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Molecular-Orbital Studies of the Electronic States of Amorphous Selenium
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The electronic energy structure of Se chains and rings are studied by a molecular-orbital
approach, i.e. , using the hybrid orbitals as bases and using. the semiempirical Hamiltonian
matrix elements. The choices of the bases and the semiempirical parameters are discussed.
The calculated density of states is in excellent agreement with that obtained for amorphous
Se by photoemission experiments (Nielsen), The simulated joint density of states resembles
the observed &2 spectra (Leiga, Stuke). A new interpretation for the double peaks in the va-
lence-band density of states and in the &2 spectra is given.

I. INTRODUCTION

Solid selenium exists in three different modifi-
cations: trigonal and monoclinic crystalline, and
amorphous (or vitreous) forms, The trigonal
crystals' consist of threefold helical chains (Fig.
I) while the monoclinic crystals are built of eight-
membered puckered rings (Fig. 2). It is believed
that in the amorphous form both chains and rings
coexist. The chains or rings are held together in
the solid by van der Waals-type forces which are
much weaker than the covalent bonds between atoms
of the same chain or ring. This makes selenium
one of the few inorganic molecular solids.

Only two of the six valence electrons in a Se
atom participate in the bonding within a chain (or
ring). The other four electrons form two sets of
lone pairs. The coordination of the atoms does
not belong to the cubic or tetrahedral symmetry so
that the atomic p orbitals or the tetrahedral (equiv-
alent) sp hybrids are not good representations.
These features, together with the above-mentioned
molecular nature of the solids, distinguish Se from
other well-studied semiconductors, such as group-
IV elemental semiconductors or the II-VI and III-V
compounds.

Theoretical studies of the electronic structures
of solid Se have been reported by many authors.
The most recent and complete ones are the pseudo-
potential calculations by Sandrock, ' and by Kramer
and co-workers. The former treated the band
structure of trigonal Se, while the latter dealt with
the amorphous form by imposing a configurational
average to the results obtained by Sandrock. In
both cases the calculated &~, the imaginary part of
the dielectric function, is in excellent agreement
with the experimental ones. ~'~ However, the ener-
gies of the valence bands (especially the deeper
ones) are quite doubtful. ' Nielsen's photoemission
experiment with 21. 2-eV photons indicates that
the entire valence band of amorphous Se extends
not more than 9 eV from the top edge. Kramer's
calculation for amorphous Se gives the width of the

upper two (triplet) valence bands as -8 eV. The
lowest triplet band (not included in Kramer's cal-
culation ), which should not be distorted very much
from the trigonal crystal values, extends more
than 15 eV below the top edge, according to Sand-
rock. These deep-lying states have not been de-
tected in Nielsen's careful search. (See Fig. I of
Ref. 8. )

In the calculations of Sandrock and Kramer
et al. the distinct features of solid Se mentioned
above have not been taken into account explicitly.
Tutihasi and Chen have attempted to incorporate
these special features by adopting the hybrid or-
bitals of s and p atomic orbitals, constructed ac-
cording to the crystal symmetry, as the bases for
the band-structure calculation of trigonal Se. Al-
though no quantitative calculation of the band struc-
ture has been carried out, it has been possible to
assign all peaks in the g~ spectra based on sym-
metry arguments. As pointed out by Nielsen, this
molecular-orbital approach gives a better agree-
ment with experiment in the width of total valence
ba,nd.

Molecular-orbital methods have been used to
interpret the carrier-transport properties in
orthorhombic sulfur by Spear and co-workers and

by Chen. ' Kastner" has recently discussed the
electronic structures of chalcogenide semiconduc-
tors in terms of bonding bands and lone-pair bands.
Messmer and %atkins" have studied the energies
of the defect states in the tetrahedrally bonded
(covalent) semiconductors by molecular-orbital
calculations. In this symmetry the s and the three
p orbitals, respectively, belong to an irreducible
repres entation.

In this paper we extend the molecular-orbital
calculation of Ref. 6 to the description of the elec-
tronic states of amorphous Se. The interaction
between the neighboring bonds and lone pairs are
considered. The effect of disorder is treated by
imposing a Gaussian distribution on each energy
level calculated assuming the short-range order.
Both chain and ring states are considered. The
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results are in excellent agreement with the photo-
emission and the optical reflectance' measure-
ments. The molecular-orbital (MO) method used
to calculate the energy levels is discussed in Sec.
II, and the calculations for chains and rings are
described in Secs. III »d IV, respectively. In Sec.
V we compare the results of calculation with the
experimentally observed density of states and the
ga spectra.

II. SEMIEMPIRICAL MO CALCULATIONS

The MO calculations are carried out in the frame-
work of the Wolfsberg- Helmholz semiempirical
method. ' In this method, the matrix elements of
the Hamiltonian are approximated by

+0k

&a( = +a(~a((&a+ &()/2

(2. 1)

(2. 2)

where E~ is the valence-state energy of the orbital
k, S„ is the overlap integral between the orbitals
k and l, and F» is a parameter which may or may
not depend on k and l. The physical basis of the
approximation, Eq. (2. 2), has been discussed by
several authors. '

Since, as shown in the following, the approxima-
tion, E(l. (2. 2), is not invariant with respect to a

FIG. 2. Structure of the Se ring molecule. Top:
viewed perpendicular to the molecular planes. Bottom:
viewed parallel to the molecular planes.

(2.3)

unitary transformation of the basis orbitals (e. g. ,
hybridization), it is important to choose an ap-
propriate set of bases. A hybrid orbital h, ~, on
atom i, is represented by a linear combination of
atomic orbitals a& as

h((,, =Q B(ym(((m

FIG. 1. Hybrid orbitals
of Se in a helical chain,

The Hamiltonian matrix elements with h&, as bases
are related to those with a& as bases by

B(A,J( ~ ~ BAmBJ(nB(m, gn ~ (2. 4)

where i and j refer to the atoms, k and l to the
hybrids, and m and n to the atomic orbitals.

Case I: diagonal elements, i=j and k=l. Using
the approximation, E(l. (2. 2), in the right-hand
side of E(l. (2. 4) we have

%a.(a=~ B(a B(a 4 .i

+ 2~ ~ B(kmB(kn+(m, (n~im, (n(E(m+ (n)
tl'(( %

=~B(a &( . (2. 5)

The second sum vanishes because of the orthogo-
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nality of the atomic orbitals on the same atom

(S(,„=0, ms(rr). Thus, the diagonal elements
with hybrid bases can be expressed using only the
diagonal elements with atomic-orbital bases.

Case II: elements between different hybrids of
the same atom, i =j but kWl. Direct application of
Eq. (2. 2) yields

B(a,(r = a F(a, (»S(a, (r(B(a, (a+ II(r, (r) =0 i (2 8)

which results from the orthogonality of two hybrids
on the same atom (S(, (, - 0, k n-'l). However, if

(2. 2) is applied to the off-diagonal elements on
the right-hand side of Eq. (2. 4), with i =j, we have

II(a, (r =~ B(amB(rmII(m. (m

1
+—Q Z B(amB(rnF(m. (nS(m, (n(E(m+ E(n)

tn nftn

+~p, ~g
— —J RfktnRfltn Efp

tttls
(2. 11)

1
B(siil s (E(s+ Ja) ~ RJ r nF(s, (n (si(n i (2. 12)

1
II(s,ir = a(E(s+ Ega) F(s,ir ~ R(r S(s,i. . (2. 13)

Case IIIB: i Wj, kWs, and lWs. In this case,
Eqs. (2. 8) and (2. 9) read, respectively,

Biaiil a~ ~ R(amR(ln (m, (nS(m, in 1 (2. 14)

owing to the orthogonality of the matrix R.
Thus the approximation Eq. (2. 10) is invariant

under rotation for off-diagonal elements belonging
to the same atom.

Case IIIA: i Wj,k=s, and les. From Eqs.
(2. 8) and (2. 9) we have Eqs. (2. 12) and (2. 13),
respectively:

=»(a B«E» (2. l)
&(a J, ——EaR(a ir &+ R(amR»rnS(m, tn ~

tn n

(2. iS)

The two expressions, Eqs. (2. 8) and (2. 9), are
again not identical in general, even if the param-
eter F is a constant independent of the orbitals
k, l, m, n.

Furthermore, if atomic orbitals are chosen as
the bases, the requirement of invariance under
coordinate rotation places some restriction on the
explicit form of the parameter F.

Cusachs' '" has suggested the formula

Far =2 Isa» I- (2. 10)

for the parameter. We shall show that this formula
is not invariant under coordinate rotations.

Consider molecular orbitals constructed from
atomic s and P orbitals. Under a coordinate rota-
tion, s orbitals are invariant, and the P orbitals
transform as

P(l 2 Rirmpim '
tn=xt3t t 8

Case IIA: i =j, k=s, and ls(s. Equation (2. V)
vanishes because B&, =0 if mes.

Case IIB: i=j, ks-'s, and ls(s (ks(l). Equation
(2. 7) reads

which does not vanish in general.
Case III: elements between hybrids on different

atoms, is(j. Applications of Eq (2. 2.) on the right-
and left-hand sides of Eq. (2. 4) give Eqs. (2. 8) and
(2. 9), respectively,

1
(amB(ln (m, (n (m, in(E(m+ Jn) t2. .

(2. 8)
1

B(adr = a F(a,(rS(a,»r(B(a, (a+ +sr, rr )

= —,
' s„,„Zs,',„s,.+ Z s', „s,„),

ttl n

xZZ B(a Br»„S(,»„. (2. 9)

III. CALCULATION OF CHAIN STATES

As developed in the previous papers, the 4s and

4P atomic orbitals of Se atoms in a helical chain
are hydridized into (i) two equivalent (r hybrids
pointing toward the nearest neighbors, h, and hz,
and (ii) two equivalent lone-pair hybrids, ka and ka.s
They can be written as

k, =ys+(1 —ya)rr p, ,

ki=(0. 5 —y ) s+(0. 5+y ) Pi, j=3, 4

(3. i)

where the coefficient y of the s orbital in h& can be
determined from the bond angle 8 (= 103.1') as

y= [—cos8/(1 —cos8)]'r' =0.430, (3.2)

lt can be seen that the pairs of expressions, Eqs.
(2. 12) and (2. 13) and Eq. (2. 14) and (2. 15), re-
spectively, are not identical if the parameters F
are given by Eq. (2. 10).

The invariance of Eq. (2. 2) under coordinate ro-
tations can be obtained if a constant value is as-
signed to the parameter F&,», between an s orbital
and all p orbitals, and another constant value to
F,»~, between any two p orbitals, as well as a value
for F&, J, between two s orbitals, for each pair of
atoms i and j. These constant values of parameters
may be determined by Eq. (2. 10) with a suitable
average value for l 8» ).

As a simplest approach to take into account the
anisotropic bonding feature of Se, we follow the
idea of Ref. 6 and use the hybrid orbitals as the
bases. In Sec. III we shall show the different re-
sults obtained with different sets of bases. As for
the parameter F, Cusachs's formula, "Eq. (2. 10),
may be used for hybrid bases, but we shall also
consider results obtained with various parameter
values.
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P = [h,„+h~s]/[2(1+ S,)] '@,

~ = [a,„-a„)/[2(1—S.)]'",
(3. 5)

(3. 6)

where S, = (h,„]h~s) is the overlap integral between
the 'wo 0 hybrids.

In the discussion of the electronic states in tri-
gonal Se, we have considered the combinations of
the two equivalent lone pairs such that each would

transform according to one of the irreducible rep-
resentations of the symmetry group (D~),

p = (h, + h, )/ v 2, (3.7)

7 = (h, —h, )/ v 2 . (3.8)

However, in the case of amorphous Se, this re-
striction may be relaxed.

The s and P characters of the n and P orbitals
are that of h, and h~, and are given in Eq. (3.3).
The 7 orbital is of pure p character and the p or-
bital has twice the s character of the lone pair h3,
Eq. (3.4).

The energies of these basis orbitals are given in
terms of E, (- 20. 828 eV)'5 and E~ ( —10.786 eV), '

the valence-state energies of Se 4s and 4P atomic
orbitals, as

E& = E2 = y E,+ (1—y )E~ = —12.639 eV, (3.9)

E, = E4 = (0. 5 —y )E, + (0. 5 + y )E~ = —13.954 eV,
(3. 10)

E~= (1 —2y )E, +2y E& ———17.122 eV,

E~ =Ep= —10.786 eV,

Ey ——(Ei+ Eia)/(1+ S,),
E = (E~ —Eqq)/(1 —S,),

(3. 11)

(3. 12)

(3. 13)

(3. 14)

and P„P& are appropriate combinations of atomic

p„, p„, and p, orbitals. Assuming the atomic posi-
tions in the trigonal Se structure, these combina-
tions are given by

h, ~=0.430s+0. 324x+0. 562y+0. 628x, (3.3)

h3 4=0. 562sa0. 628x —0. 430y+0. 324@, (3.4)

where the x, y, and z axes are shown in Fig. 1.
The o hybrids of two neighboring atoms A and B,

pointing toward each other, interact strongly to
form a bonding (P) and an antibonding (o.) orbital:

E
4„=Z c„p (3. 16)

In the first-order approximation, the interactions
between basis orbitals of different energies are
neglected.

The coefficient C„and the energies E of the state
g„can be obtained from the solutions of the secular
equation

N

Z (a.„-S.„E)C„=0, (3. 17)

where S „ is the overlap integral and H „ is the
Hamiltonian matrix element between the basis
orbital P and P„. The off-diagonal elements of
the Hamiltonian matrix are given by

H „=FP „E„, m4n. (3.18)

As the number of atoms (or bonds) N increases,
the maximum and the minimum values of E quickly
approach the values which determine the band edges
and the bandwidth for an infinite chain.

Figure 3(a) shows the results of calculations for
o. , P, v, and p bands. Cusachs's formula, Eq.
(2. 10), has been used for the parameters E~ and E,
in Eqs. (3. 15) and (3.18), respectively. It can be
seen that with N&18 the approach to the limiting
values is quite complete. In the following discus-
sion the results obtained with N= 24 will always be
used.

If instead of the p and 7'bases, the equivalent
lone pairs are used, the combinations of k3 and k4

from all the atoms have to be considered, since the
two bases are degenerate. The dimension of the
secular determinant is 48 for N= 24. %hen the
atomic s and P orbitals are used directly as the
bases for the chain states, the dimension of the
secular determinant for the P states is 3N. The
results of these calculations are shown in Figs.
3(b) and 3(c) for N=24 and 18, respectively

Values of overlap integrals up to the third near-
est neighbors are given in Table I.

In the calculation with n, P, v', and p as bases
and Cusachs's Evalue [Fig. 3(a)], at N=24 the
band gap (between the occupied p, P, v, and the
empty n band) is about 2 eV, in good agreement
with the experimental value for amorphous Se.
However, the total width of the valence bands (p,

(3. 15)

Now a chain state of type x can be constructed
by a linear combination of the basis orbital Q of
type x= a, P, p, 7 or the equivalent lone pairs h3

and h4.

where E» is the interaction energy between h& and

ha of the neighboring atoms and can be evaluated
simply by the semiempirical approximation, Eq.
(2. 2),

E13 (~12 I
If I&28) FbSoE1 (a l m')

(P l P'&

(he I he)
(hs l h4)
(s4 I ss&

Nearest
neighbor

0.0686
0.0066

—0.0335
0.0724

—0.0795

Second
neighbor

-0.0171
0.0218

—0.0318
0.0073
0.0422

TABLE I. Overlap integrals.

Third
neighbox

0.0011
0.0447
0.0052

-0, 0059
0.0001
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Cusachs value, both the band gap and the valence-
band width are in good agreement with the experi-
mental values. The individual bandwidths obtained
with F,= 2. 0 differ from those obtained with the
Cusachs formula by about 0. 1 eV or less.

The results of the calculation with the atomic s
and p orbitals as bases, Fig. 3(c), is obviously
unrealistic. Not only the width of the valence band
is too large but also the gap between the occupied
and the empty states is too small.

IV. MOLECULARORBITALSOF Se RING

The molecular-orbital calculations of an eight-
membered puckered ring have been discussed in
detail in a previous publication on sulfur. ' The
same method is now applied to the Se, ring mole-
cule with the following two refinements: (i) The
interactions between atoms are extended to the
third neighbors (only to next nearest neighbor in
the sulfur calculation); (ii) the off-diagonal element

-20— Fb = l.3 I.35 I.40
Fc=2 0

I.50

-24—

26 I l I I I I l I

6 9 l2 l5 l8 2I 24
N

FIG. 3. Selenium-chain-state energies. (a) e, P, v,
p as bases, extreme values as a function of N, the num-
ber of atoms in a chain; (b) n, P and the two equivalent
lone pairs h3, k4 as bases, N=24; (c) atomic 4s, 4p
orbitals as bases, N =18.

P, and r) exceeds 9 eV, which is about 50/p larger
than that determined by Nielsen with vacuum-
photoemission technique.

Kith the equivalent lone pairs h3 and h4 replacing
the p and r bases and the same formula for E [Fig.
3(b)], the total width of the valence band reduces to
5. 1 eV, in better agreement with Nielsen's result.
However the band gap becomes too large (4. 5 eV).

Because of the large overlap between the two
bonding hybrids (S, = 0. 515), the energies E, and

Ez, and therefore, the positions of the n and P
bands, are very sensitive to the F~ values chosen.
This is illustrated by the results of calculations
shown in Fig. 4. In these calculations we vary
the E~ value in Etl. (2. 15) from l. 3 to 1.5 while
keeping the E, value fixed to 2. 0 (which differ from
Cusachs's formula by & 5%, since all the overlap
integrals are less than 0. 1). It can be seen that
with E~=1.30-1.35, about 10% smaller than the

l4

-l6—

-I7—
EQUIV. LONE, PAIR BAND

FIG. 4. Selenium-chain-state energies, with G. , P, h3,
and h4 as bases for different values of EI„Eq. (2. 15),
and E~=2. 0. The dashed lines in the boxes represent
the positions of n and P orbital energies at corresponding
&& values.
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V. DISCUSSION

In order to compare the calculations of Secs.
III and IV with the experimental results the effects
of disorder and of interaction betmeen chains and
rings have to be considered. Both effects result in
the shifting of the energy levels previously cal-
culated, and therefore it is appropriate as a first
approximation to represent the effects of disorder
and inter chain (ring) interaction by imposing a
Gaussian distribution on each of the discrete lev-
els. Thus, the density of states at energy E can
be written as

D(E) = N Q (1/ v v(o)) exp[- (E- E)p/(o) ], (5. 1)

8 I
8) 8) Bi

-l6—

A(

E
E)

Ep
Sp

Eg
82

AI

E)
—E3
Ep

Ai

—82
Ai

-20—

FIG. 5. Molecular-orbital energies of Se8 ring, for
different values of E„, Eq. (4.1). The energy levels of
the same irreducible representations are shown in the
same column, except those of A.2 and B~, which are shown
in the columns of A~ and B2, respectively. The highest
occupied level is designated with a star (g).

parameter E of Eq. (2. 2) is represented by a
modified Cusachs formula:

(4. 1)

h3 =0. 540s+0. 842$,

h4 —-0. 540s-0. 346/+0. V68$,

(4.3)

(4.4)

where hy and ha are the bonding and h3 and h4 are
the lone-pair hybrids, and the coordinates (, g, g
are defined in Ref. 10 and shown in Fig. 2.

The resulting MO energy levels for x = 0. 85 to
1.0 are shown in Fig. 5.

where r is a correction factor whose value is
varied from 0. 85 to 1.0.

Because of the different bond length and bond

angle, the hybrid orbitals for Sea are slightly dif-
ferent from those of S, or of the Se chain, Eqs.
(3. 3) and (3.4). However, the symmetry-adapted
combinations of hybrid orbitals given in Table I of
Ref. 10 are applicable as well to Sea (with different
normalization factors due to different overlays).
The hybrid orbitals for Ses rings are

h, ,~=0. 457s+0. 293$ aO. 707'-0. 453$, (4. 2)

(~z)~~~~(d=z ) (5.2)

where f,&
is the average oscillator strength for the

where N is the normalization factor, and w, is the
width of the Gaussian distribution associated with
the discrete level E,. Since it is best to keep the
number of parameters in the semiempirical theory
to a minimum, all ~, are assumed to be the same.
Figure 6 shows the density of states for Se chains
calculated with the discrete levels obtained in Sec.
III mith F„=1.35 and E,=2. 0. The density and
energy are normalized such that the upper valence-
band peak coincides in density and energy mith that
of Nielsen's experimental curve, which is also
shown in Fig. 6. With co=0. 5 eV, excellent agree-
ment in the positions of the minimum (near E=-3
eV), the second valence-band peak (near E= —4. 2

eV), and the shoulder near —6 eV are obtained.
The experimental curve is slightly broader than the
calculated one. This difference could be removed
by increasing the Gaussian width to 0. 75 or 1.0
eV, but the shoulder near —6 eV disappears at
such high + values. An alternate source of the
extra broadening is the ring states. Figure V

shows the density-of-states curves for the Se ring
(calculated with r =0. 85) and the Se chain (same
as that of Fig. 6, except the normalization). The
two curves have similar structures except a slight
shift in energy, mhich would result in extra broad-
enings of the peaks when the two are superposed.

The constituents of the valence bands are re-
solved in Fig. 8, in which me plot the densities of
states from the lone-pair states and the bonding
states of the Se chain separately. It can be seen
that although the lone-pair states and the bonding
states contribute mostly to the upper and the lower
peaks, respectively, each state also contributes
considerably (30- 509o) to the other peak.

The imaginary part of the dielectric function &3

calculated from reflectance spectra is related to
the joint density of the initial (occupied) and the
final (empty) states (dN/dE&&),

~



INAN CHEN

Cal. for Se chain

~~ Obs. for a-Se

l.5—
Cl

I0
x
LLI
Cl

0.5—

FIG. 6. Density-of-
calculated for Sr e chain

cI d ensity normal
Ma data for ammorphous Se

0.0
« I0

I I

-4 -2 0
ENERGY (eV)

Z(E)=- a(x)a(x+ Z)g
"VB

+ X+EaC Bd+

where D(x) is the
in Eq. (5.2); g

states (condn uction
=0 oth=0 erwise; and

density-of- -states functi
+ xs xn t

he integrat' ' tak ea ion is tak etaken over the

mterband transition i- '
on i j) -Let. us d efine the func- x values correspond' t

( lence ba d
up~ed states

oryhous solxd the os
11 t

e, the Ede
i cons are n

pendence of
nearly the

o Z should simulat

n a
'

g calculated fin and rin
unction Z

Se' re

d rom the
Fig. 7. The g

e densities of

t db
on Fig. 9

db
Although it '

uke are alsoso shown
ected that there

40—
in

FIG. 7. DDensity-of-D ' — -states functions

h (
(F =0 85) th m=0. 5 eV.

'ng

-20 - IS -l6 -I 4 -I2 -I0
ENERGY [eV)

-6 -4



MOLECULAR-ORBITAL STUDIES OF THE ELECTRONIC ~ ~ ~ 3679

20—

I I I
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~~~ Lone pair States
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~~
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th
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FIG. 8. The bonding states and the
lone-pair states components of the va-
lance-band density of states, Eq. (5.1),
calculated for Se chain with E& =1.35,
Fc=2 ~ 0, and (a=0. 5 eV.

0
-22

l

-20 -18 -16 —l4 -l2
FNKRGY ( eV)

- IO

is perfect agreement between the Z and e& curves,
the calculated Z(E) curves do show resemblances
to the experimental g& curves, e. g. , the double
peaks. The shoulder in Stuke's g& curve near 3 eV
could be due to the ring component. At the high-
energy end, &z decays much slower than Z(E).
This can be attributed to the extra contributions to
ga from transitions to higher conduction states
(e. g. , 5s), which are not included in the present
calculation. It has been suggested" that the first
(lower energy) peak in the &z spectrum arises from

transitions from the lone-pair band to the anti-
bonding band, while the second peak results from
those from the bonding band to the antibonding
band. In Fig. 10, the contributions to Z(E) from
the lone-pair band and from the bonding band are
resolved for the Se chain. It can be seen that the
1o&e-pair band contributes dominantly to the first
peak, while the bonding band contributes almost
equally to both peaks. It is not correct to assign
the double peaks in the valence-band density of
states (Figs. 7 and 8) and inthe ea spectrum to the

FIG. 9. The joint density-of-states
functions Z(E), Eq. (5.3), for Se chain
and ring calculated from the DN) func-
tions of Fig. 7. Experimental data for
~2 {Ref. 7) are also shown.

0
8

ENERGY (eV)
IO 14 16
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24

LP to AB

—BN toA8

FIG. 10. The contributions to ZN),
Eq. (5.3), for the Se chain from the
transitions of (1) lone-pair states (LP)
to antibonding states (AB), and (2)
bonding states (BN) to AB.

0
0

ENERGY (eV)

I

l2 l4 l6

lone-pair band and the bonding band separately.
Rather, the double peaks arise from the interac-
tion between the neighboring bonding orbitals, P of
Eq. (3. 5) [or the neighboring lone-pair orbitals
h3, 4 of Eq. (3.4)], resulting in a bonding and an
antibonding combination of the bases. It hayyens
that the energy of the bonding combination of P dif-
fers only slightly from that of lone-pair orbitals,
the two bands overlap, forming the lower peak in
the valence-band density of states. The overlap
of the antibonding combinations of P and of lone
pairs results in the upper peak.

In summary we have demonstrated that the semi-
empirical molecular-orbital method with appro-
yriate choices of the bases and the off-diagonal
element parameter I' can describe the electronic
states of amorphous molecular solids in good
agreement with both photoemission and optical ex-
periments. The hybrid orbitals are shown to be a
good representation for the anisotroyy of the bond-
ing in Se. The value of the parameter E calculated
from Cusachs's formula is found to be slightly
(10-15/g) too large where the overlap integral is
large (0.3-0.5).
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