetry of the monoclinic phase but also from
changes in the tight-binding parameters which result from changed interatomic distances. The joint
density of states derived from our cal.culation is in very good agreement with experimental optical data.
The success of this calculation shows that, given the crystal structure, the semiconducting band gap is

completely understandable in terms of one-electron theory. A short Appendix on the group theory of
this structure is included.

I. INTRODUCTION

VO~ undergoes a first-order phase transition at
T, = 68 'C from a monoclinic semiconductor (T& T,)
to a tetragonal metal (T& T,). Phase transitions
characterize several oxides of vanadium, and the
general class of transition-metal oxides shows a
wide range of magnetic and electrical properties.
All these oxides contain a distinct conduction band,
arising from metal nd atomic orbitals, which is
above a valence band of 02 states and below the
band of metal (n+ l)s states. In the case of VO„
the 3d34s vanadium atoms contribute four elec-
trons each to fill the valence band. This -leaves
one electron per vanadium ion in the conduction
band. Since there are an even number of vanadium
atoms in the unit cell (Vp04 for T & T, , V408 for
T& T,), the semiconducting state must be charac-
terized by a gap separating completely filled bands
of Sd states from all the higher-energy Sd states.
A great deal of work has been devoted to the prob-
lems of how the band gap arises from the phase
transition, and what the mechanism is which drives
the transition. ~ ~

In principle the investigation of VO2 should in-
clude completely self-consistent band calculations,
using nonspherical potentials, performed on both
the high- and low-temperature phases. The de-
tailed energy bands would facilitate interpretation

of optical and photoemission experiments. The
differences in the charge density of the two phases
would greatly aid explanation of the transition, as
would changes in the various components of the
binding energy. Unfortunately, this sort of calcu-
lation is not technically feasible for VO~. The
high-temperature phase has a tetragonal unit cell
containing two formula weights of VO~ (rutile
structure). In our investigation of this phases we
found that the large size of the unit cell relative
to the augmented-plane-wave (APW) spheres made
350-400 APWs necessary for the expansion of the
wave functions. Since there are 12 filled valence
bands and ten conduction bands (five of which are
partially occupied), the calculation of charge den-
sity necessary for a self-consistent calculation was
not possible. The low-temperature phase has a
monoclinic space group with four formula weights
of VOz in the unit cell, and is even less amenable
to exact calculation.

The purpose of this paper is to present a first
approximation to the energy bands of semiconduct-
ing VO2. In order to show how the band gap arises
from the changes in crystal symmetry, we have
performed a parametrized tight-binding linear-
combination-of-atomic-orbitals (LCAO) calculation
on the monoclinic crystal structure. Our method
was to begin with all tight-binding parameters
(TBPs) that were the same as those which produced
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the high-symmetry energy bands. We then looked
for changes in the TBPs which would be consistent
with the changes in interatomic distances which re
suit from the metal-semiconductor phase transi-
tion. Our goal was to find changes in the param-
eters which would produce bands agreeing with ex-
perimental information about the semiconducting
phase. Before discussing the parameter changes
and the bands, we will review briefly the experi-
mental information about semiconducting VO2.

The crystal structure for room-temperature VO&

was first determined by Andersson4 5 in 1954. In
1961 Westmans determined the relations between
the high- and low-temperature phases, and we will
use these relations to describe the low-tempera-
ture monoclinic phase in terms of the high-tem-
perature tetragonal phase. We have found that this
makes the less symmetric structure easier to
visualize. Va04 (rutile structure) has the following
primitive translation vectors:

A A,

+r+ y ~r %S) cr ~r~v

where g = 4. 530 A and c„=2.869 A. Here the sub-
script y denotes rutile structure, and x, y, and z
denote the usual rectangular unit vectors. V&08
(monoclinic structure) has as its primitive transla-
tion vectors a=5. 743 A, b=4. 517 A, and c=5.375
A, where the angle between a and c is P= 122. 61'.
To within experimental accuracy, the unit cells are
related by a = 2c„,b = a„,c =5„—c„. If there is any
volume change, it is less than 1%, and it is ne-
glected in our calculations. We note here that

I a+ c I
= I c (, so that the hexagonal base of the unit

cell (perpendicular to the x axis) shows reflection
symmetry in the a=0 and y=0 planes. But the
actual crystal has lower symmetry than this, due
to the arrangement of atoms within the unit cell.
In Table I are given the atomic positions for both
the rutile and the monoclinic structures. All co-
ordinates for both structures are given in terms of

TABLE I. Atomic positions for VO2 in rutile and mono-
clinic structures. All coordinates are given in terms of
the tetragonal primitive translations j.=a+, h„=a/), c„

the rutile axes a„, b„, c„. (I)-(IV) denote vanadi-
um positions; (V)-(XII) denote oxygen positions.

The monoclinic phase has a center of inversion
at (0. 025, 0.025, 0.459), midway between the
vanadium atoms (I) and (II). The four symmetry
operations at this point are E, the identity; 0, the
inversion; fo, I r), a glide plane involving a reflec-
tion in the plane perpendicular to 5 followed by a
translation ~=-',(6+c)=(-,', —,', ——,'); and ]Cat~}, a
screw axis consisting of a rotation of g about a line
parallel to b followed by the translation 7.. There
is no reflection symmetry in the plane containing
a and b. The space group is, therefore, Caa„(P2t/
c).

The most prominent feature of the phase transi-
tion is that the nearest-neighbor vanadium atoms
which are spaced equidistantly along the c„ in the
rutile structure pair up and depart slightly from
collinearity in the monoclinic structure. The dis-
tance between (I) and (II) is 2. 65 A, while the dis-
tance between (I) and (II-a) is 3.12 A. Thus the
TBPs for vanadium atoms a distance 2. 869 A apart
in the rutile structure must be replaced by two
sets of TBPs in the monoclinic structure: one for
vanadium atoms 2. 65 A apart and one for vanadium
atoms 3.12 A apart. Another feature of the transi-
tion is the increased distortion of the octahedron
formed by each vanadium atom's six nearest oxy-
gen neighbors. In the rutile structure, the vanadi-
um at (0, 0, 0) has oxygen neighbors at (0.305,
0.305, 0.000), (-0.305, —0.305, 0.000), (0. 195,
—0. 195, 0. 500), (0. 195, —0. 195, —0. 500),
(-0.195, 0. 195, —0. 500), and (-0.195, 0. 195,
0. 500). The first two are 1.95 A away and the last
four are 1.90 A away. In the monoclinic structure,
these oxygen neighbors shift to the positions
(0.315, 0.325, —0.041), (-0.285, -0.265,
—0.031), (0.235, —0. 175, 0.459), (0.215,
—0. 185, —0. 551), (-0.165, 0.235, —0. 531), and
(-0.185, 0.225, 0.459). Their respective dis-
tances from the central vanadium atom are 2.05,
1.763, 1.87, 2. 04, 2. 01, and 1.865 A. The V(»-
O(vI) pair form anelectric dipole. The V(II)-O(vII)
pair form a similar dipole, oriented in exactly the
opposite direction. Thus we can look upon the
phase change. as shifting the vanadiums away from
the centers of their oxygen octahedra in such a way
as to produce antiferroelectric ordering along the
c„axis. As first emphasized by Heckingbottom
and Linett, 7 there is a greater percent decrease in
the V«)-Q(vI) distance than in the V(I) V(II) dis-
tance. We therefore expect that the parameters
affected by the changes in (I)-(II) and (I)-(VI) dis-
tances will have the largest effects in producing the
band gap.

The reciprocal-lattice vectors are

K, = (2v/a„)x, K, = (2n/a„)j, K, = (s/a, )y+ (s/c„)s.
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FIG. 1. (a) First Brillouin zone for the monoclinic
structure of V02. (b) The k~ =0 plane of the zone shown
in (a).

k ' r = 371[kgx+ (k2+ 2ks)y+ 2kgz] (3)

Figure l(a) shows the first Brillouin zone for this
structure, labeled according to Zak's notation. a

We note that it appears more symmetric than most
monoclinic Brillouin zones because the y compo-
nent of K3 is exactly —,

' of K~. Of course, there is
no reflection symmetry through the y = 0 or z = 0
planes. The crystal wave function will have dif-
ferent values at the two k points - and ='. Be-
cause of the symmetry operations, —,

' of the Bril-
louin zone will contain all the independent values of
k. We could work with the part of the Brillouin
zone above the y axis in Fig. 1(b), but we prefer
to work with the equivalent section enclosed by the
dashed lines. Our quarter zone is, therefore, de-
fined by

~1 2 p 2 ~2 —2 & —~3 —2

The group theory for the rutile space group has
been done by Gay, Albers, and Arlinghaus, but

An arbitrary k vector will be denoted (k~, kz, kz),
such that

k=3v[(kq/a„)x+ (k2/ay+ p k3/a„)j+ —,'(k&/c„)zl,
(1)

and an arbitrary real-space vector r will be de-
noted (x, y, z) such that

r = xa„x+ya„y+ac„2 .
Thus

as far as we know the group theory for this mono-
clinic structure has not previously been published.
Zak presents correct character tables, but the
points with which they are associated are often in-
correct. We, therefore, include a short appendix
on this.

Experimental information is less complete in its
description of the energy bands than in its descrip-
tion of the crystal structure. Ideally, we would
like to know the widths of the (filled) valence 3d
bands and the (empty) conduction 3d bands, the
widths of the gaps between the valence Sd bands
and the 3d bands above and the 2p bands below, and
the width of the 2p bands. But to get even a part
of this information requires careful consideration
of several different types of experiments, each of
which provides incomplete information.

Powell, Berglund, and Spicer' have performed
photoemission experiments on both metallic and
semiconducting samples of VO~. Their semicon-
ducting quantum-yield curve is a near perfect
duplicate of the metallic curve, except that it is
shifted 0. 6 eV toward higher energy. The high-
energy intercepts of the energy distribution curves
(EDCs) are 0. 6 eV higher in the semiconducting
case for a given photon energy than they are in the
metallic case. The authors conclude that all the
occupied V,„and 0» states are moved about 0.6
eV downward relative to the Fermi level. Spicer"
and Derbenwick consider that the sample was
probably heavily doped n type, so that the band gap
is not much more than 0. 6 eV. Derbenwick's pho-
toemission experiments found the top of the va-
lence band to be 0.1-0.3 eV below the Fermi
level, depending on the sample, possibly implying
acceptor impurities in his samples. But Derben-
wick also suggests that the size of the band gap
may be a function of stoichiometry with poorer
crystals having small band gaps.

Optical experiments have been performed by
Derbenwick, Verleur, Barker, and Berglund,
Gavini and Kwan, ~4 and by Ladd. ~s All show a low-
energy peak in the ref lectivity at about 1 eV, at-
tributed to d-4' transitions, and a double peak
around 2. 8 and 3.6 eV, attributed to p-d interac-
tions. The p-d peaks are at the same energy in
the semiconductor as in the metal. This indicates
that the Q» states in the semiconductor have not
moved to a lower energy than they had in the met-
al, as has been suggested from photoemission
data. Derbenwick's optical data extend over the
widest range of photon energies and are consistent
with an 0» bandwidth of 6-8 eV, in contrast to es-
timates of a 3-eV (Ref. 10) or 5-eV (Ref. 12) band-
width from photoemission data. Unfortunately,
none of the optical data shows a low-energy cutoff
for ~ =E, the width of the band gap. For exam-
ple, Verleur eI; al. reported that their optical ab-
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sorption coefficient increased steadily from a val-
ue of 10 cm-' at ~=0.2 eV to 10 cm for 5(d
= 1.0 eV, providing absolutely no information about
the band gap. The work of Gavini and Kwan shows
a somewhat more structure, especially in their
graph of the imaginary part of the dielectric con-
stant &2. Though this goes to zero only at 0 = 0,
there is a sharp increase in slope for ~ &0.6 eV.
We interpret this increase in slope as due to the
onset of direct transitions, and we think that the
low-energy tail is due to transitions from impurity
states and to departures from stoichiometry. This
plus the ambiguity in the photoemission data sup-
ports the conclusion of Berglund and Guggenheim~~
that there are a vari. ety of traps and defect states
whose distribution through the band gap depends
on the sample. Estimates~~ of a low-temperature
activation energy of 0. 15 eV from extrapolation of
the dc conductivity are almost certainly due to im-
purity states. We have, therefore, worked to pro-
duce bands with a semiconducting gap of about
0. 6 eV.

II. ENERGY BANDS

To find energy bands for the monoclinic struc-
ture of VO~, we have used a basis set of 56 Bloch
functions made from the 20 V~ orbitals, the 24 0@,
orbitals, the 4 V4, orbitals, and the 8 03, orbitals
within the unit cell. Matrix elements between
basis functions are expressed as a sum of geomet-
rical factors times TBPs according to the method
of Slater and Koster. For purposes of obtaining
the geometrical relations, these parameters are
taken to have the symmetry of o, z, or p molecu-
lar orbitals between atoms a given distance apart.
In principle, a different set of parameters is
necessary for each different interatomic separa-
tion. In the rutile structure, this presented no
problem, and all near-neighbor interactions were
included in a set of 44 parameters. 3 However,
there are so many changes in interatomic distances
in passing to the monoclinic phase that 140 TBPs
are in principle necessary to describe the same
interactions. It is not feasible to do an APW cal-
culation in this structure and there are certainly
not enough experimentally known features of the
energy bands to permit fitting of all the TBPs.

We have, therefore, treated the TBPs as a set
of disposable constants. As a first approximation
to the correct set, we kept the parameters for
every interaction the same as they were in the
high-symmetry case. For instance, the same dda,
ddt, and dd5 were used to describe the (I)-(lI) and
the (I)-(II-a) interactions that were used to describe
the (I)-(II) interactions in the rutile structure.
This did not produce a band gap, but it did provide
a starting point. Since our results for the metallic
ease showed that the lowest V3„ levels depend pri-

marily on the pd and dd parameters, we did not
change any of the Op -Op, V4,-V4„0„-03„V3„-
V4 VQg 03„0@,-V4„or 0@,-03, parameters. We
increased the strength of pd and dd interactions if
the neighbors moved closer together during the
metal-semiconductor transition and we decreased
the interaction where neighbors moved further
apart. Typical changes were the multiplication of
(ddo), «by 20, (Pdn), v, by 15, (pdn), «, » by

(dd5), «by 10. Since the (ddo), «parameter was
originally 50 times smaller than the pdo param-
eters, the factor of 20 does not make a large ab-
solute change. The multiplicative factors for
neighbors moved further apart in the transition ran
from 0.7 to 0.. 4.

Our energy bands are presented in Fig. 2. '

There is a slight overlap of the V3„valence band
with the 0@, band, but no crossings at any point in
the Brillouin zone. The actual maximum in the
V3~ valence band is —0.8116 Ry at (0, —0.3750,
0.2143). The minimum in the conduction band is
—0.7671 Ry at (0, 0.315, 0. 5), so that the total
indirect gap is 0.0445 By or 0.6052 eV. The mini-
mum direct gap is 0.0471 Ry or 0.6406 eV at (0,
0.3125, 0. 5). We note that the bottom of our con-
duction band is very flat, implying a large effec-
tive mass for electrons. This supports Paul's
estimate from Boltzmann transport expressions
of m* =100~0, better than Berglund and Guggen-
heim's~s estimates of 1.6yno& m*& Vngo from con-
ductivity and Hal)-effect data and neo & m* & 4mo
from optical data. Since our bands predict a
lower effective mass for holes than for electrons,
we expect p-type conductivity for intrinsic crys-
tals. So far, Hall-effect and thermopower mea-
surements have indicated conduction by electrons
only, but as indicated above, most samples seem
to be extrensic. Ladd has argued~' that the low
Hall constant and short mean free path (about 20%%uo

of the average vanadium-vanadium spacing) de-
duced from transport data can be most plausibly
explained as the result of both electron and hole
contributions to conductivity.

Both our density of states (presented in Fig. 3)
and our joint density of states were obtained from
eigenvalue calculations at 3584 k points (1026 in-
dependent points). The widths of the p and d bands
have increased by 20%%uo relative to the metallic den-
sity of states, and deep gaps which were not pres-
ent in the metal have appeared. The increases in
bandwidths resulted primarily from the large in-
crease in (pdv), «, even though the bottom of the
0+, band and the top of the V3„band are much more
sensitive to changes in (pdo), «, We could not
have increased the latter parameter without great-
ly increasing the bandwidths. We have divided the
joint density of states J(E) by E' and we present
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FIG. 2. Energy bands of monoclinic
VO& plotted along principal symmetry
directions. Points of high symmetry
are labeled as in Fig. 1.
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the result in Fig. 4 along with graphs of the imag-
inary part of the dielectron constant &~. In the
random-phase approximation, at zero temperature,
&2 is proportional to

Z I iM „I'g(z„-z.—z)dk,
m, n „

where m labels occupied states, g labels unoc-
cupied states, and the interband oscillator strength
is

~„.(fc) = —(i/n) f y„-*.~y„-„dn,

with n the volume of the unit cell. Since J(z) is
proportional to

Z ~(z„-z.—z)di,
fthm tl 4

we expect J(E)/E' to be proportional to e, as long
as the matrix elements remain fairly constant.
The main difference between theory and experi-
ment is in the height of the peak near 1 eV. This
peak is due to d-d transitions which would be for-
bidden in atomic systems. It is, therefore, rea-
sonable to expect that the matrix elements would
reduce the height of this first peak relative to the

16-

14-

12-

IOf

2-'

I I T
—1.6 —1 -4 —1 Z —1 ~ 0 —0.8 -0 6 -0.4 E(Ry)

FIG. 3. Density of states for monoclinic VO2. Units
of N{E) are arbitrary. The gap at —0.8 Ry lies within
the vanadium d bands and makes the material a semicon-
ductor.

I I

14 P(ev)10 12

FIG. 4. The dotted curve, the dashed curve, and the
dot-dashed curve all show z2 derived from optical experi-
ments on semiconducting VO2. The sources of the curves
are, respectively, J. C. C. Fan, Office of Naval Re-
search Technical Report Nos. HP-28 and ARPA-43, 1972
{unpublished), Ref. 12, and Ref. 14. The solid curve
shows our calculation of JN)/E and is scaled to fit on the
graph with the other curves.
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rest of the graph. In fact, Derbenwick'2 has con-
cluded from his photoemission data that states in
the O@, band couple 2. 5 times more strongly with
the vacuum level than do states in the Vs„valence
band. If we assume that the same ratio holds for
optical transitions, the height of the first peak is
reduced to 6.2, in good agreement with the ex-
perimental curves.

TABLE III. Multiplication tables and irreducible
representations for eight points of high symmetry.

rB E II 0 C

E E II o C
II II E C 0

C Err
C, C a II E

1
—1

1
-1

1
—1
—1

1

r„s,
r2, B2
r8, B8
I"4, Bg

YA E II 0 C

1
1

—1
—1

III. DISCUSSION

It has been known since 1959 that there is a
semiconductor-metal transition. Since 19616 it
has been known that this coincides with the struc-
tural transition from monoclinic to tetragonal. It
is now possible to provide quantitative support for
Goodenough's 1971 model of how the phase change
and the conductivity change are coupled: First,
the decreased V,»-O«» distance increases the
pdg parameter between these neighbors. In the
language of molecular-orbital theory, this makes
pdn bonding levels more stable and pd7t antibonding
levels less stable. Goodenough postulates four
vanadium-vanadium orbitals left at the bottom of
the V3„band as a result of the upward movement of
the pdw antibonding levels. We found that after
changing the pd parameters, and before changing
the dd parameters, the four lowest V3~ levels at
I' were composed primarily of d3, 2 „a with some
admixture of d„,. The reduced symmetry of the
monoclinic phase is not enough to produce a band

gap without changes in the dd parameters, but the
changes in parameters produced by the decreased
V&»-V&», distance do produce the gap shown in
Figs. 2 and 3. Since Goodenough originally sug-
gested that the semiconduction might result just
from the formation of localized bonds between pairs
of vanadium atoms clustered together along the c„
axis, we also attempted to produce a band gap by
only varying the dd parameters. We were only
able to do this by increasing (ddo), « to 105 times
its metallic value. The resulting bands~2 showed
a direct gap of 0. 645 eV, but the indirect gap was
only 0.188 eV. These bands also did not show the
double peak in J(E)/E between 2. 5 and 4.0 eV. We
therefore conclude that changes in the p-d interac-
tion play an essential part in the production of the

TABLE II. General multiplication table for any k point
having all four symmetry operations in its group.

n & c
E C 0
C E II
(I. I1 E

10
YfyAi

0 1
1 0

0 1 1 0
1 0 0 —1

CE E H cr C

n (y c
E C(r
C Z FI

0 IIE

Ci~ Ei
C2 E2
C8, E8
C4, E4

'jl

2

SD E II g C E o C

E II
n E
g C
C cr

(r C
C 0
E II
II E

10 0-1
O1 -1 O

1 0 0-1
0-1 1 0

band gap.
Even now it is not possible to be sure why the

phase transition occurs. We know that above T,
the free energy, F=E- TS, must be lower for the
metallic structure than for the semiconducting
structure, and we know that for T& T, the mono-
clinic structure must have the lower F. But we
cannot calculate the temperature dependence of
either E or 9, and we cannot say whether it is
changes in E or in S which predominate at T,.
That is, we canno& tell whether the material
changes from semiconductor to metal in order to
lower the electronic energy, or whether the change
in conductivity is the effect of a structural change
maximizing the phonon contribution to 8 and pos-
sibly occurring in spite of an increase in the elec-
tronic energy. The fact that the calculation of
Adler and Brooks+ predicts a transition tempera-
ture of about 870 '.K (for an energy gap of 0.8 eV)
on the basis of electronic energies alone would
seem to indicate that at 68 'C the electronic ener-
gy is still higher in the metallic state than in the
semiconducting state. However, there are many
simplifying assumptions which go into this model,
and no calculations have been done which would

C

TABLE IV. Irreducible representations for the ~, Q,
R, S, and - points.

C

o o {C[(-1, —1, 1)} {E((0, 1, —1)} {II ) (1, 0, 0)}

C C {o~ (-1, -1, 1)} {rid(0, 1, -1)} {Ei(1,O, O)}

A, P, Q, B E {C2lr} ",S E {og I 7'}
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C2

S2

8(

I t

w 2

r4

W 'i

C4

M2

Q) Q2

S2

P2

Sg, S2

TABLE V. Compatibility relations.

Q2

Sg

P2

repeated operations, is given in Table II. Here
o stands for (o, l r'Iand C stands for (Czl r), where
7= (—,', —,', —-',). From this table and the form of
k ~ r in Eq. (3) it follows that any two k points (k„
k„0) and (k„k„-,') will have isomorphous multi-
plication tables. All four operations are in the fac-
tor group for the k points I" and B. For the surface
points F, A, C, E, Z, and D, there will be a group
of eight elements consisting of these four opera-
tions with either an even or odd primitive transla-
tion. The multiplication tables for the surface
groups will have the form

justify the assumption that S gets much larger in
the metallic phase for T ~T, [Not.e added in proof
Professor W. Paul has called to our attention a
paper by C. J. Hearn, J. Phys. C 5, 1317 (1972),
which professes to show that the phase transition
is driven by the excess phonon entropy of the metal. ]

Although we are unable to explain the cause of
the phase transition, we have shown that given the
phase transition one can explain the huge change
in conductivity in VO~ with simple one-electron
band theory. It does not require the use of com-
plicated many-electron correlation effects such as
have been proposed~ for this and other transitions.

APPENMX: GROUP THEORY FOR C~„(P2i /c)

The general multiplication table for this space
group, including lattice translations produced by

the A. part of which is all that we include in Table
III. The points 4, P, Q, and R have only the sym-
metry operations E and C in the group of the k
point, and the points =, k=(0, k2, ka), and S, k=(—,',
k2, k~), have only E and o in the group of the k
point. Irreducible representations for these points
are given in Table IV. Because $ is a surface
point, it actually has a double group with the opera-
tions E=(EI(l., 0, 0)) and o =fo'1(1, 0, 0)). The ap-
plication of Herring's test shows that there is an
extra sticking together at all

appoints

resulting
from time reversal degeneracy. Herring's test
also shows that the surface points R and p, which
have double groups with the operations E =(E l(0,
1, —1)) and C =(C I (0, 1, —1)j, have an extra stick-
ing together from time-reversal degeneracy. Fi.-
nally, compatibility relations are given in Table V.
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