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A theory of electron correlations based on a generalized random-phase approximation is presented. An

expression for the local-field correction is obtained using the third frequency moment of the spectral
function of the electron-density response function. The local field is a functional of the structure factor

S(q ) which in turn is related to the imaginary part of the dielectric function via the

fluctuation-dissipation theorem. The equations are self-consistently solved to determined S(cf) as originally

suggested by Singwi et al . The pair-correlation function, compressibility, plasma dispersion, and

correlation energy of electron liquid at metallic densities have been calculated.

I. INTRODUCTION

In this paper we have used exact sum rules to
study electron correlations at metallic densities.
The wave-vector- and frequency-dependent dielec-
tric function describes the response of an electron
liquid to an external probe coupled to the density
fluctuations in the system and is related to the den-
sity-response function. The coefficients in the
asymptotic expansion of the density-response func-
tion in powers of l/rz are the frequency moments
of its spectral function. The low-order moments
of this function are known i, 2 We have used the
usual mean-field expression for the density-re-
sponse function. The form of the effective mean
field is obtained by satisfying the third frequency
moment of the spectral function of the density-re-
sponse function. The effective mean field is a
functional of the static structure factor S(q), which
in turn is related to the imaginary part of the in-
verse dielectric function [e(q, &)] via, the fluctua-
tion-dissipation theorem. The equations are solved
self-consistently to determine S(q) as originally
suggested by Singwi et al.s 5

In Sec. II a brief discussion of the frequency mo-
ments of the spectral function of the density-re-
sponse function is presented. The expression for
the third frequency moment is then used to deter-
mine the form of the local-field correction.

In Sec. III we discuss the compressibility ratio
and the coefficient of the leading term in the plas-
mon-dispersion relation, which are related to the
long-wavelength limit of the local-field correction.
Explicit results in the Hartree-Fock (HF) approxi-
mation are also presented. We obtain exactly the
same value for the coefficient of the leading term
in the plasmon-dispersion relation in the HF ap-
proximation in our theory as obtained by Nozieres
and Piness and Kanazawa et al.~ by an entirely dif-

ferent method.
In Sec. IV the results, based on a self-consis-

tent calculation of the static structure factor, are
given for the static-pair-correlation function, com-
pressibility ratio, plasmon dispersion, and cor-
relation energy of an electron liquid in the metallic
density range.

Concluding remarks are presented in Sec. V.

II. THEORY

A. Generalities

The system of degenerate electrons immersed in
a uniform neutralizing background of positive
charge is described by the Hamiltonian

where the first term is the kinetic energy of the
electrons, the second term represents the Coulomb
repulsion between them, and N is the number of
electrons. The prime on the summation sign in the
second term in Eq. (1) indicates that the k= 0 term
should be omitted from the sum. The Fourier
transform of the Coulomb potential is given by
y(k) = 4ne/0, a'nd the density-fluctuation operator
is defined as

The linear response of the system to a space- and
time-dependent external probe which couples to
the density fluctuation in the system is described
through the density-response function. The den-
sity-response function is defined as the average
of the retarded commutator '

X(q f) = —ia(t) (tp;(f), p';(0)l ), (3)

where 8(t) is the unit step function and the angular
brackets denote the equilibrium ensemble average
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X2(q f) ( [p (f ), p'(O)]&

its Fourier transform is given as

(5)

Xo(q, f)= 2, e *'"' X"(q «),

where X"(q, «) is the imaginary part of X(q, «).
Since X(q, f) in Eq. (3) is a retarded response func-
tion, x(q, «) is analytic in the upper half of the
complex «plane and x"(q, «) is an odd function of

Further, it follows that x"(q, «) is the spectral
function of X(q, «), i.e. ,

appropriate to the system Hamiltonian (1). p;(f)
is the operator in the Heisenberg representation.
In the theory of electron liquid it has been found
most useful to introduce a wave-vector- and fre-
quency-dependent dielectric function &(q, «) which
is related to the Fourier transform X(q, «) of the
density-response function X(q, t) by the relation

I/e(q, «) —1= e(q)X(q, «) .
The dielectric function &(q, «) is a, central quantity
in the theory of metals. Many properties of metals
can be discussed in terms of the dielectric func-
tion. Since these are already discussed in detail
in the papers of Singwi et gl. , we shall not re-
peat them here.

To discuss the moment relations it is very con-
venient to introduce the function Xo(q, f) defined aso o

It is straightforward to evaluate these commuta-
tors using the Hamiltonian (1). It may be men-
tioned here that in evaluating them one uses only
the commutation relations of the position and mo-
mentum operators. The results are therefore in-
dependent of the statistics. The third moment is
given for the electron liquid in the form

+—Z (k ij) k(k)(S(k —k) —S(k))), ((k)
7R k $'q

where S(k) is the usual static structure factor, «,
= hq /2m, and q denotes the unit vector. It may
be noted that ( T«& is the exact kinetic energy per
electron. The result for the third moment was
first derived by Puff. VYe have also derived the
expression for the fifth moment; it is very much
complicated and shall be given elsewhere. For
the sake of completeness we quote the fluctuation-
dissipation theorem which relates the Fourier
transform of the space- and time-dependent cor-
relation function S(q, «) to x"(q, «). It is given as

S(q, «) = —(5/)Tn) (1 —e '"") 'X"(q, «) .
From Eq. (13) the so-called zeroth-moment sum
rule can be written in terms of the dielectric func-
tion as

)

"'" d«' x"(q, «')
x q~&d I ~ P

'7l Q) (g Z'g
(7)

S(q)= ——, , d«(1 —e '" )„'
4m ne „

where 7i=0'. The large-«expansion of X(q, «) is
obtained from Eq. (7) as && Im — . 14

1

e(q, «) j
( 1& ( oh I

X(qk «) 2
—

4
—0 o ~ (6) At temperature T=O, (1 —e o"") ' is simply equal

to unity.

The coefficients in the asymptotic expansion of

X(q, «) are the odd frequency moments of the spec-
tral function X"(q, «); we define them as

(«)=, «x (qk«) ~

It is now easy to calculate the low-order moments
or sum rules for the spectral function x"(q, «).
These may be obtained by differentiating Eq. (5)
with respect to t and then putting t=0. Using Eqs.
(5), (6), and (9), we obtain

(«'& =&[[p;, fr], p,'-]) = nq'/m, (io)

where I is the mass and n is the mean density of
electrons. Equation (10) is the well-known f-sum
rule, The third frequency moment of x"(q, «) is
given as

&«'&=&[[[[p;,Hl, If], II], p';1&

B. Model for XI'q, u}

In the generalized random-phase approximation
(GRPA) or effective-mean-field approximation, the
expression for the density-response function is
taken as~

Xo(q»)
1 —It)(q)xo(q, «) '

where t(q) )i)s the effective mean field and Xo(q, «)
is the response of a noninteractirg electron gas
given by

Xo(q «)
k (d &k 'Mk+ g 2 t

(i6)

where n„- are the usual fermion occupation num-
bers.

To examine the moments of the spectral function
of the density-response function, one looks into the
asymptotic large-«expansion of X(q, «) from Eq.
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(15). It can be written as

x(q
Ãg ng' ] 2 2Q'

II(q) = 4(q) [1—G(q)], (is)

2

+ q
q(q) —

4
—0 —

8 . (1V)
nl M (d

In obtaining Eq. (1V) we have used the asymptotic
expansion of IIO(q, &). Here ( T„~ )& is the kinetic
energy per particle of a noninteracting electron
gas. Using Eqs. (10) and (12) it can be easily
seen from Eqs. (8) and (1V) that first moment or
the f-sum rule is automatically satisfied. Since it
is connected to particle-number conservation, it
is satisfied by any. model which gives free particle
behavior in the high-frequency limit. The third
moment relation will be satisfied if

III. LONG-VfAVELENGTH PROPERTIES AND
HARTREE-FOCK LIMIT

A. Compressibility Ratio

The dielectric function (21) in the limit q-0 and
~~=0 has the form

2

lim c(q, 0) =1+
;-0 ' I -~(qTF/q~)' ' (22)

where qTF and q~ are the Thomas-Fermi and Fer-
mi wave vectors, respectively. From the com-
pressibility sum rule one obtains

Ky/K= 1 —y(qTF /qp)

= 1 —(4Xr, /n)y,

where E& is the compressibility of the noninteract-
ing electron gas and X= (4/9w)'~~. y in (23) is re-
lated to the long-wavelength limit of G(q) by

where

G(q)= —,Z/[q ~ (k+q)]'P(k+q)
4mne g

—(q k)'4 (k)}[S(k)—1] (19)

In obtaining the local-field correction G(q) given
in Eq. (19) we have ignored the difference between
the exact kinetic energy and the kinetic energy of
a noninteracting electron gas (i. e. , correlation ki-
netic energy). The G(q) in Eq. (19) can be written
in a form suitable for numerical computation as

IlmG(q) - r(q/q&)',
a "0

where

Y 5 Y

y= (2q,-) 'f dk[S(k) I].-
B. Plasmon Dispersion

The dielectric function in the limit q = 0 and
finite ~y has the form

(24)

(25)

G(q) = —
2 dk k [S(k) —1]

5 k (k —q) ~ k+q (20)2+ 4y 3

3 2 2

lim&(q, z)=1 —
z 1+—Q)p 9

y ~ o ~ ~

q-0 & 5 AF A
(2V)

where +~ is the plasma frequency. The plasmon
dispersion in the long-wavelength limit is then

The function G(q) is a functional of the static struc-
ture factor and will be determined using the fluc-
tuation-dissipation theorem, as was first suggested
by Singwi et al.3 Our expression for the dielectric
function can be written in the usual form:

cop(q) = &dp + QSP/Bl + ' ' '

where

(y 5 4Xg,

&RPA

(2s)

(29)

(2i) ~»~ = 2@q~/10m~& .

where C. Hartree-Fock Limit

Qo(q &u) = —4(q)XO(q ~)

is the Lindhard function. Since the various proper-
ties and sum rules for the dielectric function have
been discussed in detail by Vashishta and Singwi~

(see Sec. V, Ref. 5), we shall not repeat them
here. The dielectric function given by Eq. (21) to-
gether with Eq. (20) for G(q) satisfies all the nec-
essary conditions. Equations (14) (at T= 0 'K), (20),
and (21) constitute the ba.sic equations of this pa. —

per.

In Eq. (25) if the Hartree-Pock value of the
structure factor S(k) is used, we obtain from Eq.
(25) and (25) p» = —,

' and p„r = foL. It may be noticed
that in the theory of Singwi et al.3 one also obtains
y»=-, . However, in their theory y= y, whereas in
our theory y= —', y. It is interesting to note that the
value of ~/n»„with our y„F.= $ is the same as ob-
tained by Nozieres and Pines~ and Kanazawa et al.v by
entirely different methods. The compressibility ra-
tio derived by differentiating the ground-state en-
ergy in the HF approximation corresponds to y= 4, . '~
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TABLE I. Values of y.

1 2 3 4 5 6

y 0.46920 0.51292 0.54302 0.56589 0.58417 0.59930

0.06—'OI

o.o4$
0.054

-O.I5-
-O.I6

00

much higher accuracy in S(q) used in the calculation
of the properties described below.

A. Pa¹Correlation Function

The pair-correlation function is given by

FIG. 1. Pair-correlation function g(y) vs q~ for vs=1
and 2. Values of g(0) in various theories are also marked.

Toigo and Woodruff' obtain the value of y= ~ from
the long-wavelength limit of G(q) in their theory.
In a recent paper Vashishta and Singwi' also get
the value of y= 4 in the Hartree-Fock approxima-
tion. However, their self-consistent theory satis-
fies the compressibility sum rule almost exactly.
In our case also S(q) is determined self-consis-
tently. Results of such calculations are described
in the next section.

IV. CALCULATIONS AND RESULTS

Equations (14), (20), and (21) constitute the basic
equations in our theory. The equations were solved
on a digitial computer. The procedure is similar
to the one described by Singwi et al.3 About ten
iterations were needed to obtain convergence in

G(q) to better than 0. 1% accuracy This .implies a

(20)

lim G(q) = —,
'

I I —g(0)] .
gazoo

This is different from similar relations found in
the theory of Singwi et al. , e.g. ,

G( )=II-„(0)].
In the theory of Vashishta and Singwi~ the corre-
sponding relation reads

(22)

t-(")=(& ——r (& -g(o)( .
9 'dz,

I 0--

g(r) = 1+— q sin(qr) I S(q) —1]dq,
3

2y.
where q is in the units of the Fermi wave vector
q~ and r is in units of q~ . It is interesting to re-
late the q- ~ limit of the local field G(q), which is
a functional of S(q), to the r- 0 limit of the pair-
correlation function g(r). In our theory the relation
is

0.5

I.O

0.0-0.02-0.075

0,006
0.0-0.07-

-0.3 I—
-0.42-0.50--

-0.68 -- HUBBARD

-0.46
~ -0.50

-0.92--HUBBARD
—

I 0--

0.55-0.6 I
- -TW

-l.OO--

l. I 4--HUBBARD

0.95--RPA —l.70--RPA

—I.33 --RPA

FIG. 2. Pair-correlation function g(z) vs q~x for vs=3
and 4. Values of g(0) in various theories are also
marked.

-2.0-- -2.0--2'04-- RPA

FIG. 3. Pair-correlation function g{~) vs q~y for
rs= 5 and 6. Values of g(0) in various theories are also
marked.
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I.O
RPA RPA

Q5

's
6

0.0
0

FIG. 4. Ratio bebveen the free-electron compressi-
bility and the compressibility of the electron liquid vs r, .
The unlabeled continuous wave is obtained by differentia-
tion of the ground-state energy. The broken curve (la-
beled present theory) is obtained from Eq. (23). The
continuous curve [labeled H-F (TW)] is obtained from dif-
ferentiating the ground-state energy in the H-P approxi-
mation. The same curve is obtained in the theory of
(Ref. 12) from theq 0, co=0 limit of e(q, ~).

The values of g(r) calculated from Eg. (30) by
using the self-consistent values of S(q) are shown
in Figs. 1-3 for r, = 1 to 6. Our values of g(r) at
small interparticle separation are negative for
r, & 2. Clearly for large r, values (see Figs. 2 and

3) our g(r) is poorer compared to the g(r) in the
theory of Singwi ef; gl. ' and Vashishta and Singwi.
Our g(r) for small values of r, is slightly inferior
to that of Toigo and woodruff, "but for large values
of r, (see Fig. 3, r, = 6) our g(r) is slightly better
than that of Toigo and W'oodruff.

B. Compressibility Ratio and Plasmon Dispersion

The expression for K/ICz and n/n»„ in Egs.
(23) and (29) have been evaluated using the value of

FIG. 5. Coefficient of the leading term in the plasmon-
dispersion relation (in units of its RPA value) vs ~~. The
curve labeled present theory is obtained from Eq. (29).

y evaluated from Eg. (26) using the self-consistent
values of S(q). Table I gives the values of y for
r, = 1 to 6. Figure 4 shows the plot of Kz /K versus
r, . The unmarked continuous curve is the com-
pressibility ratio obtained by differentiating the
ground-state energy. The broken curves stand
for the K&/K values obtained by the j-0, ra =0 lim-
it of the dielectric function in various theories.
The best compressibility sum rule is obtained in
the theory of Vashishta and Singwi. ~ Figure 5
shows o,/o. »„as a function of r, in various the-
ories.

C. Correlation Energy

The correlation energy per particle can be
written as3

"' -
4 O~&'~'

~,», = r
i,

—
4 I

y(r,')+0.0163 dr,' Ry,r, m 4)
(34)

TABLE II. Correlation energy (Ry/electron).

s

Present theory

Vashishta and
Singwi

Singwi et al.
(Ref. 4)

Singwi et al.
{Ref. 3)

Hubbard

Nozieres and Pines

RPA

—0.139

—O. 130

—O. 125

—0.124

—0.131
—0.115
—0.157

—0.106

—0.098

- 0.097

—0.092

—0.102

—0.094

-0.124

—0.089

—0.081

—0.080

—0.075

—0.086

—0.081

—0.105

—0.078

—0.070

-0.070

—0.064

—0.076

—o.072

—0.094

—0.069

—0.062

—0.063

—0.056

—0.069

—O. 065

—0.085

—0.063

-O.056

—0.057

—0.050

—0.064

—0.060

—0.078

Toigo and Woodruff —0.134
(-o.12o)

—O. 095
(-o.o92)

—0.079
(-o.o77)

-0.068
(-0.068)

O. 061
(- O. 061) (-0.056)

The values in the parentheses in the last row are those calculated by us using the numerical values of G(q) given by
Toigo and Woodruff IRef. 12 (1970)]. These values are different from those reported by these authors in Ref. 12 (1971).
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G (co)=0.9099
VS

G(~) =0.9~9~
SSTL

I.O G() =0.8994
STLS

G{q)

0.6

PRESENT THEORY
G(~) =0.7646
G (c))=0.7621

TN

G(~}=0.5
HUBBARD

FIG. 6. Self-consistent value of
the local field G(q) vs q for r, =2
in various theories. Here q is in
units of q&. The broken lines at
the right-band side of the figure
represent the q ~ limit of G(q).
Note the shift in the zero on the
vertical axis by 0.1, 0.2, and 0.3
for STLS, SSTL, and VS, respec-
tively.

0.3
VS

0.2
SSTL

0.1

STLS

00 I.O 2.0
q

40

where y is defined in Eg. (26). It may be men-
tioned here that the Ferrell~s condition on the
ground-state energy, w'hich is equivalent to

v(.) o,
&$

is satisfied by the values of y in Table I. Values

1.4

1.2

10

0.6

0.4

I I I I I I I I I I———-- G(m) =10428
VS

G()= I.0737
SSTL

G() =0.9959
STLS

G(co) =0.9483
PRESENT THEORY

G()=0. 7621
TN

G(~)=0.5
HUBBARD

FIG. 7. Self-consistent value of
the local field G(q) vs q for r, =4 in
various theories. Here q is in
units of q&. The broken lines at the
right-hand side of the figure repre-
sent the q ~ limit of G(q). Note
the shift in the zero on the vertical
axis by 0.1, 0.2, and 0.3 for STLS,
SSTL, and VS, respectively.

02
YS

0.2
SSTL

0.1

STI S

00 1.0 2.0 50 4.0
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t.2

i I I I I I I I I I

G(~) = I.0724
VS

G() = I. I I 58
SSTL

I.O

G(co) = I.02I8
STLS

-—G(~) = I.0~58
PRESENT THEORY

G(q)

06

0.4

-- G{a)=0.762I
TW

G{c3 =0.5
HUBBARD

FIG. 8. Self-consistent value of
the local field G(q) vs q for ~~ =6 in
various theories. Here q is in units
of q&. The broken lines at the right-
hand side of the figure represent the
q ~ limit of G(q). Note the shift
in the zero on the vertical axis by
0.1, 0.2, and 0.3 for STLS, SSTL,
and VS, respectively.

03
VS

0.2
SSTL

O. l

STLS

QO I.O 2.0 5.0 4.0

of the correlation energy per particle are given in
Table II together with the values in other theories.

D. Self-Consistent Local Field G{q )

For the sake of a comparison we have plotted
G(q) for different theories as a function of q for
y, =2, 4, 6 in Figs. 6, 7, and 8, respectively.
Note that q is in units of the Fermi wave vector
q~. It might be mentioned here that G(q) in the
theories of Hubbard' and Toigo and Woodruff" is
independent of r,. The q- ~ limits of G(q) is
marked by the broken lines at the right-hand side
of the figures. Note the shift in the scale for G(q)
of Refs. 3, 4, and 5 marked as STLS, SSTL, and
VS, respectively.

V. CONCLUDING REMARKS

The present theory has two encouraging features:
(i) It satisfies the low-order frequency-moment
relations, and (ii) in the HF case in the limit q- ~, it yields G»(~) = -'„a result which any exact
theory in the HF limit should yield, as emphasized

by Geldart and Taylor. " The discouraging aspect
of the theory is that, in spite of the fact that our
G(q) is a function of S(q) and the equation for G(q)
is solved self-consistently along with the fluctua-
tion-dissipation theorem, it gives the values of the
pair-correlation function, compressibility ratio,
etc. , which are nearly of the same quality as in
the theory of Toigo and Woodruff. " The latter val-
ues are not so good when compared with the values
obtained in the theories of Singwi et al.3 4 and
Vashishta and Singwi. ' But by its very nature the
theory should be better for high-frequency phe-
nomenon (~ & m~).
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Impurity Diamagnetism in Metals*

C. P. Flynn and J. A. Rigert~
Physics Department and Mate&a/s Research Laboratory, University of I/linois, ghana,

I/linoi s 618o1
{Received 31 October 1972)

The results of a broad experimental survey of impurity magnetism in liquid monovalent
metal solvents is reported. As the impurity valence Z is increased, a giant impurity dia-
magnetism - -150 cm /mole emerges in alkali-metal solvents for Z -5. The diamagnetism
is explained by the concept of impurity ionicity developed in this paper, and the impurity struc-
ture is analyzed in detail using the present results and earlier spin-flip-scattering results
of Slichter and his co-workers. There is quantitative agreement between the theory of fully
ionic impurities and the experimental susceptibilities for higher-valence impurities. The
broad scheme of impurity structure in monovalent metals is also clearly revealed. The sus-
ceptibility of Sn is studied as a function of host-electron density, and the transition from band
to resonant 5p orbitals is identified. A solubility dip occurs, but the data are not precise
enough to determine whether the transition has a one-electron or configurational character.
It is further reported that the large diamagnetism of positive-valence solutes in Ag, previously
studied by Henry and Rogers, disappears at the melting transition. No detailed analysis of
this striking effect has been attempted, but the anomalous impurity diamagnetism in the solid
is clearly associated with orbits involving the [111]necks on the Fermi surface.

I. INTRODUCTION

The nature of impurity states in meta]. s has chai-
lenged experimental and theoretical investigations
for fifty or more years. Much recent effort has
been directed towards the study of transition-met-
al impurities, having unfilled d or f shells, in both
"simple" metals and in more complex transition-
metal host lattices. However, there remain major
unresolved difficulties in our present understanding
of valence impurities. These less complex solutes
differ (in the atomic state) from host atoms only
by the presence of extra neutralizing valence elec-
trons. The difficulties relate to the emergence
of bound impurity states, to the occurrence of
ionicity among impurities in metals, and to certain
striking phenomena connected with impurity dia-
magnetism and conduction-electron-spin resonance
in metals. The central problem lies in the theo-
retical prediction and the experimental assignment
of electronic structures to impurities in metals.
In this paper we present the results of broad ex-
perimental studies, and their theoretical interpre-

tations. These yield a substantially more complete
insight into the structure of valence impurities in
simple metallic solvents. Preliminary accounts of
several aspects of this work have been published
elsewhere. '

It has, of course, been understood since the
pioneering work of Mott' that an impurity in solu-
tion must be neutralized by the electron gas, sim-
ply because metals conduct. The precise structure
of the screening charge has, nevertheless, eluded
description in most cases. s From an experimental
viewpoint there is the difficulty that the impurity
structure must be defined throughout the range of
host band energies and below, where."a most ex-
periments are sensitive to a limited span of en-
ergies often near the Fermi energy E~. There are
also formidable theoretical difficulties. Foremost
is the problem of self-consistency: The wave func-
tion of each electron in the system must be con-
sistent with those of the remaining electrons, in the
presence of the impurity perturbation. In the one-
electron approximation, the wave functions fall into
two categories. The first consists of localized or


